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Abstract. In this paper, we further develop the theory of circles of partition

by introducing the notion of complex circles of partition. This work generalizes
the classical framework, extending from subsets of the natural numbers as base

sets to partitions defined within the complex plane, which now serves as both

the base and bearing set. We employ the expansion principles as central tools
for rigorously investigating the possibility to partition numbers with base set

as a certain subset of the complex plane.

1. Introduction

In our previous work [2], inspired in part by the binary Goldbach conjecture and
its related problems, we introduced a method for studying the partition of numbers
into subsets of the natural numbers. This method, though elementary in nature,
establishes a geometric framework that we found particularly effective for analysing
partitions in a combinatorial setting.

Let us consider a natural number n ∈ N that can be expressed as n = u + v,
where u, v ∈ M ⊂ N. The method we propose associates each of these summands
with distinct points on a circle, which is generated by the number n for all n > 2.
A line joining these points on the circle provides a geometric correspondence that
encapsulates the partition structure. This approach leverages geometric intuition
to offer new insights into the combinatorial properties of partitions. As such, we
refer to this structure as the circle of partition (CoP).

The CoP framework not only offers a new perspective on partition theory but
also provides a versatile tool for exploring arithmetic and additive properties of
numbers under certain constraints. The geometric interpretation has proven bene-
ficial for illuminating various partition-related problems that arise in number theory.

In this paper, we extend this concept by introducing the notion of complex cir-
cles of partition. This generalization extends the domain from subsets of N to
the complex plane, where both the base and bearing sets are now considered as a
subset of the complex field. The resulting structure offers an enriched geometric
and combinatorial framework, suitable for studying partition and additive prob-
lems in a broader and more intricate setting. We demonstrate the utility of the
squeeze principle as a fundamental technique for rigorously analysing the feasibility
of partitioning numbers in this extended framework.

The development of complex circles of partition is a natural continuation of our
previous work and provides a deeper understanding of the underlying combinatorial
structures. This extension opens new avenues for research in both partition theory
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and its applications to problems in analytic and additive number theory, offering
fresh perspectives on well-established conjectures and inviting further investigation
into geometric representations of partitions.

2. Background

Now, we restate the foundation of our method.

Definition 2.1. Let n ∈ N and M ⊆ N. We denote by

C(n,M) = {[x] | x, n− x ∈M}

the Circle of Partition generated by n with respect to the subset M. We will
abbreviate this as CoP. We refer to the elements of C(n,M) as points and denote
them by [x]. In the special case where M = N, we denote the CoP simply as C(n).

We define ‖[x]‖ := x as the weight of the point [x], and similarly, we define the
weight set of points in the CoP C(n,M) as ‖C(n,M)‖. Clearly, we have

‖C(n)‖ = {1, 2, . . . , n− 1}. (2.1)

Definition 2.2. We denote L[x],[y] as an axis of the CoP C(n,M) if and only if
x + y = n. We say that [y] is the axis partner of [x], and vice versa. We do not
distinguish between L[x],[y] and L[y],[x], as they represent the same axis. The point
[x] ∈ C(n,M) such that 2x = n is called the center of the CoP. If it exists, we refer
to it as a degenerate axis L[x], in contrast to the real axes L[x],[y]. We denote
the assignment of an axis L[x],[y] to a CoP C(n,M) as

L[x],[y] ∈̂ C(n,M),

which implies [x], [y] ∈ C(n,M) with x+ y = n.

From now on, we will focus solely on real axes, and thus we will omit the term
real in this section.

Proposition 2.3. Each axis is uniquely determined by the points [x] ∈ C(n,M).

Proof. Let L[x],[y] be an axis of the CoP C(n,M). Suppose L[x],[z] is also an axis,
with z 6= y. By Definition 2.2, it follows that n = x + y = x + z, implying y = z.
This contradiction establishes the uniqueness of the axis, proving the claim. �

Proposition 2.4. Each point of a CoP C(n,M), except for its center, has exactly
one axis partner.

