A proof of the Collatz \((3x+1)\) conjecture

Xingyuan Zhang

(Independent scholar, Suzhou, P. R. China, 215131, e-mail:502553424@qq.com)

Abstract: In this paper we had given an elementary proof of the Collatz conjecture, it holds. By detailed analysis of the properties of both forward and inverse operations of the proposition, we had some important conclusions, 1, there hasn’t any triple in the forward path numbers; 2, there have an infinity number of inverse path numbers which had been defined as similar numbers in one time of inverse operation, 3, to do inverse operations (called reverse tracing) repeatedly from 1, it will obtain all of the odd numbers, 4, for any odd obtained by tracing, to do forward operations, it must return to 1 along the reverse tracing path.

Keywords: conjecture, path number, similarity number, source number, reverse tracing

0 Introductions

The Collatz conjecture is the 3x+1 conjecture, also known as Kakutani’s problem. It has not been proved since it was proposed [1]. Its operation rules are: for any given positive integer, if even, divide it with 2; if odd, multiply it with 3, and add 1, and then divide with 2, until it becomes an odd again. If doing operations repeatedly it will eventually return to 1.

In this paper, we called Collatz conjecture as Collatz proposition, or proposition for short.

According to the operation rules, an even number will be transformed into an odd firstly, so we take odd numbers directly to analysis and study for the operation.

1 Operation rules of the proposition and analysis of the properties

Here, the operation rules can be described simply as: to take an odd, multiply it with 3, plus 1, and then get an even number, divide this even with 2, one or more times, then it becomes a new odd; doing operations above repeatedly on these new odd numbers, Collatz conjectured that the new odd obtained in the end must be 1 (1 is cyclic, stop operation if it returns to 1).

In operations, a series of new odd numbers form an operation path. Obviously, because the new odd numbers are different, the odd number goes either back to 1 or to infinity at the end.

Definition 1 (a) The operation process from an odd to a new odd is called one time of operation; times of operations are called continuous operations; in one operation, divided by 2 is called a local operation;

(b) The new odd obtained after one operation is called a path number;

(c) One operation done in the order of the proposition is called one time of forward operation.

Next, we give the formula and analyze the properties of forward operation.

1.1 The formula

For any given odd number \(n\), let \(p\) be its path number, then according to the operation rules, we have

\[
p = \frac{3n + 1}{2^k}
\]

Where \(k \in \mathbb{N}\) and \(2^k\) is a divisor.

Here, we called formula (1) as the forward operation formula of the proposition. Analysis Formula(1) , it is not difficult to obtain: for any given odd number \(n\), there has only one path number \(p\) corresponding to \(n\); the value of \(k\) is determined by the odd number \(n\), \(k\) can be expressed as the times divided by 2, for example, when it equals to 1, that it means in one operation, there is one local operation; when it equals to 3, there are...
three local operations; for two different odd numbers, the times divided by 2 are the same or different because the values of k in the divisor can take all of the positive integers, therefore, perhaps there are infinite odd numbers that they will all get the same path number after one operation, and these odd numbers have some correlation properties with each other.

1.2 Numerical comparison of n and p

(a) As can be seen from formula (1), we can get

If, \(k = 1 \) \(p > n \)

If, \(k = 2 \) \(p < n \)

If, \(k \geq 3 \) \(p < n \)

Here, when \(k \geq 3 \), the path numbers seen to be some properties each other and to do with whether an odd can go back to 1, what we’re going to study below.

Obviously, the larger \(k \) is, the greater the change rate of the path number is (to reduce).

(b) Changes of the value of two adjacent numbers

Let \(n \) be an odd number and expressed as \(2x + 1 \), where \(x = 0 \) or \(x \in N \).

Thus, one of its adjacent odd numbers can be expressed as \(2x + 1 + 2 \).

To do one operation for \(2x + 1 \), then we get

\[
\frac{3(2x+1)+1}{2} = 3x+2.
\]

To do one operation for \(2x + 1 + 2 \), then we get

\[
\frac{3(2x+1+2)+1}{2} = 3x+5.
\]

Obviously, in these two numbers above, one is odd and the other is even. They both increase firstly. Since the even number can be divided by 2 again, so it will decrease finally. From this, we can get a conclusion (conclusion (1)): for two adjacent numbers, the two path numbers of them if one becomes larger, another must becomes smaller.

1.3 The properties of the path numbers

An odd number \(n \) can be expressed as

\(n = 2x + 1 \).

Where \(x = 0 \) or \(x \in N \).

