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Abstract 

In metal physics, the free-electron model and the related Fermi-Dirac distribution 

were usually utilized to investigate multi-physical properties of metals. However, they 

neglected the important mechanical-electric coupling (MEC), and therefore some 

longstanding physical problems such as the positive Seebeck coefficients of some 

monovalent metals and the physical origin of charge density wave (CDW) gap may be 

difficult to solve. In the work, the MEC in metals was investigated. The MEC may lead 

to a single-electron model which can offer a simple way of interpreting the electron 

heat capacity, the Pauli magnetic susceptibility, the electrical conductivity and the 

electron thermal conductivity of the metals. It may also indicate that the heavy-fermion 

characteristics of the heavy-fermion systems may originate from the physical picture 

that the electron chemical potential intersects the narrow conduction f-electron band 

and the correlation effects among heavy-fermions may be weak, as is in contrary to the 

conventional viewpoint. Furthermore, it was found that the MEC can not only give the 

right sign of Seebeck coefficients of the monovalent metals but also give the physical 

origin of the CDW gap, which are in agreement with experimental results. Overall, the 

MEC may be important for the metals and it should be taken into account seriously for 

investigating the multi-physical properties of the metals.  



keywords: mechanical-electric coupling; metals; electron chemical potential; heavy 
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1. Introduction 

In many textbooks and literatures [1-8], the Fermi energy in the free electron model 

has been commonly treated as the electron chemical potential (ECP) of conduction 

electrons in a metal. And it has been widely utilized to analyze the related physical 

phenomena such as thermoelectric power and electron degeneracy pressure. However, 

the variations of the potential energy of the conduction electrons was neglected in the 

free electron model, and it is difficult for the related theory to tackle some longstanding 

physical problems, e.g., the magnitude of the charge density gap and the positive 

Seebeck coefficients of monovalent metals Li, Cu, Ag and Au whose charge carriers 

are electrons that is established by the experimentally measured Hall coefficients [4, 9]. 

 As enlightened by Yuheng Zhang effect, a strain can give rise to the shift of ECP and 

thereby can lead to a mechanical-electric coupling (MEC) in a metal [10, 11]. The MEC 

was found to induce some new physics such as the electric properties of dislocations 

and the electric force between dislocations [12]. On another hand, the MEC may also 

result in the new understandings of the conventional problems, which still needs further 

investigation.  

In this work, the MEC was adopted to modify the free electron model and the 

important problems in metal physics were thereby addressed, for instance, the 

magnitude of charge density wave (CDW) gap, the sign of Seebeck coefficients 

opposite to Hall coefficient for some monovalent metals, and the multi-physical 

properties of the heavy-fermion systems.  

2. Results and discussion  



Yuheng Zhang equation should be introduced first, which may be the important 

foundation in the work. For any material, there may usually exist some physical factors 

such as strain, temperature, doping and so on, which can give birth to alterations of the 

Fermi surface. Analogous to water flowing from a higher position to a lower position, 

the electrons also tend to flow from the regions with higher Fermi surface to regions 

with lower Fermi surface, thereby inducing an electric field between the regions. 

Reversely, the macro-electrostatic field in the metal may originate from the spatial 

variations of the Fermi surface. Upon equilibrium state, the physical relation between 

the macro-electric field and the correlated alterations of the Fermi surface may be 

described by Yuheng Zhang equation [11, 13],  

                               FE r eE r 
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                              (1) 

where e is electron (positron) charge, EF(r) is the position-dependent electron (positron)  

chemical potential at the equilibrium state, E(r) is the position dependence of the 

macro-electric field.  

Yuheng Zhang equation may be very important in various fields and its validity 

should be discussed here. This equation may rigorously hold for systems satisfying the 

following three conditions. Firstly, the electron (positron) system must be in an 

equilibrium state. Secondly, the electron systems must conform to the conservation of 

electron (positron) number. Thirdly, the electron (positron) must be a point particle and 

does not exhibit any measureable volume effects, which is an important foundation for 

quantum electrodynamics. Yuheng Zhang equation might be a fundamental physical 

relation, and could not be derived by quantum mechanics, because the point particle 



assumption for electrons may not be addressed by the quantum mechanics. In this 

equation, the electron (positron) chemical potential may exhibit the statistical properties 

of studied electron systems and it usually depends on the quantum properties of the 

electron (positron) systems. As a result, Yuheng Zhang equation may statistically 

contain the quantum characteristics of electron (positron) systems no matter how 

complex their interaction and the experienced fields could be. The equation may be 

valid for the 1 dimensional, 2-dimensional and 3-dimensional electron systems and it 

may find important applications in different fields. For example, the unraveled 

existence of the electrostatic field inside metals may induce some interesting physical 

effects which were ever discussed [10-14].  

In many textbooks, the Fermi energy were regarded as the ECP at zero temperature 

[1-8]. And the Fermi energy of non-interacting conduction electrons at zero 

temperature is commonly written as [1-8]  
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where εF0 stands for the Fermi energy at zero temperature, ħ is the reduced Plank 

constant, me the electron mass, ne is the conduction electron density and it is ne= Ne/V, 

Ne is total number of conduction electrons, V the volume of the electron system. 

