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Abstract

The Pythagorean theorem is one of the most proved theorem of all time,
most of the proofs use manipulation of areas to prove that the square of
the hypotenuse is indeed the sum of the squares of the two legs. I often
felt disconnected with the proofs, it was one of the situations where one could
prove something, but could not quite see why. So here I present two dynamical
and visualizing methods for proving the Pythagorean theorem.
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1 The question

The problem to solve here is quite straight forward: given two known sides a and
b, let them form a right-angled triangle, with a and b the legs. Then what is the
length of the hypotenuse c?

2 The first method

Our approach will be a dynamical method. Although we do not know the length of
¢, we can nevertheless draw a graph containing it. Given a right-angled triangle abc
with ¢ as the hypotenuse, and point O as the vertex between a and c,

let ¢ rotate clockwise about O, until ¢ overlaps with a(so rotate from OD to
OA). During this rotation it is our goal to trace the horizontal projection of c,
or the projection of ¢ onto the line containing a. Clearly, before the rotation, the
horizontal projection of ¢ is just equal to a, and as ¢ rotates towards a, its projection
grows larger, then finally, as ¢ overlaps with a, its projection will be equal to itself,
¢, which is exactly what we are trying to calculate. The dotted line in the figure
shows the total horizontal increment gained from this rotation.

2.1 The setup

Rotation or circular movement can be approximated by some finite amount of linear
motions. For example, if an object always move in a straight line for a short dis-
tance, before readjusting its direction of motion such that the direction of motion
is always perpendicular to the radius at that point, then such movement can be a
good approximation for a circular motion. The more frequent it adjusts its direction
of motion, the closer to a circular motion it will be.

Now let us approximate the rotation of hypotenuse ¢ with 5 linear motions, or
the 5-step-rotation, in the following figure,



the same triangle abc is shown with OB as hypotenuse c. Moreover, BC, C'F,
FH, HK and KA are all line segments, they represent the 5 linear motions to
approximate rotation. As always the direction of motion is perpendicular to the
“radius”, so,

BC1OB CFL1LOC FH1OF HK1OH KA1lOK (1)

let us call these 5 line segments “tangent segment” or “tangent movement”. The hor-
izontal component and vertical component of each tangent segment are also drawn
on the graph, for example, BQ) and QC are respectively the horizontal component
and vertical component of tangent segment BC', C'E and E'F are respectively the
horizontal component and vertical component of the tangent segment C'F', and so
on. It is trivial to state that the horizontal component of every tangent segment
is parallel to a, and the vertical component of every tangent segment is parallel to
b. The length of these tangent segments are defined in the way that their vertical
components are always equal to each other,

QC=FEF=1IH=JK =LA (2)

as the sum of these vertical components is b, each vertical component of these tangent
segments is b/5.

So OB took 5 linear motions to “rotate” downward to “become” OA. Of course
OA does not equal to OB as it was not a perfect rotation, so radius is not conserved.
But it was still a decent approximation, and the final horizontal projection after 5
steps of linear motion(in this case would be OA = a+ BQ+CE+FI+HJ+ KL),
is the approximated hypotenuse by this 5-step-rotation.

Now let us generalize this setup by defining the number of linear motions, or the
number of tangent segments to be N (the vertical component of each tangent segment
then will be b/N), so the larger is N the closer it is to a circular motion. If N — oo,
this movement of OB to OA becomes a perfect rotation, the infinite amount of
tangent segments together become an arc, and the final horizontal projection would
exactly be equal to the hypotenuse c.



2.2 Find the pattern

For the general case N, let us go ahead and calculate the horizontal projection. To
make things easier, as the downward components of all tangent segments are b/,
let us just define A = b/N. Now look at the first tangent movement,

the original horizontal projection before the first tangent movement is just a,
then the first tangent movement adds B(@) to the horizontal projection. As triangle
BQC is similar to triangle abe, the first horizontal increment B() is,

BQz%*QC’:g*A (3)

now after the first movement, at the new point C, let us denote the vertical
component and horizontal component of OC by b and a’ respectively,