To do one operation for \(n \), suppose we can get a path number \(3p \), where \(p \) is an odd, then from Formula (1), we have the following equation

\[
3p = \frac{3(2x+1)+1}{2^x} = \frac{6x+4}{2^x}.
\]

To simply, then we have

\[
x + \frac{2}{3} = 2^{k-1}p.
\]

Obviously, the equation above doesn’t hold for integers, so we can get the following conclusion (conclusion (2)): the path number is not a triple, but a non-triple; these triples were skipped.

1.4 Narrow paths
Definition 2 Let n be an odd, to do operations continuously for it, in every operation process, the times of local operation divided by 2 doesn’t exceed 2, i.e. $k \leq 2$, thus we called the section of the path as a narrow path which is composed of n and its path numbers.

On the narrow path, the numerical change rate of the path numbers is the smallest, that is, the range of change is the narrowest.

2 The similar numbers and their properties

From the analysis at 1.1, it’s known that the same path number can be obtained when doing one operation for two odd numbers respectively. For example, if doing one operation for 7 and 29, they both get 11. For 7, the value of k in Formula (1) is 1, and for 29, the value of k is 3.

Definition 3 Suppose, there are two odd numbers n_1 and n_2 whose path numbers are both p, then, we called that n_1 is a similar number of n_2, or n_2 is a similar number of n_1, that is, they are similar each other; and denoted $n_1 \sim n_2$, or, $n_2 \sim n_1$.

For example, 29 is a similar number of 7, or 7 is a similar number of 29.

Obviously, the similar numbers are caused by different values of k.

Next, we analyses the properties of the similar numbers.

2.1 The relationship between similar numbers

Suppose, there are two similar numbers n_1 and n_2, where $n_2 > n_1$, doing one operation on each of them, we can get the path numbers p_1 and p_2. According to formula (1), we have

$$p_1 = \frac{3n_1 + 1}{2^k}$$

and

$$p_2 = \frac{3n_2 + 1}{2^k}.$$

Where $k_1 \in N$, and $k_2 \in N$.

Now, let $p_1 = p_2$, then we have

$$\frac{3n_1 + 1}{2^k} = \frac{3n_2 + 1}{2^k}.$$

Since $n_2 \geq n_1$, then we have $k_2 \geq k_1$. From the upper equation, n_2 can be obtained, that is

$$n_2 = \frac{2^{k_2}}{2^{k_1}}n_1 + \frac{1}{3} \left(\frac{2^{k_2}}{2^{k_1}} - 1 \right) = 2^{k_2-k_1}n_1 + \frac{1}{3}(2^{k_2-k_1} - 1).$$

Obviously, $k_2 - k_1$ are positive integers in the equation above; if n_2 to be an integer, $2^{k_2-k_1} - 1$ must be a triple, it has a minimum value of 3, that is, $2^{k_2-k_1}$ is 4.

Now, let $k_2 - k_1 = 2k$, i.e., $k_2 - k_1$ takes even numbers, where $k \in N$, thus we have

$$2^{k_2-k_1} - 1 = 2^{2k} - 1 = (2^k + 1)(2^k - 1).$$

As it can be seen that there is a triple in the three continuous numbers of $2^k - 1$, 2^k and $2^k + 1$; and that
when \(k_2 - k_1 = 2k + 1 \), i.e., \(k_2 - k_1 \) takes odd numbers, \(2^{2k+1} - 1 \) hasn't any triple factor. Thus, \(k_2 - k_1 \) must take even numbers, that is, \(2^{k_2-k_1} \) must take 4 or 4 times of 4, and then \(n_2 \) has an integer solution in the equation above.

Now, we analyze some cases with 4 and its 4 multiples to find some similar numbers respectively,

1) when \(2^{k_2-k_1} \) takes 4, we have the second \((n_1 \) is the first\)

\[
n_2 = 4n_1 + 1
\]

2) when \(2^{k_2-k_1} \) takes 16, we have the third

\[
n_3 = 16n_1 + 5 = 4\left(4n_1 + 1\right) + 1
\]

3) when \(2^{k_2-k_1} \) takes 64, we have the fourth

\[
n_4 = 64n_1 + 21 = 4\left[4\left(4n_1 + 1\right) + 1\right] + 1.
\]

Here, we had got three similar numbers of \(n_1 \) in turn. As it can be seen that the formula above is an iterative formula, thus, more generally, we have

\[
n_{i+1} = 4^{i}n_1 + \sum_{i=1}^{\infty} 4^{i-1}
\]

Where, \(n_1 \) and \(n_{i+1} \) are odds in the series of odd numbers, \(i \) take positive integers. Using this formula, we can get an infinite number of similar numbers of \(n_1 \).