Proof. Let [x] ∈ C(n,M) be a point without an axis partner, assuming [x] is not
the center of the CoP. Then, for every point [y] 6= [x] with y ∈M, we have

x+ y 6= n.

This violates Definition 2.1, since [x] ∈ C(n,M). By Proposition 2.3, the possibility
of more than one axis partner is excluded. This completes the proof. �
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Notation. We denote by

ν(n,M) := |{L[x],[y] ∈̂ C(n,M)}| (2.2)

the number of real axes of the CoP C(n,M). It is evident that

ν(n,M) =

⌊
k

2

⌋
if C(n,M) has k members.

It is not clear whether the axes L[x],[y] ∈̂ C(n,M) are lines joining points [x] and
[y]. In the present study, we will see that a transition from the base set M ⊆ N into
a certain subset CM of the complex plane reveals this natural geometric feature of
circles of partition.

3. Complex Circles of Partition

First, we define a special subset of the complex numbers to use as the base set
of CoPs.

Definition 3.1. Let M ⊆ N and

CM := {z = x+ iy | x ∈M, y ∈ R} ⊂ C

be a subset of the complex numbers where the real part is from M ⊆ N. Then, a
CoP with the special requirement

Co(n,CM) = {[z] | z, n− z ∈ CM, =(z)2 = <(z) (n−<(z))}

will be referred to as a complex Circle of Partition, abbreviated as cCoP. The
special requirement is called the circle condition. The components x and y are
referred to as the real weight and imaginary weight, respectively. The CoP C(n,M)
is termed the source CoP. Since in the case M = N the source CoP is abbreviated
as C(n), we set

Co(n) := Co(n,CN). (3.1)

To distinguish between points [z] of cCoPs and points z in the complex plane C,
we refer to the latter as complex points.

Definition 3.2. Let Co(n,CM) be a cCoP and [z] ∈ Co(n,CM) a point of it with
z = x + iy. Then [n − z] with the weight (n − x) − iy denotes the axis partner of
[z].

With this, the first requirement of a CoP is fulfilled:

‖[z]‖+ ‖[n− z]‖ = x+ iy + n− x− iy = n.

Important: For axis partners [z1] and [z2] = [n− z1], it always holds that

=(z1) = −=(z2). (3.2)

Definition 3.3. Let Co(n,CM) be a cCoP and [z] ∈ Co(n,CM) a point of it with
z = x+ iy. Then [z] with the weight x− iy denotes the conjugate point of [z].
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Definition 3.4. Let Co(n,CM) be a cCoP and L[z],[n−z] ∈̂ Co(n,CM) an axis of it.
Then

L[z],[n−z]

denotes the conjugate axis of L[z],[n−z]. We do not distinguish between axes L[z],[n−z]

and L[n−z],[z], since we do not consider axes as different up to the rearrangement
of resident points.

Definition 3.5. Corresponding to Definition 2.2, we define

νo(n,CM) := |{L[z],[n−z] ∈̂ Co(n,CM)}|

as the number of axes of the cCoP Co(n,CM). Evidently,

νo(n,CM) =

{
2ν(n,M) if the CoP C(n,M) does not contain a degenerated axis,

2ν(n,M) + 1 if the CoP C(n,M) contains a degenerated axis.

(3.3)

We will see that the circle condition

=(z)2 = <(z) (n−<(z)) (3.4)

guarantees that all points of a cCoP lie on a circle in the complex plane C.

Theorem 3.6. Let Co(n,CM) be a non-empty cCoP. The weights of all its points
are located on a circle in the complex plane C with its center on the real axis at n

2
and a diameter n.

Proof. Consider an arbitrary point [z] ∈ Co(n,CM) and its axis partner [n− z]. Set
x := <(z) and y := =(z) 1. Using the circle condition (3.4), we have

y2 = x(n− x). (3.5)

By Definition 3.1, x ∈ M ⊆ N. Hence, x > 0. The second requirement for [z] ∈
Co(n,CM) is n−x ∈M. Therefore, 0 < x < n. We now find the greatest imaginary
part of the complex point zo such that [zo] ∈ Co(n,CM). This means finding the
root of the derivative of (3.5):

dy

dx
=

d

dx

√
x(n− x)

=
1

2

n− 2x√
x(n− x)

= 0.