V=b-QC=b-A (4)

a':a—i—BQ:a—l—g*A (5)

so the horizontal projection after the first step is a’. Now let us look at the second
tangent movement,

the horizontal increment C'E can again be obtained by similar triangles,

b v
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again at the new point F', denote the vertical and horizontal components of OF by
b" and a”,

W =t —EF =V — A (7)
/

b
' =d +CE=d +—=*xA (8)
a

so the horizontal projection after the second step is a”’. Now to the third tangent
movement,

by similar triangles, the third horizontal increment F'I is,

b// b//

at the new point H, denote the vertical and horizontal components of OH by b"”
and a”,

V= — IH =1 — A (10)
/!

b
a" =a"+ FI =ad"+ — x A (11)
a

so the horizontal projection after the third tangent movement is a”’. No need to
continue with calculating more tangent movements, one should be able to see the
pattern at this stage: the next horizontal increment is always A times the ratio be-
tween the vertical component and horizontal component at that point. Inductively:

(a',b) = (a+ QA, b—A) (12)
a
(@', V") = (d + %A7 b —A) (13)
(a///’ b///) _ (a// + b_//Aj b — A) (14)
a

Now let us observe the series of these horizontal increments:

NN (15)

a a/ al/



ignore the A for now as every term has one. The series clearly is decreasing as
the numerator is decreasing while the denominator is increasing. The numerator is
pretty straight forward as the it is just linearly decreasing by A every term. While
the denominator, is always the horizontal projection of the last term. In other words,
in every step, a horizontal increment is added to the original horizontal projection,
and this added increment makes the next horizontal increment smaller because of
enlarged denominator by itself.

2.3 The merging triangles model

Now should the behavior of the denominator in some way remind us of wrapping
elastic bands on to a tube? If there are some identical elastic bands to be wrapped
layer by layer onto a large tube, as more elastic bands are put onto the tube, the
resulting radius of the tube becomes larger as these elastic bands add thickness to
the tube. At the same time, because the radius of the tube is larger, the next elastic
band must be stretched further to be put onto the tube, as a result the elastic band
must be thinner, hence will increase the radius of the tube by less amount. By the
same reason the next elastic bands put on will only contribute less and less radius
increments.

This analogy mimic the behavior of the denominator in some way, but we still
need the numerator to decrease linearly by A. The correct model, is the merging
triangles model, that is to merge two isosceles right-angled triangles into a bigger
one. Like before, we could approximate this process by an N-step approximation.

The figure above shows the N = 6 case, the triangle to the left, call it the
base triangle, has side length a, and the “triangle” to the right has “side length” b.
Of course the triangle to the right is not a real triangle, it is actually made of N
rectangular slices(6 slices in the figure). These slices all have width A = b/N, and
their height, from left to right, are b, b — A, b — 2A,....b — (N — 1)A, let us also
denote the height of these slices, from left to right by b, ¥, b”,....b60N=1 it is worth
noting that b0+t = b — A. Now back to the problem of the “triangle” to the right
being just N slices. Without doing the proof in details, it should be obvious that if
the number of slices, or simply N, tends to oo, all the slices together form a perfect
isosceles right-angled triangle with side length b, so it will be a real triangle in the
limiting case.

Now to merge the two triangles together into a bigger one, we will do it slice by
slice. First, merge the first slice(the tallest slice) to the base triangle.

6



> %

This slice has height b but the base triangle has height a, to glue this slice on,
the height of the slice first needs to be stretched to a, as the area of the slice must
be preserved, the width of the slice must be shrink to (b/a)A. The resulting shape,

is almost an isosceles right-angled triangle, apart from a little triangle missing
at the top. No need to worry about it now, just ignore that and proceed. So the
base ”triangle” now has side length a + (b/a)A, let us denote it as a’. Now merge
the second slice, this slice has height b — A or ¥, and the base triangle now has side
length a + (b/a)A or @', so the slice needs to be stretched from &' in height to a’ in
height, then glued on:

o o

as a consequence, the slice’s width is shrinked to (b'/a’)A, and the resulting
“isosceles right angled triangle” now has side length o’ + (V/'/a’)A, let’s call it a”,

again another smaller triangle is missing at the top, but ignore it for now again.
To the third slice,



o

the third slice has height o' — A or 0”, and the base triangle now has side length
a”, so the slice must be stretched from 0" in height to a” in height, hence its width
is shrinked to (0”/a”)A. After it is glued on, the resulting ”triangle” now has side
length a” + (b"/a”)A, let us call it a”.