As an example, we can find some similar numbers of the original few odd numbers.

a) Let \(n_1 = 1 \), then we have

\[
n_{i+1} = 4^{i} + \sum_{i=1}^{\infty} 4^{i-1}.
\]

Then we can obtain a sequence generated by 1 as follows

1, 5, 21, 85, 341...

b) Let \(n_1 = 3 \), then we can also obtain a sequence generated by 3 as follows

3, 13, 53, 213, 853...

c) Let \(n_1 = 7 \), then we can also obtain a sequence generated by 7 as follows

7, 29, 117, 469, 1877...

When \(n_1 = 5 \), the sequence generated by 5 is already in the first sequence.

It can be seen that when the gap between two similar numbers is smallest, i.e., \(i \) takes 1, we obtain

\[
n_2 = 4n_1 + 1
\]
Here, we called formula (2) as the formula of the similar numbers, and also, two similar numbers when they have the smallest gap between them as the adjacent similar numbers. By using this formula, we can also find out the numberless similar numbers of n_1 one by one and it’s easy to do.

This relationship can be verified by doing operations on n_1 and n_2 separately.

1) For n_1, we have the path number
\[
\frac{3n_1 + 1}{2^k}
\]

2) For n_2, we have a middle number
\[
\frac{3(4n_1 + 1) + 1}{2^k} = 4 \left(\frac{3n_1 + 1}{2^k} \right).
\]

Obviously, the number on the right can be divided by 4 again, thus we also have a path number
\[
\frac{3n_1 + 1}{2^k}
\]

As it can be seen that when we do operations on n_1 and n_2 respectively, we get the same path number, so they are similar numbers to each other.

Doing inverse operation for formula (2), then we have
\[
n_1 = \frac{n_2 - 1}{4}
\] (3)

Obviously, if n_1 is an integer, then it is an adjacent similar number of n_2, and $n_1 < n_2$. Here Formula (3) is called the inverse operation formula of similar numbers.

2.2 A set of similar numbers

It is obvious from formula (2) that any odd number can generate an infinite number of similar numbers in turn.

Definition 4

(a) Suppose, the similar numbers generated by odd number n_1 in turn are n_2, n_3, ..., n_i, where $i \in N$ and $i \geq 2$, then we called the infinite set composed of n_i and n_i as a infinite set of similar numbers, or a set for short;

(b) We called n_i the previous similar number of n_{i+1}, and n_{i+1} as the next similar number of n_i;

(c) We called n_1 as the generating number of a set (the first); called the set as number n_1 set.

For examples, when the generating number is 1, it can generate 5, 21, 85, 341, 1365...(see 2.1) an infinite number of similar numbers, 1 and all its similar numbers constitute a set, this set is called number 1 set, in which any similar number returns directly to 1 after one operation; 1 is also the path number or the operational value of number 1 set. In the same way, 3 can generate similar numbers such as 13, 53, 213, 853, and so on (see 2.1), they constitute the number 3 set. In a set, all numbers constitute an increased sequence. Specifically, if every number in number 1 set be added with 3 to the right in turn, then number 1 set becomes number 3 set (missed the first).

For understanding, there is a table of sets of similar numbers below (see Tab. 1 Table of sets of similar numbers).
Tab. 1: Table of sets of similar numbers

