Irrationality of π
Using Just Derivatives

Timothy Jones

April 12, 2023

Abstract

The quest for an irrationality of pi proof that can be incorporated into an analysis (or a calculus) course is still extant. Ideally a proof would be well motivated and use in an interesting way the topics of such a course. In particular $e^{\pi i}$ should be used and the more easily algebraic of derivatives and integrals – i.e. derivatives. A further worthy goal is to use techniques that anticipate those needed for other irrationality and, maybe even, transcendence proofs. We claim to have found a candidate proof.

Introduction

Invariably irrationality proofs use proof by contradiction. The number in question is assumed to be rational and a contradiction is derived. Why does this work? It works because irrational numbers are always changing; their tails change. Assuming that they don’t change, that all zeros or 9s occur, eventually the approximation implicit in an irrational number represented by a rational becomes large enough that it is manifest that the fixed assumption can’t work: there’s a contradiction.

A combination of polynomials with fixed roots and ever changing partial sums of series seem a likely avenue to an irrationality proof. This is especially true as series in the form of a power series or e^x or e^{ix} have partials that double as polynomials. Assuming the polynomial has a certain root and that the series for which the polynomial is a partial is also converging to this number should work to generate the schism mentioned. A natural candidate that embodies these ideas is Euler’s famous formula:

$$e^{\pi i} - 1 = 0.$$
Derivatives of Polynomials

All polynomials are integer polynomials, \(z \) is a complex number, \(n \) and \(j \) are non-negative integers, and \(p \) is a prime number.

Definition 1. Given a polynomial \(f(z) \), lowercase, the sum of all its derivatives is designated with \(F(z) \), uppercase.

Example 1. If \(f(z) = cz^n \) then

\[
F(z) = \sum_{k=0}^{n} f^{(k)}(z) = cz^n + cnz^{n-1} + cn(n-1)z^{n-2} + \cdots + cn!.
\]

Lemma 1. If \(f(z) = cz^n \), then

\[
F(0) = \sum_{k=1}^{\infty} \frac{z^k n!}{(n+k)!}.
\]

Proof. As \(F(z) = c(z^n + nz^{n-1} + \cdots + n!) \), \(F(0) = cn! \). Thus,

\[
F(0) = cn!(1 + z/1 + z^2/2! + \cdots + z^n/n! + \cdots)
\]

\[
= cz^n + cnz^{n-1} + \cdots + cn! + cz^{n+1}/(n+1)! + \cdots
\]

\[
= F(z) + cz^n(z/(n+1) + z^2/(n+1)(n+2) + \cdots)
\]

\[
= F(z) + f(z) \sum_{k=1}^{\infty} \frac{z^k n!}{(n+k)!},
\]

giving (1).

Definition 2. Let

\[
\delta_n! = \sum_{k=1}^{\infty} \frac{z^k n!}{(n+k)!}.
\]

Lemma 2.

\[
\lim_{p \to \infty} \frac{\delta_n!}{(p-1)!} = 0.
\]

Proof. We have

\[
\left| \frac{\delta_n!(z)}{(p-1)!} \right| = \left| \frac{z/(n+1) + z^2/(n+1)(n+2) + \cdots e^z}{(p-1)!} \right| < \left| \frac{e^z}{(p-1)!} \right|
\]
and
\[\lim_{n \to \infty} \left| \frac{e^z}{(p-1)!} \right| = 0. \]
This implies (2). \hfill \Box

Lemma 3. If \(F(z) \) is the sum of the derivatives of \(f(z) = c_0 + c_1 z + \cdots + c_n z^n \), then
\[F(0)e^z = F(z) + \sum_{k=0}^{n} c_k z^k \delta_k(z). \] (3)

Proof. Let \(f_j(z) = c_j z^j \), for \(0 \leq j \leq n \). Using the derivative of the sum is the sum of the derivatives,
\[F(z) = \sum_{k=0}^{n} (f_0 + f_1 + \cdots + f_n)^{(k)} = F_0 + F_1 + \cdots + F_n, \]
where \(F_j \) is the sum of the derivatives of \(f_j \). Using Lemma 1,
\[e^z F_j(0) = F_j(z) + f_j(z) \delta_j(z). \] (4)
and summing (4) from \(j = 0 \) to \(n \), gives
\[e^z F(0) = F(z) + \sum_{j=0}^{n} f_j(z) \delta_j(z). \]
This is (3). \hfill \Box

Definition 3. If \(f_j(z) = c_j z^j \), for \(0 \leq j \leq n \), then define
\[\epsilon_n! (f(z)) = \sum_{j=0}^{n} f_j(z) \delta_j(z), \]
where
\[f(z) = \sum_{j=0}^{n} f_j(z). \]

Lemma 4.
\[\lim_{p \to \infty} \frac{\epsilon_n!(z)}{(p-1)!} = 0. \] (5)
Proof. As \(\delta_j(z) < e^z \) for \(j = 0, \ldots, n \),

\[
|\epsilon_n(z)| = \left| \sum_{j=0}^{n} f_j(z) \delta_j(z) \right| \leq e^{|z|} \sum_{j=0}^{n} |f_j(z)| \frac{(p-1)!}{(p-1)!}.
\]

Then, noting

\[
\sum_{j=0}^{n} |f_j(z)| \leq c \sum_{j=0}^{n} |z|^j \leq cn|z|^r,
\]

where \(c = \max\{|c_0|, |c_1|, \ldots, |c_n|\} \) and \(|z|^r = \max\{|z|, |z|^2, \ldots, |z|^n\} \) and

\[
\lim_{p \to \infty} \frac{cn|z|^r}{(p-1)!} = 0,
\]

we arrive at (5). Note: \(r \) will not vary with \(n \).

