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Abstract. This paper is dedicated to a rigorous review of the theory of

plafales, which describes the properties and applications of a new mathemati-

cal object. As a consequence of the created theory we give a proof of the
equality of complexity classes P and NP.
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1. introduction

The first edition of [1] is published in March 2011. The publication’s goal is
the creation of a new theory in mathematics, where the central object is plafal1.
The second edition of [2] is published in February 2013. After the report at the
42nd Polish Conference on Mathematics Applications [3], it is necessary to create
applications based on the theory of plafales (so-called constructive approach of
post-factum power). Here we will provide an appropriate overview of the research
and development process of the theory of plafales.

Finite element method. There are created mathematical models of serendi-
pity finite elements: a new approach to construction basis and field functions. A
quadruple role of the basis functions of serendipity finite elements is structurally
shown [4], [5].

IT (finite element method as algorithmic support). Due to solving the non-
standard Dirichlet boundary value problem [4], using the components of the theory
of plafales (to obtain the surface of the temperature field in a three-dimensional
space), there is developed a software for testing non-stationary temperature fields [6].

Cryptography. In September 2014 there is created a symmetric-key algorithm
“ECLECTIC-DT-1” [7]. Algorithm’s characteristics: block length is 128 bits, key
length is 256 bits, 14 rounds. Algorithm’s indicators (upper bounds of practical
security): EDP ≤ 2−714 (against differential cryptanalysis [8]), ELP ≤ 2−714

(against linear cryptanalysis [9]). In December 2018 the symmetric-key algorithm
“STEEL” is created [10] (which is the modification of the algorithm “ECLECTIC-
DT-1”). Algorithm’s characteristics: block length is 128 bits, key length is 256 bits,
14 rounds. Algorithm’s indicators: EDP ≤ 2−595, ELP ≤ 2−595.

Note 1. Editions [1], [2] are the basis of the theory of plafales. The theory of
plafales has to be taken into consideration starting from this article.

Date: 12 January 2023.
Key words and phrases. Plafal, Plafale, The theory of plafales, P vs NP problem.
1The singular form is plafal or plafale. The plural form is plafales.
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2. concept of the plafal

Now we introduce the following concept. For any simple graph G(S,E)2 let
there be a correspondence between each edge and an arbitrary object, and also
between each vertex and an arbitrary object3. Object’s essence is not taken into
consideration: an arbitrary set, category, ∞-cosmos [12], etc. Designation of plafal
in general form is PF ij , where i is a number of graph’s edges, j is a number of

graph’s vertices4 (examples of plafales are given in figures 1, 2).

Figure 1. PF 4
4 . Edges: Set (the category of sets), R is a set of

real numbers, Q is a set of rational numbers, a ↔ A. Vertices:
An is an affine space, Pn is a projective space, p ↔ P (for two
vertices). PF 3

3 . Edges: N is a set of natural numbers, Ring (the
category of rings).

Figure 2. PF 6
6 .

2In the general case, a is an edge of G(S,E), p is a vertex of G(S,E). S is a set of vertices,

E is a set of edges. G(S,E) does not contain an isolated vertex.
3Let us remark that the above correspondences are not the graph’s representation (the example

of the graph’s representation in the finite-dimensional vector space is given in [11]). This repre-
sentation [11] is a special case of plafal, because instead of Ga ⊆ Vw +Vq (a ∈ E,w, q ∈ S,w 6= q),

for instance, it can be Ring (the category of rings).
4Remark 1. In the general case, A is an edge of plafal, P is a vertex of plafal. Between

the edge A and two vertices P1, P2, which are connected by A, there is not necessarily a logical
relation. Remark 2. a ↔ A (when the edge corresponds to itself); p ↔ P (when the vertex
corresponds to itself). Remark 3. Generally, we claim that G(S,E) ≡ G(PF i

j ). Remark 4. The

graph’s properties, as a support of the plafal, are preserved.



3

Definition 2.1 (Labeled plafal). All or some of edges (vertices) are enumerated5.

Designation is PF ikjl , k is a quantity of enumerated edges6: {i1, ik}
π1−→ {1, i}; l is

a quantity of enumerated vertices7: {j1, jl}
π2−→ {1, j}, (figure 3). Here π1, π2 are

substitutions.

Figure 3. PF 51
53

. One edge is enumerated, three vertices are enu-

merated. PF 30
32

. Two vertices are enumerated.

Let’s give a constructive example of using of the theory of plafales in crypto-
graphy [10]. For a byte {b7b6b5b4b3b2b1b0} there is the correspondence that forms
the plafal8: b8−k ↔ ik, k ∈M,M = {1, 8}.

Figure 4. PF 88
80

. Eight edges are enumerated.