<table>
<thead>
<tr>
<th>n/c</th>
<th>Path numb.</th>
<th>Comp. Set numb.</th>
<th>Similar numbers (arranged small to large)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td>1, 1, 5, 21, 85, 341, 1365, 5461</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>></td>
<td>3, 13, 53, 213, 853, 3413, 13653</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td><</td>
<td>5, 5, 21, 1, 85, 1, 1, 1, 1, 1</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>></td>
<td>7, 29, 117, 469, 1877, 7509, 30037</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td><</td>
<td>9, 37, 149, 597, 2389, 9557, 38229</td>
</tr>
<tr>
<td>6</td>
<td>17</td>
<td>></td>
<td>11, 45, 181, 725, 2901, 11605, 46421</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td><</td>
<td>13, 13, 13, 13, 1, 1, 1, 1, 1</td>
</tr>
<tr>
<td>8</td>
<td>23</td>
<td>></td>
<td>15, 61, 245, 981, 3925, 15701, 62805</td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td><</td>
<td>17, 69, 277, 1109, 4437, 17749, 70997</td>
</tr>
<tr>
<td>10</td>
<td>29</td>
<td>></td>
<td>19, 77, 309, 1237, 4949, 19797, 79189</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td><</td>
<td>21, 21, 11, 11, 5, 5, 5, 5, 5, 5</td>
</tr>
<tr>
<td>12</td>
<td>35</td>
<td>></td>
<td>23, 93, 373, 1493, 5973, 23893, 95573</td>
</tr>
<tr>
<td>13</td>
<td>19</td>
<td><</td>
<td>25, 101, 405, 1621, 6485, 25941, 103765</td>
</tr>
<tr>
<td>14</td>
<td>41</td>
<td>></td>
<td>27, 109, 437, 1749, 6997, 27989, 111957</td>
</tr>
<tr>
<td>15</td>
<td>11</td>
<td><</td>
<td>29, 7, 7, 7, 7, 7, 7, 7, 7, 7</td>
</tr>
<tr>
<td>16</td>
<td>47</td>
<td>></td>
<td>31, 125, 501, 2005, 8021, 32085, 128341</td>
</tr>
<tr>
<td>17</td>
<td>25</td>
<td><</td>
<td>33, 133, 533, 2133, 8533, 34133, 136533</td>
</tr>
<tr>
<td>18</td>
<td>53</td>
<td>></td>
<td>35, 141, 565, 2261, 9045, 36181, 368641</td>
</tr>
<tr>
<td>19</td>
<td>7</td>
<td><</td>
<td>37, 32, 15, 5, 0, 0, 0, 0, 0, 0</td>
</tr>
<tr>
<td>20</td>
<td>59</td>
<td>></td>
<td>39, 157, 629, 2517, 10069, 40277, 161109</td>
</tr>
<tr>
<td>21</td>
<td>31</td>
<td><</td>
<td>41, 165, 661, 2645, 10581, 42325, 169301</td>
</tr>
<tr>
<td>22</td>
<td>65</td>
<td>></td>
<td>43, 173, 693, 2773, 11093, 44373, 177493</td>
</tr>
<tr>
<td>23</td>
<td>17</td>
<td><</td>
<td>45, 48, 11, 11, 11, 11, 11, 11, 11</td>
</tr>
</tbody>
</table>

Notes

1. Each row is a set of similar numbers (7 numbers), the first similar number of each set is the successive odd numbers starting from 1, which is the generating number of these set, and each set takes this odd number as the number of the sets;
2. Comparison represents the relationship between the generating number and the path number, and the size is continuously distributed in pairs (conclusion 1); a path number is also the operational value of the set;
3. The rows of 5, 13, 21, 29...are subsets (underlined);
4. The triples are shaded; in a set, there are two non-triples between two triples (see 2.3);
5. Each column contains any odd (some repeated, as 5 in the second column).

In this table, if we regard two sets as connected each other through the first path number (theirs operational value), thus all of the sets may be connected through the path numbers of them and it can also explain what an odd goes back to 1.

For examples, the operational value of number 1 set is 1, and the second similar number in the set is 5, 5 is also the operational value of number 3 set, thus, two sets is connected through the number 5; in the same way, number 7, 11, 17 and 13 set are also all connected and the odds involved can go back to 1.

2.3 The smallest gap between two triples in a set
In a continuous series of odd numbers, two adjacent triples are separated by two non-triples. 3 is the smallest triple, and 3 added by 6 every time, it becomes another triple (odd). Similarly, in a set, two adjacent triples are separated by two non-triples.

To verify as follows:

A triple can be expressed as $3n$, where n is an odd number, so according to Formula (2), the following three similar numbers are as follows in turn:

The first $4(3n) + 1 = 12n + 1$

The second $4(12n + 1) + 1 = 48n + 5$

The third $4(48n + 5) + 1 = 192n + 21 = 3(64n + 7)$

As it can be seen, that the first and the second are both not triples, and the third is exactly a triple.

2.4 The effect of the similar numbers in operations

In the continuous operations, when a path number has a similar number smaller than itself, the next path number will quickly become smaller, or even, directly back to 1. For example, the number 853 is similar to 3, which returns to 5 quickly after one operation; the number 1365 is similar to 1, which returns to 1 directly. Thus, those numbers are the ending-numbers of a narrow path. It is not difficult to see that the similarity existing in odd numbers is of great significance in judging this proposition.

3 Analysis of the principle of the reverse operations

The forward operation of the proposition is reversible for non-triples. Now, to do a reverse operation for Formula (1), then we have

$$n = \frac{2^k p - 1}{3}$$

or

$$3n = 2^k p - 1$$

Where $k \in N$, and p takes non-triples (conclusion (2)).

Here, Formula (4) or (4-1) is called the inverse formula of the proposition, 2^k is called a multiplier, and n is called the inverse path number. The formulas are used in reverse to find the inverse path number n of p obtained in the forward operations.