Thus, we obtain xo = n
2 , provided that the denominator does not become zero.

Substituting x = n
2 into (3.5), we get

y2o =
n

2

(
n− n

2

)
=
(n

2

)2
and hence |yo| = |=(zo)| = n

2 . Clearly, =(n − z) = =(z) = −=(z). Therefore, the

points [z], [z], and [n−z] form a right-angled triangle with the hypotenuse L[z],[n−z]

1This setting will be used also in the sequel.
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Figure 1. Diameter as axis of a cCoP

and the legs 2y and n− 2x. By the Pythagorean Theorem (see Figure 1), we have

|L[z],[n−z]|2 = (2y)2 + (n− 2x)2

and using (3.5)

= 4nx− 4x2 + n2 − 4nx+ 4x2

= n2 and thus

|L[z],[n−z]| = n.

Since the sum of z and n − z equals n, both points [z] and [n − z] are endpoints
of an axis L[z],[n−z] ∈̂ Co(n,CM) and simultaneously form the diameter of a circle
containing the complex points z, z, and n− z, as their imaginary parts satisfy the
circle condition. This is a circle with center on the real axis at n

2 and a diameter
n. �

Definition 3.7. The circle in the complex plane C with center on the real axis
at n

2 and diameter n will be denoted as the embedding circle Cn of the cCoP
Co(n,CM). It holds that

Cn = {z ∈ C | 0 ≤ <(z) ≤ n,=(z)2 = <(z)(n−<(z))}.

Additionally, define

In := {z ∈ C | 0 ≤ <(z) ≤ n,=(z)2 < <(z)(n−<(z))},
Xn := C \ (In ∪ Cn)

as the sets of all complex points z ∈ C inside and outside of the embedding circle
Cn, respectively.
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Definition 3.8. A diameter of the embedding circle Cn through the complex points
z and n− z is denoted by

Dn(z, n− z).

It is evident that for a non-empty cCoP Co(m,CM) with m < n, the following
holds:

||Co(m,CM)|| ⊂ Cm ⊂ In, (3.6)

Im ⊂ In and Xn ⊂ Xm.

Corollary 3.9. For all subsets M ⊆ N, the cCoPs Co(n,CM) for a fixed generator
n have the same embedding circle Cn.

Proposition 3.10. Let Cm and Cn be two embedding circles with m 6= n. Then
both circles have the origin as their only common point:

Cm ∩ Cn = {(0, 0)}.

Proof. Let zm ∈ Cm and zn ∈ Cn. Assume that zm = zn as a common complex
point of both circles. Then, <(zm) = <(zn). For the imaginary parts, by the circle
condition (3.4), we get

=(zm)2 = <(zm) (m−<(zm)) ,

=(zn)2 = <(zn) (n−<(zn)) = <(zm) (n−<(zm)) ,

and as a difference:

=(zm)2 −=(zn)2 = <(zm)(m− n) = <(zn)(m− n).

Since m 6= n, this is only zero if <(zm) = <(zn) = 0. Thus, for the imaginary part,
by the circle condition, we get

=(zm)2 = 0(m− 0) = 0(n− 0) = =(zn)2.

Hence, the origin is the only common point of Cm and Cn. �

Corollary 3.11 (Big Bang). If m < n, then the circle Cm resides fully inside
the circle Cn, except at the common origin. Thus, the origin is the only common
complex point of all embedding circles with increasing diameters, serving as the
”Big Bang” of all embedding circles (refer to Figure 2).

Theorem 3.12. Let Co(m,CM) and Co(n,CM) be two non-empty cCoPs with m 6=
n. Then both cCoPs have no common point

Co(m,CM) ∩ Co(n,CM) = ∅.