5The camoufleur makes a graph labeling (see section 10).
6If k < i, then π1 is an injection; if k = i, then π1 is a bijection.
7If l < j, then π2 is an injection; if l = j, then π2 is a bijection.
8Edges {i1, ik} are sequential from north to northwest.
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3. the category of plafales

Definition 3.1. Given plafales PF ij and PF i
′

j′ , a plafal morphism g:

〈G(PF ij ), PF
i
j 〉

g=〈f,Ψ〉−−−−−→ 〈G(PF i
′

j′ ), PF
i′

j′ 〉 is called an ordered pair of maps for which
the following conditions hold:

(1) G(PF ij )
f−→ G(PF i

′

j′ ), f is a graph morphism [13];

(2) PF ij
Ψ−→ PF i

′

j′ : P
ψt′−−→ P ′ and A

ψt′′−−→ A′; P,A ∈ PF ij , P
′, A′ ∈ PF i

′

j′ ,

Ψ = {ψt}t∈{1,(i+j)} is a family of maps.

Example is given in figures 5, 6.
Plafales and plafal morphisms (as defined in def. 3.1) form the category Plafales,

together with the componentwise compositions 〈f,Ψ〉 ◦ 〈f ′,Ψ′〉 = 〈f ◦ f ′,Ψ ◦ Ψ′〉
and identities idPF i

j
= 〈idG(PF i

j ), idP , idA〉.

Figure 5. Condition 1. The image of G(PF 5
4 ) under the strict

homomorphism is G(PF 3
3 ).

Figure 6. Condition 2. U is an accessible cosmological functor
between ∞-cosmoi which are accessible simplicially enriched cate-
gories; f is a homomorphism of groups.
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Claim 3.2. In Plafales, there’re no initial and terminal objects.

Proof. By definition 3.1 and due to the concept of the plafal, we have the fol-
lowing: the initial object must be 〈0̂G(PF i

j ), 0̂C〉9, the terminal object must be

〈1̂G(PF i
j ), 1̂C〉10. a. Initial object. Assume the converse. Consider the single plafal

with the following configuration11: A↔ ObSet and P ↔ ObRing. Thus, we get two

initial objects 〈0̂G(PF i
j ), 0̂C = ∅〉 and 〈0̂G(PF i

j ), 0̂C = Z〉12. Contradiction. b. Ter-

minal object. In SiLlStG (The Category of Simple Loopless Graphs with Strict
Morphisms) [14], there’s no terminal object. This completes the proof of claim
3.2. �

Given two plafales PF1 and PF2, a product PF prod = PF1 × PF2 is defined
by the graph product G = G(PF1) × G(PF2) [14] and existence of P ′ × P ′′ (in
accordance with G), P ′ ∈ PF1, P ′′ ∈ PF2; and for edges Aj ∈ PF prod we have the
following: Aj ↔ a. Certainly, G is a simple graph and does not contain an isolated
vertex.

Given two plafales PF1 and PF2, a coproduct PF cprod = PF1 ⊕ PF2 is defined
by the graph coproduct G = G(PF1)⊕G(PF2) (the disjoint union of graphs) [14]
and existence of

∐
for P,A ∈ PF1, P

′, A′ ∈ PF2.

Claim 3.3. In Plafales, the product of any two plafales does not always exist.

Proof. Consider the discrete category on the two-object set {B,A} (this is most
easily seen by thinking of {B,A} as a discrete poset). The product B×A does not
exist (the proof is trivial). Consider two plafales PF1 and PF2 with the following

configurations: P
′ ↔ B,P

′′ ↔ A, P ′ ∈ PF1, P ′′ ∈ PF2. Then B × A does not
exist at the P

′ × P ′′
. This completes the proof of claim 3.3. �

Claim 3.4. In Plafales, the coproduct of any two plafales does not always exist.

Proof. Consider the category of fields. P ↔ Q, P ′ ↔ Z/pZ, P ∈ PF1, P
′ ∈ PF2.

Then P ⊕ P ′ does not exist. This completes the proof of claim 3.4. �

Claim 3.5. Plafales fails to have the following properties:
(S1) NNO (a natural numbers object).
(S2) AC (the axiom of choice).
(S3) A subobject classifier is two-valued.

Proof. SiLlStG (The Category of Simple Loopless Graphs with Strict Morphisms)
fails to have the properties (S1), (S2), (S3) [14]. This completes the proof of claim
3.5. �

Corollary 3.6. Limits and colimits fail to exist, exponentiation with evaluation
fails to exist, Plafales is not a topos. The proof is omitted.

Remark 5. If the graph product G is a lexicographical product or of other types,
then PF prod will be defined in an analogous way.