However, the ECP EF refers to the energy it takes to add or remove an electron from 

the material and take it to vacuum infinity with zero kinetic energy [1]. The vacuum 

level is usually defined zero [1]. So the ECP is always negative. For the metals at zero 

temperature, it divides the empty from the occupied states and is the negative of the 

work function [1]. Of specially emphasized is that it may not be Fermi energy which is 



usually encountered in many textbooks and literatures. The Fermi energy only refers to 

the energy difference between the highest and lowest occupied conduction electron 

states in a non-interacting free electron system at zero temperature and cannot take into 

account the variations of potential energy of the conduction electrons. But the potential 

energy is important and is usually influenced by some physical factors such as strain 

and doping. Therefore, the ECP for a metal should include the contribution of both the 

Fermi energy and the potential energy of the conduction electrons. According to the 

theory for the electrons in a Wigner-Seitz cell, the potential energy usually includes the 

Coulomb attraction energy due to the positive ion core, the direct Coulomb energy 

among the electrons, the electron exchange energy, electron correlation energy and 

contributions of surface dipole layer [1, 2]. Thereby it may be written as   

                                                 , +F p s F FE r                                                           (3) 

where εF stands for the Fermi energy of the conduction electrons at a finite temperature, 

εp(rs, εF) denotes the potential energy of the conduction electrons and it not only depends 

on the electron density which is usually depicted by the dimensionless ratio rs but also 

depends on the kinetic energy εk, rs is a dimensionless ratio, rsa0 is the average radius 

of a sphere containing a single conduction electron in the metals, a0 is the Bohr radius, 

and they satisfy the following relation [2, 4, 8], 
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In the following discussions the potential energy εp(rs, εF) will sometimes be written as 

εp for brevity. And the MEC for an isotropic metal can be defined by  
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Based on Equation (3) and the common definition of electronic density of state (EDS) 

[4], i.e., the relation dNe=Vg(ε) dε where g(ε) is the EDS at the energy ε, the MEC can 

be expressed by 
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where g(εF) is the common EDS at the Fermi energy. In the related calculations, the 

relation V∂εF/∂V=–ne∂εF/∂ne was employed.  

 The MEC may be of paramount importance in some physical effects and would be 

discussed in the followings. 

2.1 Modified electron diffusion relation in metals 

  Considering the conduction electrons in a strained metal, the non-uniform volumetric 

strain may cause the position-dependent conduction electron density. And the spatial 

gradient of the conduction electron density will result in a diffusion current density 

according to the Fick’s first law [4, 15] 

 1 e ej eD n r  
 

 

where ne(r) is the position dependence of the conduction electron density, De is the 

diffusion coefficient of the conduction electrons. In another respect, when the electron 

equilibrium state will be approached the non-uniform volumetric strain may cause an 

electric field in the metal based on Equation (1) 
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where V(r) is the position-dependent volume and it satisfies ne(r)V(r)=Ne. The electric 



field will induce a drift current density according to the Ohm’s law 
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where σe is the electron conductivity and it is commonly expressed as σe =eneμe, μe is 

the mobility of the conduction electrons. As a consequence, the total electrical current 

is the summation of the drift current density and the diffusion current density [16] 
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The totally electrical current must be zero when the electron equilibrium state is reached 

[10, 16]. Using the definition of MEC, the diffusion relation for the conduction 

electrons may be obtained 
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It indicates that the diffusion coefficient of the conduction electrons depends on the 

MEC of the metal. If the MEC of the metal exhibits a large value, the diffusion 

coefficient will also display a huge magnitude.  

   In most textbooks [1-8, 15], the potential energy εp of the conduction electron was 

popularly neglected for the ECP and the Fermi energy was regarded as the ECP. Some 

references [1, 10] noted the difference between the ECP and the Fermi energy, but the 

mathematical expression of the Fermi energy instead of the ECP was still utilized to 

calculate the diffusion coefficient of conduction electrons [10]. Therefore, the diffusion 

relation obtained in terms of the Fermi energy in the related references [9, 15] may only 

be an approximate relation. The precise diffusion relation for the conduction electrons 

should be given by the MEC which adopts the ECP containing the potential energy of 



the conduction electrons, as is shown by Equation (6). 

2.2 Modified Thomas-Fermi screening length 

  The MEC may have an important effect on the electron screening in the metal and it 

will be investigated in the section. Based on Yuheng Zhang equation and Maxwell 

equations, it follows that  
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where Zi is the valence of an ion core, ε0 is the vacuum permittivity. By expanding the 

left-hand side of the above equation, it is  
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The spatial gradient of the conduction electron density ݊׏௘ሺݎԦሻ  may be a slowly 

varying function and thereby the nonlinear term may be too small to be considered. As 

a consequence, the above equation can be simplified to be a linear equation 
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So the modified Thomas-Fermi screening wave vector can be obtained  
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It is identical to the formula in the textbook [2], which suggests that the derivation here 

may be rational. However, they are distinct from each other. The ECP used in the above 

equation includes both the kinetic energy and the potential energy of the conduction 

electrons, which is different from the Fermi energy only containing the kinetic energy 

in the textbooks [1, 2]. Using the MEC and the relation ݀ܧி ݀݊௘⁄ ൌ െܥ௠ି௘ ݊௘⁄ , 



Equation (9) changes into the form below  
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where qTF is the modified Thomas-Fermi screening wave vector. As a result, the 

screening Coulomb potential in momentum space can be obtained according to the 

textbooks [1, 2, 4] 
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where φi(k) is the screening Coulomb potential of an ion core in the momentum space. 