Proof. In virtue of (3.6) and Proposition 3.10 the origin could be the only common
point of both cCoPs. Since M ⊆ N, the real weight of a point of any cCoP cannot
be 0. Hence both cCoPs have no common point. �

Proposition 3.13. Let Co(m,CM) and Co(n,CM) be two non-empty cCoPs with
n 6= m. They have points [zm] ∈ Co(m,CM) and [zn] ∈ Co(n,CM) with a common
real weight <(zm) = <(zn) = x ∈ M if and only if their source CoPs C(m,M) and
C(n,M) share a common point [x].
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Figure 2. The ”Big Bang”

Proof. Let [x] be a common point of C(m,M) and C(n,M). Then m−x and n−x are
members of M, and m−x− iym and n−x− iyn are members of CM. Consequently,
their axis partners x + iym and x + iyn are also members of CM. Therefore, with
zm = x+ iym and zn = x+ iyn, we have

[zm] ∈ Co(m,CM) and [zn] ∈ Co(n,CM)

with x = <(zm) = <(zn). This reasoning can be reversed, and thus, from x =
<(zm) = <(zn), it follows that [x] ∈ C(m,M) ∩ C(n,M). �

Corollary 3.14. From Proposition 3.13, it follows that a cCoP Co(n,CM) is non-
empty if and only if its source CoP C(n,M) is non-empty.

Proposition 3.15. In the special case M = N, all cCoPs Co(n) for integers n ≥ 2
are non-empty.

Proof. The source CoPs of such cCoPs are C(n) by virtue of Definition 2.1, and
these are non-empty for all integers n ≥ 2 by virtue of (2.1). Due to Corollary 3.14,
their corresponding cCoPs are also non-empty. �

Corollary 3.16. Since the considered points [z] in Theorem 3.6 were arbitrary, it
follows that all axes of a cCoP Co(n,CM) have equal lengths:

|L[z],[n−z]| = n for all points [z] ∈ Co(n,CM).

We now specify the calculation of the length of a chord joining arbitrary points
of a cCoP under the circle condition.
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Theorem 3.17. Let Co(n,CM) be a non-empty cCoP, and let [z1], [z2] ∈ Co(n,CM)
be two arbitrary points of it. Then the length Γ([z1], [z2]) 2 of the chord L[z1],[z2] is
given by:

|L[z1],[z2]| = Γ([z1], [z2]) = |
√
x1(n− x2)±

√
x2(n− x1)|,

where the ”−” sign is used if sign(y1) = sign(y2), and the ”+” sign otherwise.

Proof.

|L[z1],[z2]|
2 = (x1 − x2)2 + (y1 − y2)2

= x21 + x22 − 2x1x2 + y21 + y22 ± 2|y1y2|
and using (3.5)

= x21 + x22 − 2x1x2 ± 2|y1y2|+ nx1 − x21 + nx2 − x22
= nx1 − x1x2 + nx2 − x1x2 ± 2|y1y2|

= x1(n− x2) + x2(n− x1)± 2
√
x1(n− x1) ·

√
x2(n− x2)

= x1(n− x2) + x2(n− x1)± 2
√
x2(n− x1) ·

√
x1(n− x2)

=
(√

x1(n− x2)±
√
x2(n− x1)

)2
.

Thus, the function Γ([z1], [z2]) for the chord length simplifies to:

Γ([z1], [z2]) = |
√
x1(n− x2)±

√
x2(n− x1)|. (3.7)

�

If [z2] becomes [n − z1], then the chord L[z1],[z2] becomes a diameter. In this
case, y2 = −y1 and x2 = n− x1, and therefore:

Γ([z1], [n− z1]) = |
√
x1(n− x2) +

√
x2(n− x1)|

= |
√
x1x1 +

√
(n− x1)(n− x1)|

= |x1 + n− x1| = n.

If [z2] is the axis partner of the conjugate point of [z1], then x2 = n − x1 and
y2 = y1. Since the signs of both y values are equal, we obtain:

Γ([z1], [n− z1]) = |
√
x1x1 −

√
x2x2|

= |x1 − x2|.

This result coincides with the chord length in a CoP by virtue of its definition in
[2].