By analyzing in section 1.1, we know that there may be an infinite number of inverse path numbers, each of them constitutes the source of the known path number p, i.e., p is sourced from the infinite of inverse path numbers.

Next, we analyze the properties of the inverse operations and draw some conclusions.

3.1 The relationship between the inverse path numbers and the properties of the first inverse path number

3.1.1 The relationship between the inverse path numbers

From formula (4), it can be seen that the inverse path numbers are directly related to the value of k in the multiplier 2^k, and therefore, we use the parity property of the values of k to analyze the relationship between the inverse path numbers. Apparently, for any non-triple p, we can’t get an integer at the same time.
when we take the minimum odd number 1 and the minimum even number 2; for k and $k + 2$, they are the same as an odd or even.

Let p be a non-triple, n_i be the inverse path number, according to Formula (4), then we have

$$n_i = \frac{2^k p - 1}{3}.$$

Where $k \in N$

To multiply with 4 for two sides above, then we obtain

$$4n_i = 4 \left(\frac{2^k p - 1}{3} \right) = \frac{2^{k+2} p - 4}{3} = \frac{2^{k+2} p - 1}{3} - 1.$$

That is

$$4n_i + 1 = \frac{2^{k+2} p - 1}{3}.$$

Comparing with the similar number formula (formula (2)), it is not difficult to see, that the right of the equation above is the next similar number of n_1, marked n_2, that is

$$n_2 = 4n_1 + 1 = \frac{2^{k+2} p - 1}{3}.$$

Or

$$n_2 = \frac{2^{k+2} p - 1}{3}.$$

It’s generated by adding 2 to k in the multiplier, that is, when k takes the next odd or even, we can get the next similar number n_2 of n_1.

Again, to multiply with 4 for two sides above, then we have

$$4n_2 = 4 \left(\frac{2^{k+2} p - 1}{3} \right) = \frac{2^{k+2} p - 4}{3} = \frac{2^{k+2} p - 1}{3} - 1.$$

That is

$$4n_2 + 1 = \frac{2^{k+2} p - 1}{3}.$$

As it can be seen that the right above is the next similar number of n_2, marked n_3, that is

$$n_3 = 4n_2 + 1 = \frac{2^{k+2} p - 1}{3}.$$

In the same way, we can find other similar numbers when k takes again next odd or even. As k increases, there are an infinite number of similar numbers of n_1.

Now, a conclusion (conclusion (3)) can be drawn by the analysis above: In formula (4), for a non-triple p, if k
takes the smallest odd number 1 (multiplier is 2), we can get an inverse path number, then \(k \) takes the rest odds greater than 1, we can also get an infinite of numbers of inverse path numbers, and all the inverse path numbers are similar to each other; if, when \(k \) takes the smallest odd number 1, we can’t get an inverse path number, then \(k \) takes the smallest even number 2 (multiplier is 4) and any even number greater than 2, we can get an infinite of numbers of inverse path numbers definitely, and they’re also similar numbers each other.

Obviously, all the inverse path numbers constitute a set of similar numbers.

When \(k \) takes the smallest odd or even number, i.e., multiplier \(2^k \) takes the smallest 2 or 4, the inverse path number is called here the first inverse path number.

3.1.2 The properties of the first inverse path numbers

Suppose, there are two adjacent similar numbers \(n_1 \) and \(n_2 \) in a set, where \(n_2 \) is known, and \(n_2 > n_1 \), i.e., \(n_1 \) is the previous similar number of \(n_2 \), according to formula (4), then we have

\[
n_2 = 2^k p - 1.
\]

According to Formula (3), we have

\[
n_1 = \frac{n_2 - 1}{4}.
\]

To substitute \(n_2 \) above, then we have

\[
n_1 = \frac{2^k p - 1 - 1}{4} = \frac{2^k p - 1 - 3}{12} = \frac{2^k p - 1}{3}.
\]

Next, we take multiplier 2 and 4 for analysis respectively.

1) when taking 2

\[
n_1 = \frac{2p - 1}{3} = \frac{p - 1}{3} = \frac{p - 2}{6}.
\]

2) when taking 4

\[
n_1 = \frac{4p - 1}{3} = \frac{p - 1}{3} = \frac{p - 1}{3}.
\]

Obviously, \(p - 2 \) is an odd, \(p - 1 \) is an even, so, neither of these two equations above can get an integer, thus, there is no similar number less than \(n_2 \), that is, \(n_1 \) doesn’t exist. Therefore, it can be concluded (conclusion (4)): the first inverse path number must be the generating number of a set (i.e. \(n_2 \) is the first).