90̂G(PF i
j )

is the initial object in the Categories of Graphs [14].

101̂G(PF i
j )

is the terminal object in the Categories of Graphs [14].
11See remark 2.
120̂C = Z is the ring of integers.
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4. a canvas of the plafales

Definition 4.1. A canvas of the plafales PFUr is an algebraic surface of the first
order (plane) which contains r ∈ Z+ ∪ {0} plafales13. If r = 0, then PFU0 is called

an empty canvas of the plafales. pPF ij (pPF ikjl ) is a plafal with an assigned number,
1 ≤ p ≤ r.

Definition 4.2. PF p is an adherent point of PFUr . Types: limit point PF pl;
isolated point PF pis. S(PF p) is the set of all adherent points. S(PF pl) ⊂ S(PF p)
is the set of all limit points. S(PF pis) ⊂ S(PF p) is the set of all isolated points.

Definition 4.3. Interior region of the plafal PF I is the set of all points located
inside of plafal. Exterior region of the plafal PFE is the set of all points located
outside of plafal14.

Definition 4.4. PF Ip is an adherent point of PF I . Types: interior limit point
PF Ipl; interior isolated point PF Ipis. PFEp is an adherent point of PFE . Types:
exterior limit point PFEpl; exterior isolated point PFEpis.

4.1. Special points.

Definition 4.5. Special limit point (imaginary point) PF spl is a type of PF pl15

for which the following correspondence holds:

(4.1) PF spl ↔
[
u1 · c1(t) W spl

i · c1(t)
]
,

u1 is a unique parameter16, W spl
i = (mi(x, y, t) ± 1) is a characteristic function17,[

u1 · c1(t) W spl
i · c1(t)

]
is a state matrix, c1(t) = 1 (see section 5).

Definition 4.6. Special isolated point PF spis is a type of PF pis18 for which the
following correspondence holds:

(4.2) PF spis ↔
[
u2 · c2(t) W spis

i · c2(t)
]
,

u2 is a unique parameter19, W spis
i = (ni(x, y, t) ± 1) is a characteristic function20,[

u2 · c2(t) W spis
i · c2(t)

]
is a state matrix, c2(t) = 1 (see section 5).

13The other types of algebraic surfaces are not considered in this paper. PFU
r is R2 equipped

with the metric topology. The induced topology on R2 defines on R(K) =
⋃

I∈K 4I ⊂ R2 the

structure of compact space, 4I = conv(ei | i ∈ I, I ⊂ {1, 2}) is a simplex spans the vectors

e1, e2. This compact space |K| is the geometric realization of a 1-dimensional simplicial complex

K = G(S,E) [15].
14|K| is the Jordan curve, PF I = Int |K|, PFE = Ext |K|.
15PF spl /∈ |K|, S(PF spl) is the set of all imaginary points.
16u1 ∈ {a ∈ R, color, . . .}, u1 is a same for S(PF spl).
17The coordinates of PF spl are (x, y), t is a time. ∀PF spl ∃! W spl

i ; W spl
1 , . . . ,W spl

k is a col-

lection of characteristic functions. In the general case, W spl
i = (mi(x, y, t)±1). If PF spl ∈ PF I ,

then W spl
i = (mi(x, y, t) + 1). If PF spl ∈ PFE , then W spl

i = (mi(x, y, t)− 1).
18PF spis /∈ |K|, S(PF spis) is the set of all special isolated points.
19u1 6= u2, u2 is a same for S(PF spis).
20∀PF spis ∃! W spis

i ; W spis
1 , . . . ,W spis

l is a collection of characteristic functions. In the general

case, W spis
i = (ni(x, y, t)±1). If PF spis ∈ PF I , then W spis

i = (ni(x, y, t)+1). If PF spis ∈ PFE ,

then W spis
i = (ni(x, y, t)− 1).
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Definition 4.7. Flickering point PF spf is a point of PFUr for which the following
correspondence holds21:

(4.3) PF spf ↔
[
u3 W spf

i

]
,

u3 = (u1 ·c1(t)+u2 ·c2(t)) 22, W spf
i = (hi(x, y, t)±1) = (W spl

i ·c1(t)+W spis
i ·c2(t))

is a characteristic function23,
[
u3 W spf

i

]
is a state matrix.

Figure 7. The canvas of the plafales PFU1 : interior region of
the plafal, exterior region of the plafal, special limit point, special
isolated point, flickering point.

5. absolute transitions

Definition 5.1. For given PF spl and PF spis let an absolute transition taslis:

〈(x, y), PF spl〉 taslis=〈p,haslis〉−−−−−−−−−−→ 〈(x, y), PF spis〉 be an ordered pair of maps for which
the following conditions hold:

(1) (x, y)
p−→ (x, y) (i.e. PF spl and PF spis have the same coordinates);

(2) PF spl
haslis

−−−−→ PF spis.

