Successiveness and operadicity

Ryan J. Buchanan | Roseburg, Oregon | rjbuchanan2000@gmail.com

Abstract

Succession is placed in the context of lifted number rings. Linear-style orderings are considered as operads which split fields by introducing locally transcendental numbers that perfectly close their ancestors by introducing gaps.

Paper

It is well known that the large majority of quasi-well-ordered sequelae exhibit linear-like tree-level ordering. Formally, for a pair of branches of level k, one may define succession as the free ideal \mathcal{I} in the following expression:

$$\forall \alpha, k, (\exists (\alpha \subseteq \downarrow K) \iff (\alpha.k + \mathcal{I}) \in K).$$

Where α is a countable ordinal, k an ordertype, and $\downarrow K$ downward closure in some class K.

For $\mathcal{I} \equiv 1$, one obtains a critical point ρ, which gives rise to the transition map $\gamma^\rho \mapsto \pi^\rho$, where π is the $(p-1)$th degree divisor sending $\{\kappa, \ldots, \gamma\}$ to a super-compact ordinal ϵ. For some tiny ϵ, we have that there is a regular pullback into a non-degenerate and quasi-coherent clopen class \mathfrak{P} whose maximal ideal is $\mathcal{I} - \pi$. Let $\lambda = (\pi - \epsilon)$ be a p-th order proposition in which there is a binary relationship $(\mathcal{I} + \epsilon) \mathfrak{P}$, and $\mathfrak{P} : \lambda$ be the true sentence in which this evaluation holds. We will let $X^\mathfrak{P} Y$ mean that there is an effective (forgetful) equivalence from X into the pro-objects of Y such that the sub-object identifier at a representative locus $U(\mathcal{I}^\rho)$ is equiconsistent with its image at $U(\mathcal{I})$. One then obtains that \mathcal{I} is the perfection of \mathcal{I}^ρ when it is identified with the neighborhood $\text{pyk}(\rho)$, which behaves identically to the π we have established here.

Importantly for us, the automorphism $U \rightarrow U|\pi$, when specialized in this way, provides a rather lucid technique for lifting from \mathfrak{A}^ρ into $\mathfrak{D}^\#$. Thus, one obtains the following diagram:
where \mathfrak{H} is identified with $\text{spec}(\overline{\mathbb{M}})$. Note that Ψ^\flat, the case when r is less than ϵ, is simply the identity on Ψ, and therefore trivial. We can then proceed to make the following precise identification:

Lemma 1.0.0 For $\pi_1(\gamma)$, $\sup(\kappa)$ is an isotopy of $\inf(\epsilon)$ and is effectively equivalent to φ.

Corollary 1.0.1 For $\pi_1(\kappa)$, $\inf(\gamma)$ is an isotopy of $\sup(\epsilon)$ and is effectively equivalent to φ.

Corollary 1.0.2 $\pi_1(\ast) \rightarrow \varphi$ is a contravariant operation, and γ, κ, ϵ are respectively the group-like operator, abelian operator, and unital magma (see [HSpI], definition 5).

Let \mathfrak{C} be a component of a β-reduced Postnikov system which kills Ψ at $\text{ho}(\mathfrak{Q})$, and \mathfrak{Y} the Finsler geometry about a distinguished partner of \mathfrak{C}. Write \mathfrak{Y} as the symmetric difference:

$$(\mathfrak{H}|_{\mathfrak{C}, \theta}) \Delta \mathfrak{Y}$$

Definition A.1 A replica of a covering scheme at a site is a second countable model whose gaps are preserved under homothety and inversion. A perfect replica is the target of an invertible map from a perfect set with no gaps, and a maligned replica is a replica which introduces gaps and is non-invertible.

Lemma 1.1.0 For distinct non-trivial $\mathfrak{C}, \mathfrak{C}'$, there is a thin equivalence\(^1\) of the form $(\mathfrak{C}/\mathfrak{H})^{\mathfrak{C}'}$, where \mathfrak{C}' is a maligned replica $\mathfrak{H}^b[\mathcal{M}^d]$ of \mathfrak{Y}.

Proof Select some Woodin cardinal \mathcal{J} with a finite normal subgroup consisting of the d smallest primes above $\aleph_\mathcal{J}$ for

\(^1\)See [Thin1] and [Thin2] for context
B a positive integer bounded above by a small member of \(\mathbb{Z} \). We have that \(\mathcal{S}/\mathfrak{S} \) corresponds to a set bounded by \(\mathfrak{S}|_\mathfrak{S} \) by taking the quotient:

\[
\frac{\mathcal{S}}{\mathfrak{S}} \cong \mathcal{O}_x \mathfrak{O}.
\]

Allowing \(\mathfrak{S}^t \) to be a coherent topos lifted from \(\text{spec}(\mathbb{Z}) \), we obtain some \(\mathcal{Y} \) consisting of a single transcendental number \(\mathfrak{H}_{B+z} \). That \(\mathcal{S}' \) is maligned follows from the fact that \(\mathcal{S}, \mathcal{S}' \) are distinct and non-trivial, and therefore non-invertible. A non-cancellable gap is introduced at \(\mathfrak{H}_B \), which is the principal connection for \(T^m \) the discrete cover of \(\mathcal{Y} \).

Finally, we may rewrite:

\[
\pi_{p-1}(H(\mathcal{S}))^\wedge \to \pi_{p-1}(H(\mathcal{S})) \to \mathcal{S}'
\]

as

\[
\mathcal{Y}\cup\mathcal{S} \to \mathcal{S}\setminus^\wedge \to \mathcal{Y}\setminus\beta
\]

which kills \(\pi_{p-1} \) at \(\pi_p \).
Q.E.D.

Next, we define a proper homomorphism \(K \to K \) from some k-level object to its successor as an operand\(^2\). Write

\[\alpha \circ \varphi \gets \varphi\]

to mean the successor function laid about at the beginning of this document. This is a maximally generic and lossless procedure which acts continuously on the spectrum of any specified ring. For the discrete operand, we can restrict \(\varphi \) to \(\varrho \) to produce a transitive binary relationship while neglecting to require that our image in \(\textbf{Set} \) is either abelian or group-like.

In this case, we will write

\[\alpha \circ \varphi|_\varphi \gets \varphi\]

and obtain that every automorphism takes place over \(\mathfrak{S}^k \), such that \(\alpha \) is synonymous with \(\text{crit}(\pi(\varphi.k)) \). To show that this function is indeed a homomorphism, one need only consider that \(\alpha \) is bijective with \((\alpha+b).t \), such that every type of ascent produces

\[\text{Q.E.D.}\]

\(^2\) The term “operand” is used here instead of operad to distinguish this construction from that of May’s original operads; they correspond more closely to the “little n-cubes” operad in specific, or to the simplifications of permutahedra.
exactly one join and meet, and thus, it follows that this is a Boolean algebra.

References