A degenerated axis of a cCoP coincides with the diameter that is parallel to
the imaginary axis. It is a real diameter but has the property that it equals its
conjugate axis. In this case, using (3.7) with x2 = x1 = n

2 and y2 = −y1, we have:

Γ([z1], [n− z1]) =

∣∣∣∣∣
√(n

2

)2
+

√(n
2

)2∣∣∣∣∣ = n.

2See [2, p. 2] Definition 2.2
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4. Interior and Exterior Points of complex Circles of Partition

Theorem 4.1. Let Co(n,CM) be a non-empty cCoP. Then the distance from every
complex point of ||Co(n,CM)|| to every complex point in In is less than n, and from
some complex point in ||Co(n,CM)|| to every complex point in Xn is greater than n.

Proof. The diameter of Cn is the longest line from any complex point on this circle
to any complex point inside or on the circle. Hence, all complex points of In have
a smaller distance to any complex point on Cn than the diameter. By (3.6), this
relation is also valid between any complex points of ||Co(n,CM)|| and In. There-
fore, their distances are less than the diameter of Cn, which is n. Conversely, the
distances between some complex point of Co(n,CM) and every complex point in Xn

are greater than n, since Xn consists of complex points outside of the embedding
circle Cn. This completes the proof. �

Corollary 4.2. For two non-empty cCoPs Co(m,CM) and Co(n,CM) with m < n,
all distances between points of these sets are less than n, and some are greater than
m.

Definition 4.3. Since In,Xn are defined in Definition 3.7 as all complex points
inside and outside of the embedding circle Cn, we call the points z ∈ In ∩ CM
interior points with respect to Cn and denote the set of all such points as Int[Cn].
Correspondingly, we call the complex points z ∈ Xn ∩ CM exterior points with
respect to Cn and denote the set of all these points as Ext[Cn].

We observe that

Int[Cn] = In ∩ CM and Ext[Cn] = Xn ∩ CM.

Definition 4.4. Let Co(n,CM) be a non-empty cCoP, and let Cn be its embedding
circle. Then we call the complex point z ∈ Int[Cn] an interior point with respect
to the cCoP Co(n,CM) if and only if for all points [w] ∈ Co(n,CM), |z − w| < n.
We denote the set of all such points as Int[Co(n,CM)]. Correspondingly, we call
the complex point z ∈ Ext[Cn] an exterior point with respect to Co(n,CM) if and
only if for some points [w] ∈ Co(n,CM), |z−w| > n, and denote the set of all such
points as Ext[Co(n,CM)].

Let no ∈ N be the least generator for all cCoPs. If n > no and Co(n,CM) is an
empty cCoP, then Int[Co(n,CM)] and Ext[Co(n,CM)] are empty by definition.

Corollary 4.5. If Co(n,CM) is a non-empty cCoP, then by virtue of Theorem 4.1,
we have

Int[Co(n,CM)] = Int[Cn] = In ∩ CM

and (4.1)

Ext[Co(n,CM)] = Ext[Cn] = Xn ∩ CM.

Proposition 4.6. Let Co(m,CM) and Co(n,CM) be two non-empty cCoPs. Then
m < n if and only if

Int[Co(m,CM)] ⊂ Int[Co(n,CM)] and Ext[Co(n,CM)] ⊂ Ext[Co(m,CM)].

Proof. Let m < n, then by (4.1) we have

Int[Co(m,CM)] = Im ∩ CM and since (3.6)

⊂ In ∩ CM = Int[Co(n,CM)].
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Similarly, we have

Ext[Co(n,CM)] = Xn ∩ CM and since (3.6)

⊂ Xm ∩ CM = Ext[Co(m,CM)].

Conversely, with the embedding Int[Co(m,CM)] ⊂ Int[Co(n,CM)], it follows that
Im ∩ CM ⊂ In ∩ CM, which is only valid with m < n. Analogously, by using the
embedding Ext[Co(n,CM)] ⊂ Ext[Co(m,CM)], it follows that m < n. �

Proposition 4.7. Let Co(m,CM) and Co(n,CM) be two non-empty cCoPs. Then
m < n if and ony if

||Co(m,CM)|| ⊂ Int[Co(n,CM)] and ||Co(n,CM)|| ⊂ Ext[Co(m,CM)].