21PF spf /∈ |K|, S(PF spf ) is the set of all flickering points. PF spf is an intermediate point
in the transition between PF spl and PF spis (see section 5), i.e. PF spf is a superposition of the

states PF spl and PF spis, where ci(t) are the probabilities of the states PF spl and PF spis at the

PF spf .
22c2(t) = 1− c1(t), 0 < c1(t) < 1.
23∀PF spf ∃! W spf

i ; W spf
1 , . . . ,W spf

s is a collection of characteristic functions. In the general

case, W spf
i = (hi(x, y, t)± 1). If PF spf ∈ PF I , then W spf

i = (hi(x, y, t) + 1). If PF spf ∈ PFE ,

then W spf
i = (hi(x, y, t)− 1).
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5.1. There’s a transition from the special limit point to the special iso-
lated point without returning back.

PF spl
haslis=fasfis◦gaslf

−−−−−−−−−−−−−→ PF spis, T1 ≤ t ≤ T2
24 :

(5.1) PF spl
gaslf

−−−→ PF spf
fasfis

−−−−→ PF spis.

Using (4.1), (4.2), (4.3) in (5.1), we get (5.2), (5.3).

PF spl
gaslf

−−−→ PF spf :
[
u3 W spf

i

]
=
[
u1 · c1(t) W spl

i · c1(t)
]
· gaslf =

=
[
u1 · c1(t) W spl

i · c1(t)
]
·

 1
W spl

i ·c1(t)

u1·c1(t)

u2·c2(t)

W spl
i ·c1(t)

W spis
i ·c2(t)

W spl
i ·c1(t)

 ,
c1(t) =

{
1, t ≤ T1,
T2−t
T2−T1

, T1 < t < T2,
c2(t) =

{
0, t ≤ T1,
t−T1

T2−T1
, T1 < t < T2,

lim
t→T1

c1(t) = 1, lim
t→T1

c2(t) = 0.(5.2)

PF spf
fasfis

−−−−→ PF spis :
[
u2 · c2(t) W spis

i · c2(t)
]

=
[
u3 W spf

i

]
· fasfis =

=
[
u3 W spf

i

]
·

u2·c2(t)
u3

0

0
W spis

i ·c2(t)

W spf
i

 ,
c1(t) =

{
T2−t
T2−T1

, T1 < t < T2,

0, t ≥ T2,
c2(t) =

{
t−T1

T2−T1
, T1 < t < T2,

1, t ≥ T2,

lim
t→T2

c1(t) = 0, lim
t→T2

c2(t) = 1.(5.3)

Definition 5.2. For given PF spis and PF spl let an absolute transition tasisl:

〈(x, y), PF spis〉 tasisl=〈p,hasisl〉−−−−−−−−−−→ 〈(x, y), PF spl〉 be an ordered pair of maps for which
the following conditions hold:

(1) (x, y)
p−→ (x, y) (i.e. PF spis and PF spl have the same coordinates);

(2) PF spis
hasisl

−−−−→ PF spl.

5.2. There’s a transition from the special isolated point to the special
limit point without returning back.

PF spis
hasisl=fasfl◦gasisf

−−−−−−−−−−−−−→ PF spl, T1 ≤ t ≤ T2
25 :

(5.4) PF spis
gasisf

−−−−→ PF spf
fasfl

−−−→ PF spl.

24PF spl −→ PF spf at time T1, PF spf −→ PF spis at time T2.
25PF spis −→ PF spf at time T1, PF spf −→ PF spl at time T2.
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Using (4.1), (4.2), (4.3) in (5.4), we get (5.5), (5.6).

PF spis
gasisf

−−−−→ PF spf :
[
u3 W spf

i

]
=
[
u2 · c2(t) W spis

i · c2(t)
]
· gasisf =

=
[
u2 · c2(t) W spis

i · c2(t)
]
·

 u1·c1(t)
u2·c2(t)

W spl
i ·c1(t)

u2·c2(t)
u2·c2(t)

W spis
i ·c2(t)

1

 ,
c1(t) =

{
0, t ≤ T1,
t−T1

T2−T1
, T1 < t < T2,

c2(t) =

{
1, t ≤ T1,
T2−t
T2−T1

, T1 < t < T2,

lim
t→T1

c1(t) = 0, lim
t→T1

c2(t) = 1.(5.5)

PF spf
fasfl

−−−→ PF spl :
[
u1 · c1(t) W spl

i · c1(t)
]

=
[
u3 W spf

i

]
· fasfl =

=
[
u3 W spf

i

]
·

u1·c1(t)
u3

0

0
W spl

i ·c1(t)

W spf
i

 ,
c1(t) =

{
t−T1

T2−T1
, T1 < t < T2,

1, t ≥ T2,
c2(t) =

{
T2−t
T2−T1

, T1 < t < T2,

0, t ≥ T2,

lim
t→T2

c1(t) = 1, lim
t→T2

c2(t) = 0.(5.6)

5.3. There’re the transitions from the special limit point to the spe-
cial isolated point and instantaneous returning back to the special limit
point. Combining (5.1) – (5.6), we obtain (5.7).