Structuring Roots

There is a relationship between the roots of \(f(z) \) and those of \(F(z) \). This will enable us to structure the roots of polynomials and apply (3) using \(z \) values that are roots of \(f(z) \). A pattern will emerge of the following form

\[
0 = I + \epsilon
\]

where \(I \) is a non-zero integer and \(\epsilon \) is as small as we please: a contradiction.

Lemma 5. If polynomial \(f(z) \) has a root \(r \) of multiplicity \(p \), then \(f^{(k)}(r) = 0 \) for \(0 \leq k \leq p - 1 \) and each term of \(f^{(k)}(r) \), \(p \leq k \leq n \) is a multiple of \(p! \).

Proof. Suppose \(r = 0 \) then, for some \(n \) we have \(f(z) = z^p(b_nz^n + \cdots + b_0) \). Now \(f(z) \) has \(b_0z^p \) as its term with minimal exponent. Using the derivative operator, \(D(z^n) = nz^{n-1} \), repeatedly, we see the 0 through \(p - 1 \) derivatives of \(f(z) \) will have a positive exponent of \(z \) in each term. This implies that \(r = 0 \) is a root for these derivatives. Using the product of \(p \) consecutive natural numbers is divisible by \(p! \), terms of subsequent derivatives will be multiples of \(p! \).

If \(r \neq 0 \), then \(f(z) = (z - r)^pQ(z) \), for some polynomial \(Q(z) \). Let \(g(z) = f(z + r) = z^pQ(z + r) \). As \(g^{(k)} = f^{(k)} \) for all \(k \), \(g^{(k)}(0) = f^{(k)}(r) \), and the \(r = 0 \) case applies. \[\square \]
Lemma 6. If a and b are two non-zero Gaussian integers, then there exist a large enough prime p such that
\[
\frac{|p!a + (p-1)!b|}{(p-1)!} > 1.
\]

Proof. Suppose $a = a_1 + ia_2$ and $b = b_1 + ib_2$.

\[
|p!a + (p-1)!b| = |p!(a_1 + ia_2) + (p-1)!(b_1 + ib_2)|
\]
\[
= (p-1)!|pa_1 + ipa_2 + b_1 + ib_2|
\]
\[
= (p-1)!|(pa_1 + b_1) + i(pa_2 + b_2)|
\]
\[
= (p-1)!\sqrt{(pa_1 + b_1)^2 + (pa_2 + b_2)^2}
\]

The square root contains the sum of two positive or zero integers. Then as both a and b are non-zero Gaussian integers, letting 0 indicate a zero value for a real or complex component and a 1 indicate a non-zero component the possibilities are

\[
a_1b_1| 00 10 01 11 \text{ forcing } a_2b_2| 11 01 10 00.
\]

The only possibility resulting in a zero sum $|pa + b|$ occurs with $b = -pa$ with $b \neq 0$. This is a 11 case. Assuming a_1 and b_1 are non-zero and $p > \max\{|b_1|\}$, then $p \nmid |b_1|$ and $(pa_1 + b_1)^2$ must be non-zero as, if it is zero then then $pa_1 + b_1 = 0$ and $pa_1 = -b_1$ and $p||b_1|$, a contradiction. So one or both summands are non-zero positive integers. As the square root of a number greater than 1 is greater than 1, the Lemma is established. \qed

Pi is Irrational

Theorem 1. π is irrational.

Proof. Suppose not. Then $e^{\pi i} = e^{ri}$ where r is a rational, say a/b. Modify the polynomial
\[
z^{p-1}(z - ai/b)^p
\]

\[
to make it an integer polynomial:
\]
\[
f(z) = (bz)^{p-1}(bz - ai)^p.
\]
Then, using Euler’s formula and Lemma 1

\[0 = F(0)(e^{ri} + 1) = F(ri) + F(0) + \epsilon_n(f(z)). \]

There is a prime \(p \) large enough that the left hand side of

\[\left| \frac{\epsilon_n(f(z))}{(p-1)!} \right| = \left| \frac{F(ri) + F(0)}{(p-1)!} \right| \]

is less than one per Lemma 4 and the right hand side is greater than one per Lemma 6, a contradiction. \(\square \)

Conclusion

This proof of the irrationality of \(\pi \) uses derivatives and limits at a level of a real analysis course based on Rudin or Apostol [1, 3]. It also anticipates proofs of the transcendence of \(e \) and \(\pi \) [2].

References