The modified Thomas-Fermi screening length can be given by 
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where λTF is the modified Thomas-Fermi screening length. It indicates that the 

screening length is heavily dependent on the MEC. In the case that the MEC is negative, 

the modified Thomas-Fermi screening length will exhibit a positive value. And a small 

magnitude of MEC will lead to a short screening length, suggesting that a strong   

electron screening may exist in the metal. On the contrary, a large magnitude of the 

negative MEC will result in a long screening length, presenting a weak electron 

screening in the metal.  

In another interesting case that the MEC is positive, the related screening Coulomb 

potential will appear in the following form  
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where |qTF| is the magnitude of the modified Thomas-Fermi screening wave vector. It 



reveals that the screening Coulomb potential may display the oscillating behaviors. By 

means of simple calculations, the screening Coulomb potential of the ion core in the 

momentum space will become 
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As is shown, if the magnitude of the wave vector is larger than that of the modified 

Thomas-Fermi screening wave vector, the screening Coulomb potential is still 

attractive. Nevertheless, the screening Coulomb potential will be repulsive in the 

situation that the wave vector is smaller than that of the screening wave vector, which 

is remarkably distinct from the commonly screening Coulomb potential. As the wave 

vector of the conduction electron approaches the modified Thomas-Fermi screening 

wave vector, the screening Coulomb potential may exhibit a singularity. The singularity 

may have a profound effect on the related physical properties and needs to be studied 

in the future.    

   By considering the potential energy of conduction electrons in a metal, the Linhard 

dielectric function should be modified. Based on the derivation in textbook [1], the 

expression of the modified Linhard dielectric function may be approximately obtained 

by substituting the electron mass me by the electron effective mass as below 
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where ݉௘
∗  is the electron effective mass. The important factor in the denominator of 

the above equation will be addressed in the later. 

2.3 Seebeck coefficient  



The thermoelectric effect is an important physical effect and is usually described by 

Seebeck coefficient. According to the theoretical definition in textbooks and literatures 

[1, 16-20], it was written as  

                             th

E
S

T



                         (14) 

where Sth is theoretical Seebeck coefficient, E is the temperature-gradient-induced 

electric field in the metal. But the experimentalists usually use the experimental 

definition of the Seebeck coefficient [1, 19]  
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where ∆V is the voltage difference, ∆T the temperature difference, Sex is experimental 

Seebeck coefficient. Based on these definitions [1, 4, 8, 16-19], the sign of Seebeck 

coefficient should be the same as that of the Hall coefficient. In another word, both the 

Seebeck coefficient and Hall coefficient is negative if the carriers are electrons, but they 

would be positive if the carriers are holes. However, the experimental observations 

showed that the sign of Seebeck coefficient is opposite to that of Hall coefficient for 

some metals, e.g., Li, Cu, Ag and Au [4, 8, 21]. It was an interesting but longstanding 

problem in solid state physics. It was ever studied in different aspects. In one aspect, 

some researchers attributed it to the energy variance of the mean free path near the 

Fermi energy because of the abnormal electron-phonon interaction [22, 23]. In another 

aspect, it was investigated and understood as a consequence of a substantial deviation 

from the density of states for the free electron model [24, 25]. In this work, another new 

route of understanding the problem would be proposed by adopting Yuheng Zhang 

equation and the MEC. 



The thermoelectric effect is a non-equilibrium phenomena and the measured voltage 

difference arises from the electrochemical potential difference [19]. So it was noted and 

revealed that the theoretical definition of Seebeck coefficient is different from the 

experimental definition [19]. However, only the temperature-induced lift of the ECP 

was considered [19], but another important contribution was neglected, i.e., the thermal 

expansion-induced lift of the ECP [10]. When an end of a metal would be heated, the 

related ECP would be altered. The electrons would flow from the region with high ECP 

to the region with low ECP. And the drift of electrons would cause an electric field and 

a related electric potential within the metal. As a result, the measured potential 

difference between the hot and cool ends is   
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where Vex(T+∆T), Vex(T) is the experimentally measured voltage at the hot end and cool 

end, respectively, ϕ(T+∆T), ϕ(T) signifies the respective internal potential at the hot end 

and cool end. Based on Equations (15) and (16), the experimental Seebeck coefficient 

can be simplified to be  
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where Ec is the critical electric field at equilibrium state for the electrons in the metal 

and it is ܧሬԦ௖ ൌ ிܧ׏ ݁⁄  according to Equation (1), Er the real electric field between the 

hot and cool ends of the metal ܧሬԦ௥ ൌ െ׏߶. Of emphasized is that the thermoelectric 

effect is a steady state but non-equilibrium phenomena. So the direction of the critical 

electric field Ec is the same as that of the real electric field Er, but the magnitude of Ec 



is always larger than that of Er, making the sign of experimental Seebeck coefficient 

determined by the critical electric field Ec. Their magnitude difference may depend on 

the electrical conductivity heavily, and a larger electrical conductivity may lead to a 

steady state closer to equilibrium state, i.e., Er approaching Ec more closely, thereby 

yielding a smaller Seebeck efficient. This point is in agreement with experimental 

observations that the magnitude of Seebeck efficient of most metals decreases with the 

temperature dropping [4, 26] and the metals such as Ag, Cu and Au with the high 

electrical conductivity usually exhibit a small Seebeck coefficient [4, 26]. Further, to 

be anticipated, an ideal metal with infinite electrical conductivity may display a zero 

Seebeck efficient and cannot exhibit the thermoelectric effect. 