Needless to merge more slices in specific, the pattern should be clear by now.
Review the rotating hypotenuse case, one should be able to see the variables and
maths expressions of this merging trianlges model being exactly the same as those
of the rotating hypotenuse model, in a way that the side length of the resulting
right angled-triangle evolves exactly the same way as the horizontal component of
the hypotenuse, which means that the horizontal projection of the hypotenuse after
the N-step rotation can alternatively be found by calculating the side length of the
resulting triangle, after N-step merging. Finally, for the merging triangles model,
if N = oo, then A — 0, and there would be no missing little triangles anymore as
the area of those little trianges are ~ A2,

i.e. the resulting triangle is now a legitimate isosceles right-angled triangle, let
us denote its side length by c. As mentioned before, the “triangle” to the right also
becomes a real right-angled triangle with side length b as N — oco. Finally

1, 1, 1,
- Zpr=Z
2a+2 20

(16)
or ¢ = v/a?>+ b%. On the other hand, when N — oo, the horizontal projection of
the hypotenuse equals to the hypotenuse itself after the rotation is complete , that
means the hypotenuse is also ¢ = v/a? 4+ b>. What interesting about the square root
operation here is that it compromises the infinite amount of merging slice actions
into just one nice operation, in our case anyway. It is also probably one of the
reasons why the square root of a number is usually an irrational number. Now a
conclusive figure to put the two models together:



This figure shows the N = 6 case, by a glance the 6 tangent segments together already look much
like an arc. Here triangle abc itself is shown, along a, the base triangle with area %aQ is drawn,
pointing downward; to the left of b, the approximated “triangle” cut up in 6 slices is shown. While
for the rotation dynamics, ¢ takes 6 tangent segments to rotate clockwise to a, in these 6 steps,
¢’s horizontal projection after each tangent movement are also shown by the dotted lines. At the
same time, the 6 slices are as well merged onto the right side of the base triangle. One can see
that in every step, the ”side length” of the resulting triangle is exactly the same as the horizontal

component of the hypotenuse, which proves the equivalence of these two models.

The limiting case where N — oo it would look like:



2.4 Conclusion and generalization

Now the proof is complete, we find that the square root operation is in some way
connected with rotation, not in the sense of m, as the actual length of the tangent
segments(or the arc length) was never in our calculation, but rather, the square
root operation is well connected with the change of the horizontal and vertical
components swiped by an arc.

To generalize this result a little more, if one asks a question: an object is contin-
uously doing a circular motion about the origin O(0,0), it was at C' with coordinate
(a,b), some time later we measured its y-coordinate and find it was decreased by p,
then how much did its x-coordinate change compare to a?

here CB = b. So the object traveled from C to A along the circle and its
y-coordinate had decreased by p. The answer to this question is, rather than let
the hypotenuse rotate all the way down, stop it at point A, and the increment in
horizontal projection which is BE, would be the desired result. Equivalently, in
terms of merging triangles, merge from the tallest slices until the next slice is b — p
in height. So it is really just using part of the triangle rather than the whole triangle
to merge to the base triangle,
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taking the square root of the sum of the areas of the base triangle and the
trapezoid, would give us the horizontal projection at A, then subtract it by a we
would get the horizontal increment p and the question is done. The exact numerical
answer to this question and other related results will not be discussed here as we
mainly focus on the proofs of the Pythagorean theorem.

3 The second method

Now, if one still feels that the first method is not quite direct and intuitive enough, as
one could claim we did not find the actual hypotenuse, we only found the horizontal
projection of the hypotenuse after rotating it down manually, well the second method
might just be the choice as it is more from the scratch and more continuous in a
sense. The analogy and techniques of the second methods are quite similar to the
first one, so we will focus more on the setup side and omit some of the details.