Definition 5 (a) When doing the reverse operations according to formula (4), we change the names, called the non-triple \(p \) given originally as a primitive number; called the first inverse path number as a source number of \(p \);

(b) Doing one time of reverse operation is called one time of reverse tracing, tracing for short; times of tracing is called continuous tracing.

According to the definition, one time of tracing is to find out the first source number of a primitive number.

Since the rest inverse path numbers of a primitive number are similar to the source number (conclusion (3)), they can be found in turn by using the similar number formula (formula (2)), and therefore, here we defined only the first of them.
3.2 Analysis of the multiplier

3.2.1 Analysis of the multipliers of two continuous primitive numbers

As stated in 2.3, for a continuous series of odd numbers, there are only two consecutive non-triples between two adjacent triples, i.e., two consecutive primitives.

Let $3p$ be a triple, where p is an odd, so, in terms of the increasing value, the first primitive number adjacent to $3p$ is $3p + 2$, and the second is $3p + 4$. Next, we take the multiplier 2 and 4 for analysis respectively.

3.2.1.1 Take 2

According to the formula (4-1), we have

$$3n = 2p - 1.$$ \hspace{1cm} (4-1-1)

a) Put the first primitive number $3p + 2$ into the formula (4-1-1), and then we have

$$3n = 2(3p + 2) - 1 = 6p + 3.$$

That is

$$n = 2p + 1.$$

Obviously, there are integer solutions above, and they are source numbers of first primitive number.

b) Put the second primitive number $3p + 4$ into the formula (4-1-1), and then we have

$$3n = 2(3p + 4) - 1 = 6p + 6 + 1.$$

That is

$$n = 2p + 2 + \frac{1}{3}.$$

Obviously, the equation has no integer solution.

3.2.1.2 Take 4

According to the formula (4-1), we have

$$3n = 4p - 1.$$ \hspace{1cm} (4-1-2)

a) Put the first primitive number $3p + 2$ into the formula (4-1-2), then we have

$$3n = 4(3p + 2) - 1 = 12p + 6 + 1.$$

That is

$$n = 4p + 2 + \frac{1}{3}.$$

Obviously, the equation above has no integer solution.

b) Put the second primitive number $3p + 4$ into the formula (4-1-2), then we have

$$3n = 4(3p + 4) - 1 = 12p + 15.$$
That is
\[n = 4p + 5. \]

Obviously, there are integer solutions above, and they are source numbers of the second primitive number.

Thus, based on the analysis of 3.2.1.1 and 3.2.1.2, it can be concluded (conclusion (5)): in the continuous series of odd numbers, for two continuous primitive numbers, the multiplier of the first is to take 2 and the second is to take 4 definitely. And as a result, for their two source numbers, if one gets smaller, another must get larger (be similar to conclusion (1)).

Here, we called the formula (4-1-1) and (4-1-2) as the formulas of source numbers.

3.2.2 Analysis of the multiplier of any primitive number in the series of continuous odd numbers

3.2.2.1 Set the multiplier of a triple

Since formula (4) doesn’t hold for the triples, therefore, the multipliers of triples is set as 0, which means that there is no source number for the triples. Thus, for two consecutive primitive numbers and a triple, i.e. three consecutive odd numbers, as derived from conclusion (5), their multipliers in order are 2, 4 and 0.

3.2.2.2 A special determinant of odd numbers

According to the conclusion (5), the continuous odd numbers can be arranged in a special determinant in tabular form, and then the special regular of multipliers can be shown. See Tab. 2 Table of multipliers. Next, we use this table to analyze the method for taking the multipliers. In the table, the multipliers for each row are repeated four times in the order of 2, 4 and 0.

Tab. 2 Table of multipliers \((2^k) \)

| row \(\eta \) | content | column \(l \) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2^k | 2 | 4 | 0 | 2 | 4 | 0 | 2 | 4 | 0 | 2 | 4 | 0 |
| 1 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | 25 | 27 |
| 2 | 29 | 31 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 | 49 | 51 |
| 3 | 53 | 55 | 57 | 59 | 61 | 63 | 65 | 67 | 69 | 71 | 73 | 75 |
| 4 | 77 | 79 | 81 | 83 | 85 | 87 | 89 | 91 | 93 | 95 | 97 | 99 |
| 5 | 101 | 103 | 105 | 107 | 109 | 111 | 113 | 115 | 117 | 119 | 121 | 123 |
| 6 | 125 | 127 | 129 | 131 | 133 | 135 | 137 | 139 | 141 | 143 | 145 | 147 |
| 7 | 149 | 151 | 153 | 155 | 157 | 159 | 161 | 163 | 165 | 167 | 169 | 171 |
| \(\cdots \) |
| \(\eta \) | \(n \) |

notes

1. This table shows consecutive odd numbers in rows and columns; there are 1 and 3 in first row and the multipliers of them are corresponding to 4 and 0; from second row, there are twelve odd numbers in each, and the multipliers of them are corresponding to 2, 4 and 0 four times in order;
2. Characters of the triples are with shadows, and they form four columns, the remaining 8 columns are primitive numbers.