To investigate the sign of experimental Seebeck coefficient, Equation (17) can be 

expressed in another manner,    
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Seen from Equations (16) (17) and (18), the sign of the experimental Seebeck 

coefficient is monitored by the temperature dependence of ECP. The sign of the 

experimental Seebeck coefficient is positive if the ECP decreases with temperature 

increasing, but the sign would be negative if the ECP increases as the temperature 

increases. More specifically, the dominant term on the right-hand side of Equation (18) 

can be written as  
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where αV(T) is the temperature-dependent volume expansion coefficient of the metal 



and it is αV(T)=∂V/V∂T=3αl(T) for the isotropic metals, αl(T) stands for the temperature- 

dependent linear expansion coefficient. Based on Equation (3), the first term in the 

above equation can be written as  
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For the alkali metals and monovalent noble metals, the interaction among conduction 

electrons may be weak and the non-interacting conduction electron model could be 

valid. So the potential energy of the conduction electrons εp may not depend on the 

temperature directly, leading to the relation (∂εp/∂T)V=0. According to the Sommerfeld 

expansion in textbooks [2-4, 6, 7, 20], the temperature-dependent Fermi energy εF is  
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where kB the Boltzmann constant, g(εF0) is the density of states at the zero-temperature 

Fermi energy, gʹ(εF0) the derivative of the density of states with respect to the energy 

݃′ሺߝி଴ሻ ൌ ߲݃ሺߝி଴ሻ ⁄ி଴ߝ߲ . Thus, the second term in Equation (21) could be obtained  
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The MEC term on the right-hand side of Equation (19) was ever neglected [19], but 

it is important for understanding the experimental Seebeck coefficient [10]. 

Substituting Equations (5) and (22) into Equation (19) may yield   
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As is shown, of great importance is the density of states and the potential energy εp 

whose accurate expressions may be difficult to obtain. Nevertheless, for alkali metals 



and some monovalent noble metals, the free electronic density of state at Fermi 

surface could be employed approximately [2, 4, 8, 20] 
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and the potential energy εp may be estimated simply in terms of a central potential [2]  
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where Ry is Rydberg, Ry=e2/8πε0a0=13.6 eV, ε0 the vacuum permittivity. The above 

estimation of εp was built on the assumption of non-interacting conduction electrons 

and did not consider the exchange energy, correlation energy and the surface 

contribution of the surface dipole layer. It may be a reasonable approximation for the 

alkali metals and some monovalent noble metals and can be utilized to investigate the 

related phenomena. Thus, the MEC is  
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The approximation for the EDS g(εF)≈g(εF0) was used for the calculations of the MEC 

and the temperature effect was not taken into account, because the relation kBT<<εF0 

may be valid in the concerned temperature range. So the Equation (23) becomes 
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To examine whether Equation (26) can give the right sign of the experimental Seebeck 

coefficient successfully or not, the sign of the values dEF/edT for the alkali metals and 

some monovalent noble metals was calculated based on the related parameters [9, 26-

31] and the results were shown in Table 1. It can be seen that the sign of calculated 



values dEF/edT and the MEC Cm-e can agree well with that of the experimental Seebeck 

coefficient, suggesting that the total derivative of ECP with respect to the temperature 

dEF/edT can give the right sign of the experimental Seebeck coefficient. Inversely 

speaking, the sign of the experimental Seebeck coefficient is controlled by dEF/edT 

Table 1 The calculated mechanical-electric coupling Cm-e=VdEF/dV and the sign of 

dEF/edT for the alkali metals and some monovalent noble metals. The related 

parameters are experimental Seebeck coefficient Sex at room temperature, Fermi energy 

εF0 at zero temperature, linear expansion coefficient αl at room temperature, the 

dimensionless ratio rs for which rsa0 is the average radius of a sphere containing a single 

conduction electron in the metal and a0 is the Bohr radius.  

metals Li Na K Rb Cs Cu Ag Au 

Cm-e (eV) –0.158 0.617 1.03 1.10 1.15 –1.72 –0.638 –0.664

dEF/edT 

(μV/K) 

+ – – – – + + + 

Sex 

(μV/K) 

10.6 

[27] 

–5.8 

[27] 

–12.9 

[27] 

–9.5 

[27] 

–0.9 

[27] 

1.83 

[26,28]

1.51 

[26,28] 

1.94 

[26,28]

εF0 (eV) 

[8] 

4.72  3.23 2.12 1.85 1.58 7.00 5.48 5.51 

αl   

(10–6/K)  

46  

[9] 

71  

[9] 

79.64 

[29] 

66 

[30] 

72 

[31] 

16.5 

[9] 

18.9 

[9] 

14.2 

[9] 

rs [8] 3.25 3.93 4.86 5.20 5.63 2.67 3.02 3.01 

and especially the MEC Cm-e. A positive MEC Cm-e generally gives birth to a negative 



Seebeck coefficient and a negative value of Cm-e usually leads to a positive Seebeck 

coefficient. Therefore, the sign of the experimental Seebeck coefficient does not depend 

on the type of carriers. A negative experimental Seebeck coefficient of a metal cannot 

conclude that the carriers are the electrons, and the positive experimental Seebeck 

coefficient can also not conclude that the carriers are the holes in the metal. In most 

cases, what the sign of experimental Seebeck coefficient can indicate may be the sign 

of MEC Cm-e. In a word, for the types of carriers, what Hall coefficient predicts may be 

more accurate than that predicted by Seebeck coefficient.      