3.1 The setup

The approach of this method is still a dynamical one,

— —
1

starting from side a lying down horizontally, this time, let a be the hypotenuse
and rotate upward in N steps, each step by A = b/N in height. The hypotenuse
in every step is then calculated inductively(like the horizontal projection in the first
method), and the hypotenuse after N steps would be the desired hypotenuse for
triangle abc, or at least an N-step approximation. So in the first method, we let the
vertical component start from b then decrease A per step, and become 0 at the end.
While in this method, it is exactly the opposite, i.e. the vertical component starts
from 0, increases A per step and becomes b at the end. The graph for the N = 6
case would look like:

11



so OB = a, it is also the initial hypotenuse, and I B = b. Moreover, [H = HG =
...= DB = A. In each step, the hypotenuse will do a tangent movement, then pick
up some extra length, and the next step it will be exactly the same but with a longer
hypotenuse. To be more specific, assume at some stage of the rotation,

the hypotenuse at that time is OF or call it a”, and the vertical component
is EB or call it b". Now PFE is the tangent segment, PE | a” as direction of
motion is always perpendicular to the radius. The new hypotenuse after this tangent
movement is OF', which is OP + PF. Here we have to make an assumption that
OP = OE(it becomes true in the limiting case), hence OP = a”. Now let us
calculate PF', the increment of hypotenuse. Different from the first method, in
right-angled triangle F'PE, F'E is now the hypotenuse while tangent segment PFE is
one of the leg. By similar triangles, as FE = A, PF = Z—ZA, so the new hypotenuse
OF,

/!

b
OF = (I,/ + JA (].7)
and the new vertical component BF,
BF =b"+ A (18)

Unsurprisingly, if we denote the new hypotenuse OF' as a”, and the new vertical
component BF' as b, when we do the next tangent movement the procedure is
exactly the same, there is no need to go into details anymore.

Of course, one might have already noticed another problem, that is PF and OP
are not really on the same line. PF is parallel to OF, but OP is not parallel to OF
as it is the hypotenuse of the right-angled triangle OEFP. And again, in the limiting
case where triangle OFEP is no difference from a straight line, O F would be parallel
to OP, consequently PF and OP would together form a line segment.

The corresponding merging triangles model would be:
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so instead of merging slices from tallest to lowest, it is now from the lowest to
tallest. The equivalency is that for a given N, at any step, the side length of the
resulting triangle is exactly same as the length of the hypotenuse. This equivalency is
no more different than the equivalency in the first method, so no further illustration
will be given here.

Finally when N — oo, there will be no bugs in either models, and the final
hypotenuse, which is the hypotenuse of triangle abc, must be equal to the final side
length of the resulting triangle, which is again v/a? + b2

3.2 Conclusion and generalization

Now the second proof is complete, comparing it to the first method, it is more
straightforward as the end product after the rotation is exactly the hypotenuse of
triangle abe, at where it originally belongs. The rotation in this method is not really
a classical rotation as its radius always changes, while in the first method the radius
stays the same. The second method is also continuous in the sense that at any step of
the rotation, there is always a calculated hypotenuse for some right-angled triangle.
For example, at the stage that a third of the slices are merged, the hypotenuse at
that stage is y/a? + (b/3)2, it actually represents the hypotenuse of a right-angled
triangle with legs a and %b. In this spirit, we can also try not to start from the first
slice,

here the starting point is a, which is already the hypotenuse of a right-angled
triangle, and we want to rotate the hypotenuse further, until it is b+ ¢ in height, to
get a larger hypotenuse c. More importantly the starting point is not a right-angled
triangle anymore. The merging process here is to start merging from the slice with
height g, and stop at the slice with height g + b.
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Of course, this situation is in some way similar to the cosine law, while the
difference being we are not provided with an angle, but instead of more known sides.
To discuss its relation with the cosine law would involve trigonometry functions and
angles, they are beyond the scope of this paper so will not be discussed here.

4 Final note

Both proofs could give one the sense that we did not do too much in terms of proving
something, we rather just found two procedures of merging two triangles together
into a bigger one(there can be infinite ways of merging two triangles together), only
that these two procedures could explain the dynamics of a hypotenuse in a human-
understandable way. But that was exactly the scope here, which is to dig into the
Pythagorean theorem as it is, without clever manipulations of areas. Only that the
theorem says a* 4+ b* = ¢, we rather found 3a? + 1b* = 3¢ could explain better in
terms of the two methods we used.
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