(5.7)

PF spl
haslis=fasfis◦gaslf

−−−−−−−−−−−−−→ PF spis, T1 ≤ t ≤ T2,

PF spis
hasisl=fasfl◦gasisf

−−−−−−−−−−−−−→ PF spl, T2 ≤ t ≤ T3.

5.4. There’re the transitions from the special isolated point to the spe-
cial limit point and instantaneous returning back to the special isolated
point. Combining (5.1) – (5.6), we obtain (5.8).

(5.8)

PF spis
hasisl=fasfl◦gasisf

−−−−−−−−−−−−−→ PF spl, T1 ≤ t ≤ T2,

PF spl
haslis=fasfis◦gaslf

−−−−−−−−−−−−−→ PF spis, T2 ≤ t ≤ T3.

5.5. There’re n ≤ ∞ transitions from the special limit (isolated) point to
the special isolated (limit) point. Using (5.7), (5.8), we obtain (5.9).

(5.9)


PF spl(PF spis) −→ PF spis(PF spl), Ti ≤ t ≤ Ti+1,

PF spis(PF spl) −→ PF spl(PF spis), Ti+2 ≤ t ≤ Ti+3,

|Tj+1 − Tj | = γ, γ ∈ Z+ ∪ {0}.

Claim 5.3. PF spl, PF spis and morphisms taslis, tasisl (in accordance with (5.9))
form the category Plafales-AT.

Proof. id = idPF spl = idPF spis = 〈(x, y),

[
1 0
0 1

]
〉, taslis ◦ id = taslis, id ◦ taslis =

= taslis, tasisl ◦ id = tasisl, id ◦ tasisl = tasisl. �
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6. moving transitions

Definition 6.1. For given PF spl1 , PF spl2 ∈ S(PF spl) let a moving transition tmspl:

〈(x, y), PF spl1 〉
tmspl=〈p,h

m
spl〉−−−−−−−−→ 〈(x′, y′), PF spl2 〉 be an ordered pair of maps for which

the following conditions hold:

(1) (x, y)
p−→ (x′, y′) (i.e. PF spl1 and PF spl2 have different coordinates26);

(2) PF spl1

hm
spl−−→ PF spl2 :

[
u1 · c1(t) W spl

2 · c1(t)
]

=
[
u1 · c1(t) W spl

1 · c1(t)
]
·hmspl =

=
[
u1 · c1(t) W spl

1 · c1(t)
]
·

[
1 0

0
W spl

2 ·c1(t)

W spl
1 ·c1(t)

]
.

Claim 6.2. S(PF spl) and morphisms tmspl form the category Plafales-MT-spl.

Proof. id = 〈(x, y),

[
1 0
0 1

]
〉. We get the following commutative diagrams:

�

Definition 6.3. For given PF spis1 , PF spis2 ∈ S(PF spis) let a moving transition
tmspis:

〈(x, y), PF spis1 〉
tmspis=〈p,hm

spis〉−−−−−−−−−−→ 〈(x′, y′), PF spis2 〉 be an ordered pair of maps for
which the following conditions hold:

(1) (x, y)
p−→ (x′, y′) (i.e. PF spis1 and PF spis2 have different coordinates);

(2) PF spis1

hm
spis−−−→ PF spis2 :

[
u2 · c2(t) W spis

2 · c2(t)
]

=
[
u2 · c2(t) W spis

1 · c2(t)
]
×

× hmspis =
[
u2 · c2(t) W spis

1 · c2(t)
]
·

[
1 0

0
W spis

2 ·c2(t)

W spis
1 ·c2(t)

]
.

Claim 6.4. S(PF spis) and morphisms tmspis form the category Plafales-MT-spis.
The proof is omitted.

Definition 6.5. For given PF spf1 , PF spf2 ∈ S(PF spf ) let a moving transition tmspf :

〈(x, y), PF spf1 〉
tmspf=〈p,hm

spf 〉−−−−−−−−−→ 〈(x′, y′), PF spf2 〉 be an ordered pair of maps for which
the following conditions hold:

26In particular, x = x′ or y = y′.
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(1) (x, y)
p−→ (x′, y′) (i.e. PF spf1 and PF spf2 have different coordinates);

(2) PF spf1

hm
spf−−−→ PF spf2 :

[
u3 W spf

2

]
=
[
u3 W spf

1

]
·hmspf =

[
u3 W spf

1

]
·

[
1 0

0
W spf

2

W spf
1

]
.