3.2.2.3 Location analysis of an odd number in Tab. 2
a) Row number h
Let n be an odd given arbitrarily, then, according to the odd number arrangement in the table, its row number h is given by the following formula
\[
h = \frac{n - 4}{24} + 1\] \hspace{1cm} (5)
Where, h takes an integer approach large.
Here, we called formula (5) the row number formula.

b) Column number l
Let the row number h be known, and then the column number l of the odd number n in the table is given by the following formula
\[
l = \frac{n - 4 - 24(h - 2)}{2}\] \hspace{1cm} (6)
Where, l takes an integer approach large also.
Here, we called formula (6) the column number formula.
Obviously, according to the column number l in the table, we can cross-reference to get the multipliers, that is,
- When l equals to 1, 4, 7, 10, the odd number is a primitive number, and its multiplier is 2;
- When l equals to 2, 5, 8, 11, the odd number is a primitive number, and its multiplier is 4;
- When l equals to 3, 6, 9, 12, the odd number is a triple, its multiplier is 0.

Now, by analysis of 3.2.1 and 3.2.2, it can be concluded (conclusion (6)): For any given odd number n (a primitive number or a triple), its multiplier 2^k is obtainable.

As it can be seen that the multiplier can be determined by the primitive number itself. Thus, the source number of any primitive number can be found out by using formula (4-1-1) or (4-1-2), and an infinite number of similar numbers of the primitive number can also be found out by using formula (2).

In a limited range of odds, there is a simple way to find the source numbers. Firstly, we use 2 directly in formula (4) to try to find out the source number n. If n is an integer, so 2 is its multiplier, and p is a primitive number, the integer n is its source number. If n isn’t an integer, then use 4 to try secondly; if neither of n is an integer, then p must be a triple, and it has no source numbers.

3.3 Analysis of continuous tracing of the source numbers

According to conclusion (6), source number n can be obtained by tracing for primitive number p.

Obviously, if n isn’t a triple, then n can be regarded as another primitive number for tracing. Over and over again, primitive number p with one or more of its source numbers can form a continuous tracing path.

Next, we analyze the properties of continuous tracing paths.

3.3.1 The end of a continuous tracing path

Since a triple has no source numbers, so a continuous tracing path ended at a triple. For the special primitive numbers, their source numbers are triples getting from formula (4-1-1) or formula (4-1-2). This problem is explained in the related description of Figure 1 below (see 3.4 and description (d)).
3.3.2 The integrity of a continuous tracing path

If the primitive number p has the property of arbitrary selection, then it may itself be a first inverse path number of others, that is, it is also a source number, although its source numbers can form a continuous tracing path, but it is not complete. So, at this time, it’s need to do some continuous forward operations on this primitive number until getting a forward operation path number, when doing forward operation on it, it has more than two local operations divided by 2, that is, it has a similar number less than itself.

A complete tracing path begins with a primitive number which has a similar number less than itself, and ends at a triple. In this path, every number except the primitive number is a source number. Obviously, in the opposite direction, that is, the forward path from the final source number to the primitive number is a narrow path. In a narrow path, source numbers are all the generating number of a similar number set (conclusion (4)). Those complete successive tracing paths have different length, that is, for different primitive numbers, the quantity of source numbers varies.

For examples, tracing for 1, 1 can be traced itself (its multiplier is 4, a forward operation on it also yields itself, 1 is a special odd); tracing for the similar number 5 of 1, we get the minimum triple 3, so the path has only two odd numbers 5 and 3; for 35, 23 and triple 15 are obtained by successive tracing twice, while for 445, 17 times of tracings are required to obtain the triple 27, and there are 18 odd numbers in this path (to see Fig. below).

Definition 6 If a primitive number p and its source numbers, constitute a complete continuous tracing path, then we called the set composed by the primitive number p and its source numbers as a source number set.

It can be seen that a set of source numbers is a finite set and a triple is a unary set.