Proof. Suppose m < n, then by (3.6) and the embedding ||Co(m,CM)|| ⊂ CM, we
deduce

||Co(m,CM)|| ⊂ Cm ∩ CM

⊂ (Cm ∩ CM) ∪ Im

⊂ (Cm ∪ In) ∩ CM and since Cm ⊂ In

= In ∩ CM and because of (4.1)

= Int[Co(n,CM)].

In a similar manner, ||Co(n,CM)|| ⊂ Ext[Co(m,CM)] can be easily verified. Con-
versely, the embedding ||Co(m,CM)|| ⊂ Int[Co(n,CM)] implies Im ∩CM ⊂ In ∩CM,
which is only valid form < n. Analogously, by using the embedding Ext[Co(n,CM)] ⊂
Ext[Co(m,CM)], we deduce that m < n. �

Proposition 4.8. Let Co(m,CM) 6= ∅. If [z1], [z2] are axis partners of the cCoP
Co(n,CM) and |L[z1],[z2]| = n > m, then z1, z2 ∈ Ext[Co(m,CM)].

Proof. From the requirement L[z1],[z2] ∈̂ Co(n,CM) with n > m and Proposition
4.6, it follows that

||Co(n,CM)|| ⊂ Ext[Co(m,CM)] and therefore

z1, z2 ∈ Ext[Co(m,CM)].

�

Proposition 4.9. Let Co(m,CM) 6= ∅. If Int[Co(m,CM)] ⊂ Int[Co(n,CM)], then
Co(n,CM) 6= ∅.

Proof. The conditions above with Definition 4.3 implies that Int[Co(m,CM)] 6= ∅
and Int[Co(n,CM)] ⊃ ∅, and hence Co(n,CM) 6= ∅. �

We state a sort of converse of the above result in the following theorem.

Theorem 4.10. Let Co(m,CM), Co(n,CM) 6= ∅. If m < n and [z] ∈̂ Co(n,CM),
then z 6∈ Int[Co(m,CM)].

Proof. By virtue of Definition 3.7, it follows that Cn ∩ In = ∅ and ||Co(n,CM)|| ⊂
Cn. It follows easily that In ∩ ||Co(n,CM)|| = ∅. We know that for each point
[z] ∈ Co(n,CM) then z 6∈ In. Because m < n, we deduce additionally that Im ⊂ In
and hence

z 6∈ In ⊃ Im ⊃ Im ∩ CM = Int[Co(m,CM)].

�
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5. The Expansion Principles

In this section, we do not distinguish between the axes L[z1],[z2] and L[z2],[z1] (see
Definition 3.4), as axes are considered equivalent under rearrangement of resident
points.

Theorem 5.1 (Fundamental). Let n, r ∈ N, and let CM be defined by virtue of
Definition 3.1. Let Co(n,CM) be a non–empty cCoP, and let L[z],[n−z] be an axis of

Co(n,CM). If z+ r ∈ CM with even r ≥ 2, then the axis L[u],[n+r−u] ∈̂ C(n+ r,CM)
exists with

<(u) = <(z) + r and <(n+ r − u) = n+ r −<(u) = n−<(z)

and the imaginary part corresponding with the circle condition

=(u)2 = <(u)(n+ r −<(u)) = (<(z) + r)(n−<(z)) = =(z)2 + r(n−<(z)).

Thus, Co(n+ r,CM) is also a non–empty cCoP.

Proof. Let x = <(z). Since L[z],[n−z] ∈̂ Co(n,CM), it follows that x and n − x are
members of M. Given the premise, we also have x+ r ∈M. Consequently, we find
that

n+ r − (x+ r) = n− x ∈M.