Claim 6.6. S(PF spf ) and morphisms tmspf form the category Plafales-MT-spf.
The proof is omitted.

By definitions 6.1, 6.3, we have the following:

Definition 6.7. For given p1, p2 ∈ S(PF splis)27 let a moving transition tmsplis:

〈(x, y), p1〉
tmsplis=〈p,hm

splis〉−−−−−−−−−−→ 〈(x′, y′), p2〉 be an ordered pair of maps for which the
following conditions hold:

(1) (x, y)
p−→ (x′, y′) (i.e. p1 and p2 have different coordinates);

(2) p1

hm
splis−−−−→ p2

28.

Claim 6.8. S(PF splis) and morphisms tmsplis form the category Plafales-MT-
splis. The proof is omitted.

By definitions 6.1, 6.5, we have the following:

Definition 6.9. For given p1, p2 ∈ S(PF splf )29 let a moving transition tmsplf :

〈(x, y), p1〉
tmsplf=〈p,hm

splf 〉−−−−−−−−−−→ 〈(x′, y′), p2〉 be an ordered pair of maps for which the
following conditions hold:

(1) (x, y)
p−→ (x′, y′) (i.e. p1 and p2 have different coordinates);

(2) p1

hm
splf−−−→ p2

30.

Claim 6.10. S(PF splf ) and morphisms tmsplf form the category Plafales-MT-
splf. The proof is omitted.

27S(PF splis) = S(PF spl) ∪ S(PF spis).

28PF spl
hm
splis−−−−→ PF spis :

[
u2 · c2(t) W spis

i · c2(t)
]

=
[
u1 · c1(t) W spl

i · c1(t)
]
· hmsplis =

=
[
u1 · c1(t) W spl

i · c1(t)
]
·

u2·c2(t)
u1·c1(t)

0

0
W

spis
i ·c2(t)

W
spl
i ·c1(t)

;

PF spis
hm
splis−−−−→ PF spl :

[
u1 · c1(t) W spl

i · c1(t)
]

=
[
u2 · c2(t) W spis

i · c2(t)
]
· hmsplis =

=
[
u2 · c2(t) W spis

i · c2(t)
]
·

u1·c1(t)
u2·c2(t)

0

0
W

spl
i ·c1(t)

W
spis
i ·c2(t)

; if p1 = p2 = PF spl, we have hmsplis =

= hmspl; if p1 = p2 = PF spis, we have hmsplis = hmspis.
29S(PF splf ) = S(PF spl) ∪ S(PF spf ).

30PF spl
hm
splf−−−−→ PF spf :

[
u3 W spf

i

]
=
[
u1 · c1(t) W spl

i · c1(t)
]
· hmsplf =

=
[
u1 · c1(t) W spl

i · c1(t)
]
·

 u3
u1·c1(t)

0

0
W

spf
i

W
spl
i ·c1(t)

;

PF spf
hm
splf−−−−→ PF spl :

[
u1 · c1(t) W spl

i · c1(t)
]

=
[
u3 W spf

i

]
· hmsplf =

=
[
u3 W spf

i

]
·

u1·c1(t)
u3

0

0
W

spl
i ·c1(t)
W

spf
i

; if p1 = p2 = PF spl, we have hmsplf = hmspl; if p1 =

= p2 = PF spf , we have hmsplf = hmspf .
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By definitions 6.3, 6.5, we have the following:

Definition 6.11. For given p1, p2 ∈ S(PF spisf )31 let a moving transition tmspisf :

〈(x, y), p1〉
tmspisf=〈p,hm

spisf 〉−−−−−−−−−−−→ 〈(x′, y′), p2〉 be an ordered pair of maps for which the
following conditions hold:

(1) (x, y)
p−→ (x′, y′) (i.e. p1 and p2 have different coordinates);

(2) p1

hm
spisf−−−−→ p2

32.

Claim 6.12. S(PF spisf ) and morphisms tmspisf form the category Plafales-MT-
spisf. The proof is omitted.

By definitions 6.1, 6.3, 6.5, 6.7, 6.9, 6.11, we have the following:

Definition 6.13. For given p1, p2 ∈ S(PF splisf )33 let a moving transition tmsplisf :

〈(x, y), p1〉
tmsplisf=〈p,hm

splisf 〉−−−−−−−−−−−−→ 〈(x′, y′), p2〉 be an ordered pair of maps for which the
following conditions hold:

(1) (x, y)
p−→ (x′, y′) (i.e. p1 and p2 have different coordinates);

(2) p1

hm
splisf−−−−→ p2.