3.4 The method and order of continuous reverse tracing

Obviously, continuous reverse tracing can start with 1. There are two kinds of operations, one is to find the similar numbers, and the other is to find the source numbers, and they carry out alternately. That is

1. To find out the similar numbers of 1, such as 5, 21, 85 and 341;
2. To find out the source number 3 of 5 (only one), it ended at the smallest triple 3;
3. To find out the similar numbers of 3, such as 13, 53, 213 and 853;
4. To find out the source numbers of 13, they are 17, 11, 7 and 9 in turn, or to find out the source numbers of 85, they are 113 and 75 in turn, they both ended at a triple, here 21 is a triple in number 1 similar number set and it was skipped;
5. To repeat the operations above to find out the similar numbers and source numbers.

About the method and the order, see Fig.1 Reverse tracing path graph.

A related description of Figure 1 is as follows:

a) In this form-type graph, odd numbers are generated by 1 from the bottom left to up right; this graph depicts the reverse path from 1 to 27, which is also the forward path from 27 to 1;
b) In the horizontal direction, there are some similar numbers with symbols ‘∽’ in a set; the triples be with shadows, and they are separated by two non-triples (see 2.3);
c) In the vertical direction, there are source numbers from some different sets, the symbol ‘↓’ indicates ‘sourced from’ (only a little used), the source numbers and the primitive number (at the bottom) form a complete narrow path; the triples be on the tops;
d) The triples at the tops appear to be on the paths, but they are skipped when doing forward operations. For example, doing a single operation on 445 leads directly to 167, thus the triple 111 is skipped; as the same, the triples in the similar number sets are also skipped directly (such as 21 and 1365 in the
number 1 set) that’s why that the forward operations didn’t yield any triple (conclusion (2)); although the forward operations doesn’t yield triples, but they can be found by tracing, and that’s what the source number tracing paths ended at triples.

e) The red path is the triples path which is derived from the triples at the top and the next similar numbers of them;
f) To take the similar number 109 of 27 (or others) for tracing continuously, there will be more and more paths spreading out like branches of a tree, and obviously, the following paths will all get longer and longer.

As shown in the figure, any section of reverse tracing path shows a step-type path structure. In these path structures, going to the right is following the similar numbers, going upward is following the source numbers. For a given odd, the number of odds less than it is finite. Because the similar numbers in a set are increasing, so if we take similar numbers for tracing continuously, it’s not difficult to draw a conclusion (conclusion (7)): the paths will all tend to infinite finally and we can get an infinite number of odd numbers. Finally, if doing forward operations continuously for any odd obtained, it return to 1 definitely.

3.5 Analysis of density of the odd numbers and the final conclusion
As stated in section 1, for any given odd number n, the forward path number is either going back to 1 or tending towards infinity.

Now, we analysis the density of the odd numbers obtained by successive tracing. Suppose, there is an odd number n in the series of odd numbers that it hasn’t been traced on the paths starting from 1, that is, n has been missed. It is obvious that we can do continuous inverse and forward operations for it. When doing inverse operations continuously, the inverse path numbers must tend to infinity (conclusion (7)), when doing forward operations continuously, the forward path numbers must also tend to infinity, because if its forward path numbers get smaller, it must eventually reach 1, it shows that there must be a reverse tracing path between 1 and n. From this, for n both inverse and forward operations tend to infinity. However, the inverse operations are just in the opposite direction based on the same kind of operational rules of the forward directions, there has only one direction, therefore, the assumption above doesn’t hold, and the odd number n must not only be in the range of the odd numbers obtained by tracing, but it must also be regressed to 1 if doing forward operations.

In facts, for an odd which may have been missed, it also exists in two ways either as a similar number in a similar set or as a source number in a source number set. In the first case, it has some similar numbers less than it, thus it is equivalent to the generating number of the set; and in the second case, when to do forward operations for it, it will arrive at the primitive number at the bottom, keep doing, it also back to 1 in the end (see the step-type path structure in Fig. 1). So, any odd is connected to 1 and that’s the operational mechanism for all of the odds going back to 1.

Thus it shows that any odd number can be obtained by successive reverse tracing starting from 1, that is, corresponding to the natural number axis, the density of the odd numbers which are obtained by inverse tracing must be 1/2 (1 is also included as the starting point).

From this analysis, it can be concluded (conclusion (8)): finally, for any positive integer (an even number is transformed into an odd firstly), to do forward operations, it must follow the inverse paths analyzed in this paper and return to 1. So, the Collatz conjecture holds.

In this paper, the basic operational principle of the conjecture is expounded.
Acknowledgments
I would like to express my thanks to Liansheng Zhang for encouragement and help, who is a professor in Suzhou university of Science and Technology. I also thank the reviewers for comments.

Conflicts of Interest
The author declares no conflicts of interest regarding the publication of this paper.

Reference