2.4 Electron degeneracy pressure in metals 

The non-interacting conduction electrons in a metal can exert an electron degeneracy 

pressure upon external compression. Based on the free electron model, the ground-state 

electron degeneracy pressure and the related bulk modulus was given [20] by    

0

2

5e e FP n   

where Pe is the electron degeneracy pressure. Nevertheless, the potential energy of the 

conduction electrons was neglected in the theory. According to Equation (3), the total 

energy of ground-state conduction electrons in a metal should be expressed as  

                       0 0

2

5e e F e FU N E N                       (27) 

The corresponding electron degeneracy pressure may be corrected by the MEC Cm-e  

                        0
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+

15e e m e FP n C 
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                 (28) 

where തܲ௘ is the corrected electron degeneracy pressure by considering the potential 

energy of the electrons. As is shown, the corrected electron degeneracy pressure 



sensitively depends on the MEC and will be negative if the MEC satisfies Cm-e>–4εF0/15, 

which is very different from the classical theory. The negative electron degeneracy 

pressure means that the conduction electrons would facilitate the compression but resist 

the stretching. On the contrary, if the MEC fulfills Cm-e<–4εF0/15 the corrected electron 

degeneracy pressure would present a positive pressure, which can inhibit the 

compression of the metal. Utilizing the relatively simple estimation of the potential 

energy of conduction electrons and the related MEC for the alkali metals [2], i.e., 

Equations (25) and (26), the electron degeneracy pressure could be estimated and is 

shown in Table 2.  

Table 2 The corrected electron degeneracy pressure of alkali metals and the related 

physical parameters.  

metals Li Na K Rb Cs 

Cm-e (eV) –0.158 0.617 1.03 1.10 1.15 

ne (×1028/m3) [8] 4.70 2.65 1.40 1.15 0.91 

εF0 (eV) [8] 4.72  3.23 2.12 1.85 1.58 

തܲ௘ (GPa) –8.33 –6.29 –3.58 –2.94 –2.29 

2.5 Heat capacity of conduction electrons 

In common textbooks and literatures [2-8], the total energy of conduction electrons 

in a metal only take into account the kinetic energy and it is given by  

 2k k k
k

U f                        

where Uk is the total kinetic energy of conduction electrons in a metal, the number 2 

due to the spin degeneracy, f(εk) the kinetic energy dependence of the Fermi-Dirac 



distribution function. However, it neglects the contribution of the potential energy of 

conduction electrons. In reality, the potential energy εp must include the contributions 

of Coulomb energy, exchange energy and correlation energy. The calculation of the 

real potential energy εp at finite temperatures may be very complex and difficult. But 

all the necessarily calculated terms for the potential energy εp may be in the form 

׬ ߝሻ݀ߝሻ݂ሺߝ௣ሺߝ
ஶ
଴  (where εp (ε) is any continuous function and f(ε) is Fermi-Dirac 

function) [1], so the potential energy εp could be calculated formally according to the 

Sommerfeld expansion [2-4, 6, 7].  

Considering the potential energy εp of the conduction electrons, the total energy of 

the conduction electrons in metals at finite temperature should be written as  

                  2 , + ,p s k k k p s k
k

U r f r                   (29) 

The kinetic energy dependence of the potential energy may arise from the exchange-

correlation energy of conduction electrons, as revealed in textbooks [1, 2, 4]. The 

kinetic energy dependence may be important for electron heat capacity, electron 

magnetic susceptibility, electrical conductivity and electron thermal conductivity which 

will be discussed in the following sections. Consequently, the total energy can be 

written in the integral form 

   
0

k k k k

x

U V x g x f x dx


   

where the variables xk, x0 and xF are the single-electron energies xk=εk+εp(rs,εk), 

x0=εp(rs,0) and xF=EF=εF+εp(rs,εF). The function g(xk) is the EDS g(x)=dNe/Vdx and it 

fulfills the relation  



                               k
k k
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d

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                    (30) 

Since the EDS g(εk), g(xk) are always positive, the value of the derivative dxk/dεk is 

surely positive. Therefore the single-electron energy xk must be a monotonically 

increasing function with the kinetic energy εk, giving the one-to-one mapping 

relationship between the single-electron energy x and the kinetic energy εk, which is 

consistent with the calculations under the Hartree-Fock approximation [1, 2, 4]. In 

terms of the Sommerfeld expansion [2-4, 6, 7], the total energy of the conduction 

electrons accurate to the second order of (kBT) can be evaluated  
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In the calculations, it was assumed that the distinction between the top single-electron 

energy xF and bottom single-electron energy x0 is much larger than the thermal energy, 

i.e., xF–x0>>kBT. Using the relation between the Fermi energies at zero temperature and 

finite temperature, i.e., Equation (21), the total energy can be simplified to be  
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0 6
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
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where U0 is the total energy of conduction electrons at zero temperature. The definition 

of the electron heat capacity at constant volume will be given [3, 4, 6, 7] by  
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Using Equation (30), the heat capacity of conduction electrons per unit volume could 

be expressed in the form ce=γT where the parameter γ is 
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                    (31) 

As shown in Equation (31), the consideration of potential energy εp(rs, εF0) can modify 

the heat capacity of conduction electrons in a metal. If the derivative of potential energy 

with respect to the Fermi energy approaches zero, i.e., ∂εp(rs, εF0)/∂εF0=0, the electron 

heat capacity becomes the common result in textbook and literatures [4, 8]. 