Claim 6.14. S(PF splisf ) and morphisms tmsplisf form the category Plafales-MT-
splisf. The proof is omitted.

Corollary 6.15. Plafales-MT-spl, Plafales-MT-spis, Plafales-MT-spf, Pla-
fales-MT-splis, Plafales-MT-splf, Plafales-MT-spisf are the subcategories of
Plafales-MT-splisf. The proof is streightforward.

By definitions 5.1, 5.2, 6.7, we have the following:

Claim 6.16. S(PF splis) and morphisms taslis, tasisl, tmsplis form the category Plafa-
les-splis. The proof is left to the reader.

Corollary 6.17. Plafales-MT-splis and Plafales-AT are the subcategories of
Plafales-splis. The proof is streightforward.

Claim 6.18. A singleton {x} with id{x} is a skeleton of Plafales-MT-splisf and
Plafales-splis. The proof is trivial.

6.1. An ensemble of the special points (SP).

Definition 6.19. An ensemble of the special points PF enssp ⊂ S(PF splisf ) is a
plane curve with the following configuration: each point is a special point.

31S(PF spisf ) = S(PF spis) ∪ S(PF spf ).

32PF spis
hm
spisf−−−−−→ PF spf :

[
u3 W spf

i

]
=
[
u2 · c2(t) W spis

i · c2(t)
]
· hmspisf =

=
[
u2 · c2(t) W spis

i · c2(t)
]
·

 u3
u2·c2(t)

0

0
W

spf
i

W
spis
i ·c2(t)

;

PF spf
hm
spisf−−−−−→ PF spis :

[
u2 · c2(t) W spis

i · c2(t)
]

=
[
u3 W spf

i

]
· hmspisf =

=
[
u3 W spf

i

]
·

u2·c2(t)
u3

0

0
W

spis
i ·c2(t)
W

spf
i

; if p1 = p2 = PF spis, we have hmspisf = hmspis; if p1 =

= p2 = PF spf , we have hmspisf = hmspf .
33S(PF splisf ) = S(PF spl) ∪ S(PF spis) ∪ S(PF spf ).
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6.2. Dynamical system of the SP.

Definition 6.20. A dynamical system of the SP is a tuple S? = 〈T, S(PF splisf ),Φ〉,
(T × S(PF splisf )) ⊇ S∗ Φ=〈Ψ,Υ〉−−−−−−→ S(PF splisf ), Ψ is a family of maps of the points
(x, y) on the plane PFUr , Υ = {Υ′, hmsplisf} is a family of maps34, S(PF splisf ) is a
phase space, t ∈ T .

As an example, let S(PF splisf ) = PF enssp be an unit circle, the position of the
point on the unit circle is determined by the angle ϕ, dynamical system with discrete
time is determined by Ψ = Ψ(ϕ) = 2 · ϕ (mod 2π). Therefore, we have

S∗
Φ=〈Ψ(ϕ),Υ′〉−−−−−−−−→ S(PF splisf ).

Claim 6.21. S? with Υ = {hmsplisf} can be determined by Υ′.

Proof. It is sufficient to consider the single hmsplisf between two points p1, p2 (as

defined in def. 6.13). Therefore, we have

〈(x, y), p1(t1)〉
Φ=〈p,hm

splisf 〉−−−−−−−−−→ 〈(x′, y′), p2(t2)〉.
Thus we have S? = 〈T = {t1, t2}, {p1, p2},Φ〉. It is easily shown that S? can be
determined by 〈(x, y), p1〉

〈p,id〉−−−→ 〈(x, y), p1〉, t ≤ t1,

〈(x′, y′), p2〉
〈p′,id〉−−−−→ 〈(x′, y′), p2〉, t2 ≤ t.

�

Figure 8. Absolute transitions. Moving transitions.

34Υ′ = {id =

[
1 0
0 1

]
, haslis, hasisl, fasfis, fasfl, gasisf , gaslf}. See sections 5, 6.



14 DMYTRO TOPCHYI

7. plafales operations

In this section we will consider the basic plafales operations.

7.1. Elementary operations. 1. Vertex deletion pPF ikjl − P ; 2. Edge deletion
pPF ikjl − A; 3. Edge addition pPF ikjl + A; 4. Subplafal contraction pPF ikjl \

pPF ′ikjl ;

5. Vertex breeding pPF ikjl ↑ P ; 6. Complement plafal pPF ikjl . The operations are
illustrated in figure 9.

Figure 9. Elementary operations.

