Elementary proof of the Syracuse conjecture
by Ahmed Idrissi Bouyahyaoui

Abstract:
In application of the Collatz algorithm \((3* + 1)\) we have:
\[x > 0 \quad , \quad x + V > 0 \quad (x + V \text{ successor of } x, \text{ } V \text{ variable of adjustment}) \]
and \(V < x \) (evaluation of \(V \) is in the main text, in first step \(V = 2 \) and \(x > 2 \)).
And as by hypothesis \(x \) gives a sequence of Syracuse \(S(x) = [x, \ldots, 1] \), \(x \rightarrow 1 \).
We deduce the rules:
\[(x > 0) \land (V < x) \land (x + V > 0) \implies (0 < x + V < 2x) \]
\[(0 < x + V < 2x) \implies [(x \rightarrow 1) \implies (x + V \rightarrow 1)] \]
The two sequences \(S(x) \) and \(S(x+V) \) converge to the only trivial cycle: \([4, 2, 1]\).
So by recurrence, every positive integer gives a sequence of Syracuse.

Syracuse conjecture (Collatz conjecture)
Algorithm of Collatz:
Let \(x \) a positive integer number.
1 - if \(x \) is even then \(x := x/2 \)
2 - if \(x \) is odd then \(x := x * 3 + 1 \)
We repeat 1 - 2 until obtain a cycle (is only cycle?) or \(x \) tends to infinity.
The symbol := means : assign value on right to variable on left.

Representation of numbers:
Let \(V \) a variable which, added to variable \(x \), gives the successor \(x + V \).
The variable \(V \) is a variable of adjustment.
Variables \(x \) and \(V \) are written in the form:
\[x := a^\alpha \text{ with } a := 2^\alpha \text{ and } \alpha \text{ is integer } \geq 0, \text{ } y \text{ is an odd positive variable.} \]
\[V := b^\beta \text{ with } b := 2^\beta \text{ and } \beta \text{ is integer } \geq 0, \text{ } z \text{ is an odd positive variable.} \]
\[x + V := a^\alpha \text{ } y + b^\beta \text{ } z. \]
Application of the algorithm of Collatz:
The coefficient a being power of 2, the algorithm is applied to the odd part y of $x := a*(y)$ giving a sequence of Syracuse $S(x) = [x, ... ,1]$ and the odd part z of $V := b*(z)$ is multiplied by 3 plus an adjustment.

In operation $3* + 1$, $x := a*(3*y + 1) = a''*(y')$, x is increased by $(a - 1)$ to subtract from V and we have for V in $x + V$: $V := b*(3*z) - (a-1) = b'*(z')$.

So we have the equality

$$a*(3*y+1) + b*(3*z) - (a-1) = a*(3*y) + 1 + b*(3*z) = 3 * (a*(y) + b*(z)) + 1$$

giving $3*(x + V) + 1$, with x and V of before the operation $3* + 1$, according to the rule 2 of the algorithm.

a' et b' are power of 2 which can be equal to 1, y' and z' are odd numbers.

In the line $a''*(y') + b'*(z')$, a' and b' are divided by gcd(a',b') according to the rule 1 of the algorithm.

If gcd(a',b') = 1, the division by 2 is deferred.

Evaluation of the variable of adjustment V:
When x is multiplied by 3 then $+ 1$, V is multiplied by 3.
When x is divided by 2, V is divided by 2.
When $x = a(3*y+1)$, x is increased by $(a - 1)$, V is decreased by $(a - 1)$.

We deduce that V is always less than x.

Conclusion:
In application of the Collatz' algorithm we have:

$x > 0$, $x + V > 0$ and $V < x$ (in first step $V = 2$ and $x > 2$).

And as by hypothesis x gives a sequence of Syracuse $S(x) = [x, ... ,1]$, $x --> 1$.

We deduce the rules:

$$(x > 0) \land (V < x) \land (x + V > 0) \implies (0 < x + V < 2x)$$

$$(0 < x + V < 2x) \implies [(x --> 1) \implies (x + V --> 1)]$$

The two sequences $S(x)$ and $S(x+V)$ converge to the only trivial cycle: $[4, 2, 1]$.

So by recurrence, every positive integer gives a sequence of Syracuse.