Interestingly, if the value of ∂εp(rs, εF0)/∂εF0 is close to –1, as shown by Equation (31), 

the electron heat capacity would be very large, exhibiting a heavy mass of the 

conduction electrons. It could be the physical interpretation of heavy-fermion systems 

based on the simple single-electron model. Furthermore, for isotropic metals it is  
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For heavy fermions, the chemical potential versus the temperature could be 

approximated as the followings due to the term ∂εp(rs, εF0)/∂εF0 close to –1 

                              F
V m e

dE
C

dT
                        (32)  

The heavy-fermion systems usually exhibits the thermal expansion coefficient several 

orders of magnitude larger than that of normal metals at low temperatures [32-39]. 

Hence, according to Equation (32) the temperature dependence of the ECP for the 

heavy-fermion systems may be much more conspicuous than that of normal metals, 

which agrees with the experimental observations that the Fermi surface of the heavy- 

fermion system varies remarkably in a wide temperature range [40].    

2.6 Magnetic susceptibility of conduction electrons in a metal 



Upon application of a magnetic field, the total energy of conduction electrons in a 

metal at zero temperature can be written as  
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where n↑ is the number density of up-spin conduction electrons, n↓ is the number density 

of down-spin electrons, εF0↑, εF0↓ are the Fermi energies of up-spin electrons and down-

spin electrons at zero temperature, respectively, the single-electron energies are 

xF0↑=εF0↑+εp(rs,εF0↑), xF0↓=εF0↓+εp(rs,εF0↓), μB denotes the Bohr magneton, B is the 

externally applied magnetic field, g(xk)/2 is the density of states for the up-spin 

conduction electrons and down-spin conduction electrons. When the conduction 

electrons reach the equilibrium state, they would arrange themselves so that the total 

energy must be the smallest at zero temperature. So the derivative of the total energy 

with respect to the up-spin electron density should be zero and it is 
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 For the up-spin electron density and the down-spin electron density, they certainly 

satisfy the following relations due to the conservation of electron number, 
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Thereby the corresponding differential equations could be valid at zero temperature,  
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Substituting these equations into the Equation (33), it is  
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This equation actually indicates that the chemical potential of up-spin conduction 

electrons equals to that of down-spin conduction electrons. Since the magnetic field 

induced Zeeman spitting energy of a conduction electron is much smaller than its 

kinetic energy, the Fermi energies and potential energies in Equation (34) can be 

expanded into Taylor's series to first order, 
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Insertion of these expanded functions into Equation (34) will yield 
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             (35) 

On another hand, the magnetic moment created by the difference of up-spin conduction 

electrons and down-spin conduction electrons may be given by  

 BM n n     



The corresponding magnetic susceptibility can be expressed in the partial derivative 

form  
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By simple calculations, it is  
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Substituting the above equation into Equation (35), the Pauli magnetic susceptibility 

of the conduction electrons can be obtained  
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                      (36) 

It demonstrates that compared with the common results in textbooks and literatures the 

potential energy of the conduction electrons leads to the same modification on both the 

magnetic susceptibility and the electron heat capacity. The conduction electrons in a 

metal exhibit the Landau diamagnetic susceptibility χl whose magnitude is one third of 

the Pauli magnetic susceptibility [15], i.e., χl=–χp/3. So the experimentally measured 

magnetic susceptibility χe would be χe=2χp/3. And the ratio between the experimentally 

magnetic susceptibility χe and the parameter γ, named “Wilson ratio”, is almost constant 

χe/γ=2μ0(μB/πkB)2 on basis of Equations (31) and (36), which is in agreement with the 

common conclusion in literatures [41]. Analogous to the discussion for the electron 

heat capacity, when the value of the derivative ∂εp(εF0)/∂εF0 approaches –1, the 

magnetic susceptibility χe would increase dramatically, displaying the typical features 

of the heavy fermions. Interestingly, if the derivative ∂εp(εF0)/∂εF0 is –1, the magnetic 

susceptibility and the heat capacity of the conduction electrons would be infinite, 



indicating that a ferromagnetic phase transition happens. In another word, some 

properties of heavy-fermion system and the ferromagnetic phase transition could also 

be understood in terms of the simple single-electron model. 

2.7 Electrical conductivity of the metal 

The MEC may affect the electrical conductivity of the metal. Considering the 

potential energy of the conduction electrons, it is convenient to give the modified 

electrical conductivity based on the Boltzmann equation [1, 4, 15], 
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where the variable xk is the single-electron energy xk=εk+εp(rs, εk), σme is the modified 

electrical conductivity, τme is the modified electron relaxation time, vk is the electron 

velocity with the wave vector k.  

  Since the function ∂f(xk)⁄∂xk behaves like the Dirac delta function δ(xk) [1, 4], the 

only difference between the modified electrical conductivity and the conventional 

electrical conductivity in some textbooks resides in the electron relaxation time. Upon 

calculating the electron relaxation time, the energy conservation always holds during 

the electron scattering processes, e.g. electron-phonon scattering and electron-impurity 

scattering. Considering the potential energy of the conduction electron, the energy 

conservation guaranteed by the Dirac delta functions should use the functions δ(xk–

x´±ħωq) and δ(xk–x´) instead of δ(εk±ħωq–εk±q) and δ(εk–εk´), where the variable is 

x´=εk±q+εp(rs, εk±q) and ωq is the angular frequency of the phonon. As a result, the 

electron relaxation time will be modified by the factor [1+∂εp(rs, εF0)⁄∂εF0] based on the 

mathematical formulation of the electron relaxation time [1, 4]. Thus, the modified 



electron relaxation time can be given by 

                       
 0

0

,
1 p s F

me e
F

r 
 


 

   
                      (37) 

where τe is the conventional electron relaxation time. And the modified electrical 

conductivity for an isotropic metal is  
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                        (38) 

It shows that the consideration of the potential energy of the conduction electrons for 

calculating the electrical conductivity is equivalent to modifying the electron mass by 

the factor [1+∂εp(rs, εF0)⁄∂εF0]. If this factor approaches zero, the equivalent mass of the 

conduction electron will be ultra-large, exhibiting the heavy-fermion behaviors and 

reducing the electrical conductivity greatly. Reversely, if the factor presents a very huge 

value, the equivalent mass of the conduction electrons will almost vanish, displaying 

the massless fermions and ultra-high fermion mobility in the metal.  

