A simple Markov chain for the Collatz problem

Wiroj Homsup and Nathawut Homsup

May 30, 2023

Abstract

We show that the iteration of the Collatz function is represented by a simple three states Markov chain. This simple model is implemented to show the probabilistic convergence of the algorithm to the equilibrium point set \{1,2\}.

Introduction

Define the iterating function introduced by R. Terras[1]:

\[a_{n+1} = \frac{(3^b a_n + b)}{2} \] \hspace{1cm} (1)

where \(b = 1 \) when \(a_n \) is odd and \(b = 0 \) when \(a_n \) is even. The Collatz conjecture asserts that by starting with any positive integer \(a_0 \), there exists a natural number \(k \) such that \(a_k = 1 \).

1. The Markov Chain and the transition probability

The Eq. (1) can be represented by a Markov chain with three states.

Let partition positive natural numbers \(N \) in three sets (states):

A : \{3,5,7,9,……………\}

B : \{4,6,8,10,…………..\}

C : \{1,2\}

Then, consider the following Markov chain:

\[X_{i+1} = PX_i \] \hspace{1cm} (2)

Where \(X_i \) is a vector with three components each of which represents the probability of a number to belong to one of the above defined sets, i.e. \(X_i (1,1) = \text{Prob.\{a number is in A\}}, X_i (2,1) = \text{Prob.\{a number is in B\}} \) and \(X_i (3,1) = \text{Prob.\{a number is in C\}} \). \(P \) is a 3x3 real transition matrix whose element, i.e. \(p_{ij} \) is the probability of transition from state \(j \) to state \(i \). The Markov chain of the Collatz problem is shown in Figure 1.
Figure 1. Markov chain of the Collatz problem.

\[
P = \begin{bmatrix}
\frac{1}{2} & p & 0 \\
\frac{1}{2} & p & 0 \\
0 & 1 - 2p & 1
\end{bmatrix}; \quad p < \frac{1}{2}
\]

2. The probabilistic convergence of the dynamic system

The limiting of \(X_i \) can be defined as

\[
X_\infty = \lim_{n \to \infty} P^n X_0
\] (3)
Let
\[P = S V S^{-1} \quad (4) \]
where \(S \) and \(V \) are a 3x3 eigen vector and eigen value matrix, respectively.

\[
V = \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & p + 1/2
\end{bmatrix}
\]

\[
S = \begin{bmatrix}
0 & 2/c & -1/d \\
0 & -1/cp & -1/d \\
1 & (1-2p)/cp & (2-4p)/d(1-2p)
\end{bmatrix}
\]

where
\[
c^2 = \frac{(8p^2 - 4p + 2)}{p^2}
\]

\[
d^2 = \frac{(6p^2 - 6p + 1.5)}{(0.5 - p)^2}
\]

and \(S^{-1} \) is shown to represent in a matrix form as

\[
S^{-1} = \begin{bmatrix}
1 & 1 \\
[M]_{2 \times 3}
\end{bmatrix}
\]

where \([M]_{2 \times 3}\) is a real 2x3 matrix.

As \(n \to \infty \),
\[
\lim_{n \to \infty} P^n = S \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} S^{-1} = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 1
\end{bmatrix}
\]

Then a convergence of eq. (3) follows as
The matrix structure which yields the above condition, show that the Markov chain has an absorbing state which is a state C. Once entered in state C it remains in state C, i.e. a number will alternate between 1 and 2.

3. **Conclusions**

In the paper, it has been shown that using a simple structured Markov chain, eq. (1) representing the Collatz iteration, converges to 1 with probability 1.

References