Thus, there exists an axis

L[u],[n+r−u] ∈̂ C(n+ r,CM)

with

<(u) = x+ r and <(n+ r − u) = n+ r − (x+ r) = n− x
and the imaginary part corresponding with the circle condition. Therefore, the
cCoP Co(n+ r,CM) is non–empty. �

Subsequently we will only consider axes L[z1],[z2] with

<(z1) < <(z2).

Remark 5.2. Since the requirement <(z) ∈ M in the proof not is used, therefore
the statement of Theorem 5.1 remains valid if instead of L[x],[n−x] ∈ Co(n,CM) only
<(n− z) ∈M will be required.

Proposition 5.3 (Axial Points Ordering Principle). Let M ⊆ N, and let Co(n,CM)
and Co(n + t,CM) with t > 0) be non–empty cCoPs with integers n and t of the
same parity. Let L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(n+ t,CM). Then

<(z1) < <(w1) and <(z2) < <(w2) (5.1)

if and only if

<(z1) < <(w1) < <(z1) + t. (5.2)

Proof. We note that the left inequalities are equivalent. Hence, we need to demon-
strate that the right inequalities are also equivalent. Initially, we assume (5.1).
From the right inequality and the existence of L[w1],[w2] ∈̂ Co(n+ t,CM), we obtain

<(z2) < <(w2) = n+ t−<(w1) =⇒ <(w1) < n+ t−<(z2) = <(z1) + t.

This corresponds to the right side of (5.2).
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Conversely, if the right side of (5.2) holds, we combine it with <(w1) = n+ t−
<(w2):

<(w1) = n+ t−<(w2) < <(z1) + t = n−<(z2) + t =⇒ <(z2) < <(w2).

This establishes the right inequality of (5.1). �

Corollary 5.4. It is evident that for the size of the limitation interval (5.2), we
have

(<(z1) + t)−<(z1) = t.

This is independent of the choice of the axes L[z1],[z2] and L[w1],[w2].

Theorem 5.5 (The Squeeze Principle). Let B ⊂ M ⊆ N, and let Co(n,CM) and
Co(n+ t,CM) with t ≥ 4 be non–empty cCoPs such that n, n+ t ∈ Q ⊆ N. If there
exist two axes L[z1],[z2] ∈̂ Co(n,CM) with z2 ∈ CB and L[w1],[w2] ∈̂ Co(n + t,CM)
with w1 ∈ CB such that

<(z1) < <(w1) < <(z1) + t, (5.3)

then there exists an axis L[u1],[u2] ∈̂ Co(n+ s,CB) with 0 < s < t such that

<(u1) = <(w1) and <(u2) = <(z2)

and the imaginary parts corresponding to the circle condition. We know that
w1, z2 ∈ CB, so that u1, u2 ∈ CB. Because B ⊂ M, the cCoP Co(n + s,CM) is
also non–empty.

Proof. We set

x1 := <(w1) and x2 := <(z2).

From the existence of the axis L[z1],[z2] ∈̂ Co(n,CM), it follows that <(z2) = n −
<(z1). Using the left side of the requirement (5.3), we have

x2 = <(z2) > n−<(w1) = n− x1. (5.4)

From the right inequality of (5.3), we derive

x1 = <(w1) < <(z1) + t = n−<(z2) + t

and hence

x2 = <(z2) < n+ t−<(w1) = n+ t− x1.

Combining (5.4) with the following inequalities yields

n− x1 < x2 < n+ t− x1 | +x1
n < x2 + x1 < n+ t

n < n+ s < n+ t.

By virtue of the requirement u2, u1 ∈ CB and the setting n + s = x2 + x1, there
exists an axis L[u1],[u2] ∈̂ Co(n+ s,CB) with <(u1) = x1 and <(u2) = x2. �

Now we present the following proposition as a special case of Theorem 5.5.

Proposition 5.6 (Special Squeeze Principle). Let n, t, s ∈ 2N and let P denote
the set of all odd primes. If t ≥ 4 and there exist two axes L[z1],[z2] ∈̂ Co(n) with

z2 ∈ CP and L[w1],[w2] ∈̂ Co(n+ t) with w1 ∈ CP such that

<(z1) < <(w1) < <(z1) + t,
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Figure 3. Forecasting of Co(34,CP) by Co(30) and Co(32)

then there exists an axis L[u1],[u2] ∈̂ Co(n + s,CP) with 0 < s < t, satisfying
<(u1) = <(w1) and <(u2) = <(z2), with imaginary parts corresponding to the
circle condition.