2.8 Thermal conductivity of the metal 

 When a metal undergoes a temperature gradient, the heat flux will flows along the 

temperature gradient. By taking the potential energy of the conduction electrons into 

account, the modified thermal conductivity generated by the conduction electrons can 

be obtained according to the references [4, 15] 
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where κme is the modified electron thermal conductivity. By using Equation (37) and 

the properties of the function ∂f0(x)⁄∂x, i.e, the Dirac delta function, it can be written as  
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where κe is the conventional electron thermal conductivity of the metal. Seen from 

Equation (39), the factor [1+∂εp(rs, εF0)⁄∂εF0] can also influence the electron thermal 

conductivity. Analogous to the case of the electrical conductivity, if the factor exhibits 

a small value, the electron thermal conductivity will be weakened. On the contrary, if 

the factor displays a large value, the electron thermal conductivity will be enhanced.  

In view of the Equations (30) (31) (36) (38) and (39), the modified factor [1+∂εp(rs, 

εF0)⁄∂εF0] may play a very important role in understanding the variously physical 

properties of the metals. And it will be investigated in the following section.   

2.9 Determination of the factor 

Despite that the modified factor [1+∂εp(rs, εF0)⁄∂εF0] is a phenomenological parameter, 

it may be very convenient to uncover the physical behaviors of the metals. In the section, 

the modified factor [1+∂εp(rs, εF0)⁄∂εF0] will be discussed. In the actual metals and alloys, 

the conduction electrons are customarily consisted of electrons in the initially atomic 

orbitals such as the outer s, p, d and f orbitals. Hence, based on the number conservation 

of the conduction electrons the following relation may be valid at zero temperature 
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where the gc(εk) is the EDS with the kinetic energy εk and it is gc(εF0)=3ne/2εF0 in the 

free-electron model, ne is the conduction electron density, gf(xk) and gl(xk) stand for the 

density of the outer conduction f-electron states and electron states in the outer orbitals 

such as s, p, d, respectively. Carrying out the partial derivative with respect to the Fermi 



energy εF0 will yield 
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            (41) 

As is seen, the dimensionless factor depends on the ratio between the EDS in the free-

electron model and the summation of the EDS for the conduction electrons in different 

bands at ECP, and thus it is always positive, which is consistent with the previous 

analysis. Its magnitude may dominate the physical properties of the electrons and 

should be addressed in the followings. The bandwidth of the f-electron band may be 

quite narrow because of the ignoring overlap between the f-electron state and other 

states, thereby giving rise to an ultra-high EDS for the f electrons. As a result, once the 

ECP intersects the f-electron band, the above dimensionless factor may reach a very 

small value, leading to the heavy-fermion behaviors that was discussed in the foregoing 

sections. On the contrary, the heavy-fermion behaviors may not emerge in the case that 

the ECP of the metal is separated with the f-electron band. Interestingly, if the ECP of 

the heavy-fermion system can be tuned to depart from the f-electron band using the 

techniques such as high pressure, i.e., gf(xF0)=0 in the denominator, the heavy-fermion 

behaviors may disappear. Reversely, the heavy-fermion behaviors may appear in the 

case that the ECP of the non-heavy-fermion system will be shifted to intersect the f-

electron band.  

To see the important role of EDS for the f-electron in the heavy-fermion systems, the 

magnitude of the dimensionless factor should be estimated in the followings. The half 

width of the f-electron band and the number of the f-electrons may be denoted by Δεf 



and nef, respectively. The EDS for the f-electron may be approximately given by 

gf(xF0)= nef/Δεf, so the dimensionless factor may read 
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where the half-width of the f-electron band may be comparable to the half-width of the 

related fluorescence peaks. The experimental observations showed that the half-width 

of the fluorescence peaks is customarily several nanometers [42, 43], implying the half-

width of the f-electron band in the range 1 meV-10 meV. The Fermi energy may be the 

order of 1 eV, therefore enabling the f- electrons near the ECP to exhibit the mass in the 

range 102 me-103 me which may agree with the customarily experimental observations 

[44, 45]. 

The total conduction electron density arising from different bands may be as follows,   
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The derivation of the ECP with respect to the conduction electron density may 

generate the relation 
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If the locally bound electrons in these bands are totally ionized to the conduction 

electrons, the potential energy x0 may lie below these bands, making the EDS at the 

potential energy x0 be zero. It is equivalent to the case that the first term on the right 

hand in Equation (5) is zero. So the following relation may hold right   
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It may be written in in another form 
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                      (46) 

It is the MEC of the metal. As is shown, the MEC may be negative for the MEC of the 

metal whose EDS gl(x0) at the potential energy is zero. The magnitude of MEC may be 

large when the total density of state at the ECP is small. On the contrary, the MEC will 

display a small magnitude in the case that the total density of state at the ECP is very 

large, e.g., the heavy-fermion systems.  