7.2. Advanced operations.

Definition 7.1. Union of plafales. Given plafales PF1, . . . , PFn, a union of
plafales PFunSn =

⋃n
i=1 PFi is defined by the union of graphs35 G =

⋃n
i=1G(PFi),

if there exist: P ′ ∪P ′′ (at the common vertex) and A′ ∪A′′ (at the common edge),
where P ′, A′ ∈ PFj′ ; P ′′, A′′ ∈ PFj′′ .
Definition 7.2. Docking of plafales. Given plafales PF1, . . . , PFn, a docking
of plafales PF docSn =

⋃n
i=1 PFi is defined by the union of graphs G =

⋃n
i=1G(PFi),

for all common edges a1, . . . , ak, . . . , am and vertices p1, . . . , pl, . . . , pq, which are
obtained by G, we have the following: A′ ↔ Ak, A′′ ↔ Ak, P ′ ↔ Pl, P

′′ ↔ Pl,
where P ′, A′ ∈ PFj′ ; P ′′, A′′ ∈ PFj′′ .
Definition 7.3. Docking• of plafales. Given plafales PF1, . . . , PFn, a docking•
of plafales PF doc•Sn =

⋃n
i=1 PFi is defined by the union of graphs G =

⋃n
i=1G(PFi),

for all common edges a1, . . . , ak, . . . , am and vertices p1, . . . , pl, . . . , pq, which are
obtained by G, we have the following: A′ ↔ Ak, A′′ ↔ Ak, P ′ ↔ Pl, P

′′ ↔ Pl, if
there exist: As = A′′′ ∪ A′′′′ and Pt = P ′′′ ∪ P ′′′′; P ′, P ′′′, A′, A′′′ ∈ PFj′ ; P ′′, P ′′′′,
A′′, A′′′′ ∈ PFj′′ .
Definition 7.4. Intersection of plafales. Given plafales PF1, . . . , PFn, an in-
tersection of plafales PF inSn =

⋂n
i=1 PFi is defined by the intersection of graphs

G =
⋂n
i=1G(PFi), if there exist: P ′ ∩ P ′′ (at the common vertex) and A′ ∩A′′ (at

the common edge), where P ′, A′ ∈ PFj′ ; P ′′, A′′ ∈ PFj′′ .
Definition 7.5. Merger of plafales. Given two plafales PF1, PF2, a merger of
plafales PFmS2 =

⋂2
i=1 PFi is defined by the intersection of graphsG =

⋂2
i=1G(PFi),

for all edges a1, . . . , ak, . . . , am and vertices p1, . . . , pl, . . . , pq, which are obtained
by G, we have the following: A′ ↔ Ak, A′′ ↔ Ak, P ′ ↔ Pl, P

′′ ↔ Pl, where
P ′, A′ ∈ PF1; P ′′, A′′ ∈ PF2.

35No three of which do not have a common edge.
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Definition 7.6. Merger• of plafales. Given two plafales PF1, PF2, a merger• of
plafales PFm•S2 =

⋂2
i=1 PFi is defined by the intersection of graphsG =

⋂2
i=1G(PFi),

for all edges a1, . . . , ak, . . . , am and vertices p1, . . . , pl, . . . , pq, which are obtained
by G, we have the following: A′ ↔ Ak, A′′ ↔ Ak, P ′ ↔ Pl, P

′′ ↔ Pl, if there
exist: As = A′′′ ∩ A′′′′ and Pt = P ′′′ ∩ P ′′′′; P ′, P ′′′, A′, A′′′ ∈ PF1; P ′′, P ′′′′,
A′′, A′′′′ ∈ PF2.

Definition 7.7. Product• of plafales. Given two plafales PF1 and PF2, a
product of plafales PF prod• = PF1×PF2 is defined by the graph product [14] and
existence of P ′×P ′′ (in accordance with the graph product), P ′ ∈ PF1, P ′′ ∈ PF2;
and for edges aj ∈ (G(PF1) × G(PF2)) we have the following: the camoufleur36

makes the correspondences.

Definition 7.8. Decomposition of plafales. Given plafales PF1, . . . , PFn, a
decomposition of plafales PF d•Sn is defined by the decomposition of graphs [16],
[17], [18] and for all edges and vertices, which are obtained by the decomposition
of graphs, we have the following: the camoufleur makes the correspondences.

Remark 6. G (as defined in def. 7.1 – 7.7) is a simple graph and does not contain
an isolated vertex. Decomposition of graphs are the simple graphs and do not
contain the isolated vertices.

Figure 10. Union of plafales, docking of plafales, docking• of plafales.

Figure 11. Intersection of plafales, merger of plafales, merger• of plafales.

36See section 10.
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