Proof. Since P ⊂ N and by virtue of Proposition 3.15 all cCoPs Co(n) with even
n ≥ 2 are non-empty, the conditions of Theorem 5.5 are satisfied. �

Given that n, t, s ∈ 2N and for t = 4 with 0 < s < t, it follows that s = 2. Thus,
the special squeeze principle simplifies to the following proposition.

Proposition 5.7. Let m be an integer ≥ 3 and let P be as defined in Lemma 5.6.
If there exists an axis

L[z1],[z2] ∈̂ C
o(2m)

with z2 ∈ CP such that z1 + 2 ∈ CP, then there exists an axis

L[u1],[u2] ∈̂ C
o(2m+ 2,CP) 6= ∅

with
<(u1) = <(z1) + 2 and <(u2) = <(z2)

and the imaginary parts corresponding to the circle condition.

Proof. From the axis L[z1],[z2] ∈̂ Co(2m), we have <(z1) + <(z2) = 2m. Thus,

<(z1 + 2) + <(z2) = <(z1) + <(z2) + 2 = 2m+ 2.

Given z1 + 2 ∈ CP and z2 ∈ CP, there exists an axis

L[u1],[u2] ∈̂ C
o(2m+ 2,CP)

with <(u1) = <(z1) + 2 ∈ P and <(u2) = <(z2) ∈ P, and the imaginary parts
corresponding to the circle condition. �

A legitimate question is worth asking about specific situations when the require-
ments of Theorem 5.5 fails; in particular, if <(w2) < <(z2). In this case, we observe
that the Squeeze Principle becomes to a Forecast Principle.
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Theorem 5.8 (The Forecast Principle). Let B ⊂ M ⊆ N, and let Co(n,CM) and
Co(n + t,CM) with t ≥ 2 be non–empty cCoPs with n, n + t ∈ Q ⊆ N. If there
exist an axis L[z1],[z2] ∈̂ Co(n,CM) with z2 ∈ CB and L[w1],[w2] ∈̂ Co(n+ t,CM) with
w1 ∈ CB such that

<(z1) < <(w1) but <(w2) = <(z2)− s (5.5)

with s > 2 ∈ Q, then there exists an axis L[u1],[u2] ∈̂ Co(n+ s+ t,CB) such that

<(u1) = <(w1) and <(u2) = <(z2)

and the imaginary parts corresponding to the circle condition and the cCoP Co(n+
s + t,CB) is non–empty. We know that w1, z2 ∈ CB, so that u1, u2 ∈ CB. Because
B ⊂M, the cCoP Co(n+ s+ t,CM) is also non–empty.

Proof. Because of (5.5) and the existence of L[w1],[w2] ∈̂ Co(n+ t,CM), we deduce

<(w1) = n+ t−<(w2) = n+ s+ t−<(z2).

Since w1 ∈ CB as well as z2 ∈ CB and

<(w1) + <(z2) = n+ s+ t,

there is an axis L[u1],[u2] ∈̂ Co(n+ s+ t,CB) with

<(u1) = <(w1) and <(u2) = <(z2)

and the imaginary parts corresponding to the circle condition. Therefore the cCoP
Co(n+ s+ t,CB) is non–empty. �

Because of <(w1) < <(w2), we must have <(w2) > n+t
2 . We know <(w2) =

<(z2)− s so that

<(z2) >
n+ t

2
+ s.

In other cases a forecasting by virtue of Theorem 5.8 is not possible. Indeed a
deduction of the Forecast Principle analogous to Propositions 5.6 and 5.7 is also
possible, which may facilitate our subsequent studies. Both principles - the squeeze
and the forecast principle - will be collectively referred to as the Expansion Prin-
ciples, except in situations where we wish to be specific.
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