  Substitution of Equation (46) into Equation (10) may yield the modified Thomas-

Fermi screening wave vector 
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and the modified Thomas-Fermi screening length 
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It may indicate that a large EDS at the ECP may lead to a short Thomas-Fermi screening 

length, resulting in a small Coulomb interaction. Therefore, the electron system such as 

the heavy-fermion system which exhibits a very large EDS at the ECP may display very 

small Coulomb interaction, as is completely contrary to the conventionally widespread 

viewpoint that the heavy-fermion systems result from the strong correlation effect. 

Reversely, if the actual EDS at the ECP is very small, the factor shown in Equation (41) 

will be very large. As a result, the effective mass of the electrons may be very small 

and the Thomas-Fermi screening length may be very long, corresponding to a notable 



Coulomb interaction between the electrons. And the related properties may be shown 

in Table 3. 

Table 3 The related physical parameters and properties for the different electron 

systems whose electronic density of states (EDS) at the potential energy x0 is zero. 

electron systems EDS MEC screening length Coulomb interaction 

heavy-fermions large  small short small 

light-fermions small large long large 

2.10 Peierls transition and charge density wave 

Peierls ever pointed out that a one-dimensional metal could not be stable with respect 

to a crystalline deformation at low temperatures and the ground state may be 

characterized by both a band gap and a periodic CDW [46, 47]. CDW is a widespread 

phenomenon in solid state physics. And it is generated by the decrease of the electron 

energy but limited by the increase of deformation energy [4, 8]. To introduce the related 

physics, a one-dimensional strain is usually taken for the sake of simplicity  

  0 2 Fx cos k x   

where ξ(x) is position-dependent one-dimensional strain, ξ0 is the largest strain, kF is 

the wave vector. The popular quantum theory of CDW unravels that the emerged 

deformation potential opens up a band gap for the conduction electrons at the Fermi 

surface and thereby lowers the total electron energy [8, 47]. Despite so much research 

on CDW, the underlying physics of the deformation potential and the induced band gap, 

including their magnitude and physical origin, has been seldom addressed. In the 

section, the problems will be uncovered. 



According to Equation (1) and the MEC Cm-e, the statically periodic strain would 

give birth to a periodic variation of the ECP and a periodic electrostatic field,  

                    0 0+ 2F F m-e FE x E C cos k x                   (49) 

                      02 2m-e
F F

C
E x k sin k x

e
 


                 (50) 

where EF(x) is the position-dependent ECP, Cm-e=∂EF/∂ξ is the MEC in the case of the 

one-dimensional strain, ܧሬԦሺݔሻ is the electric field. The periodically electrostatic field 

would inevitably exert a potential on the conduction electrons and the potential 

amplitude could be |Cm-eξ0|. The potential enables the initial gapless conduction band to 

open up a CDW gap whose magnitude can be obtained according to the degenerate 

perturbation theory [4, 8], 

                          CDW 0m eC                          (51) 

where ∆CDW is the CDW gap. As indicated by the equation, the CDW gap is anticipated 

to be proportional to the strain, which is consistent with the experimental observations 

[48]. On another hand, the magnitude of CDW gap may also rest with the MEC of the 

material. And a larger magnitude of the MEC would usually yield a larger CDW gap 

which may cause the CDW transition more easily. Because the driving force of CDW 

transition, i.e., the condensation energy of electrons, was established to be proportional 

to the square of the CDW gap [48]. As a result, the MEC Cm-e governs the CDW gap 

and CDW transition. In light of the experimentally measured CDW gap, the 

corresponding magnitude of the MEC can be estimated according to Equation (51), as 

shown in Table 4. 

Table 4 The physical parameters of some typical CDW materials and the calculated 



magnitude of the mechanical-electric coupling |Cm-e|. 

materials displacement 

(Å)  

lattice 

parameter (Å) 

strain 

(%) 

CDW gap 

(meV) 

|Cm-e| 

(eV) 

KCP 0.027 [48] 2.894 [48] 0.933 150 [49] 16 

K0.3MoO3 0.05 [48] 7.56 [50] 0.661 130 [51] 17 

(TaSe4)2I 0.09 [48] 3.206 [48] 2.81 250 [52, 53] 8.9 

2H-NbSe2 0.042 [54] 3.4583 [54] 1.21 60 [55] 5.0 

At the end, some comments should be made. The model used in this work may be a 

single-electron model, but it may be different from the common free-electron model. 

Because it takes both the potential energy and the important MEC into account for the 

conduction electrons in the metals. The utilized potential energy may be the mean field 

result of the totally complex interactions for the conductions electrons. Despite that its 

precisely mathematical form has not been obtained yet, the introduction of the potential 

energy and MEC may be very economical and can grasp some key physical features of 

the conduction electrons in the metals.   

3. Conclusion 

  In summary, the MEC in metals was investigated in the work. The MEC may 

indicate that the potential energy of conduction electron in a metal must be considered 

and the free-electron model should be correspondingly modified. The modified single-

electron model can offer a simple way of understanding the variously physical 

properties of the metals such as the electron heat capacity, the Pauli magnetic 

susceptibility, the electrical conductivity and the electron thermal conductivity, 



especially the related characteristics of the heavy fermion systems. On another hand, 

the MEC may be used to not only obtain the right sign of Seebeck coefficients for some 

monovalent metals such as Li, Cu, Ag and Au but also give the magnitude of the CDW 

gap. In a word, the MEC may be important and could help understand variously 

physical behaviors of the metals in a simple manner.  
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