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Abstract

Counting immunopositive cells on biological tissues generally requires either manual
annotation or (when available) automatic rough systems, for scanning signal surface and
intensity in whole slide imaging. In this work, we tackle the problem of counting microglial
cells in lumbar spinal cord cross-sections of rats by omitting cell detection and focusing
only on the counting task. Manual cell counting is however a time-consuming task, and
additionally entails extensive personnel training. The classic automatic color-based methods
roughly inform of total labeled area and intensity (protein quantification) but do not
specifically provide information on cell number. Since the images to be analyzed have a
high resolution but a huge amount of pixels contains just noise or artifacts, we first perform
a preprocessing generating several filtered images. Then, we design an automatic kernel
counter that is a non-parametric and non-linear method. The proposed scheme can be easily
trained in small datasets since, in its basic version, it relies only on one hyper-parameter.
However, being non-parametric and non-linear, the proposed algorithm is flexible enough to
express all the information contained in rich and heterogeneous datasets as well (providing
the maximum overfit if required). Furthermore, the proposed kernel counter also provides
uncertainty estimation of the given prediction, and can directly tackle the case of receiving
several expert opinions over the same image. Different numerical experiments with artificial
and real datasets show very promising results. Related Matlab code is also provided.
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1 Introduction

The problem of counting objects in images or video frames is still one of the relevant tasks many
biomedical applications face [10, 16]. Cell counting in images is yet a relevant but unpolished
issue for many applications [2, 8]. Cell counting on tissue sections is typically a tedious and
time-consuming task, and additionally entails extensive personnel supervision and training. The
cells called microglia constitute one major group of glial cells, located throughout the brain and
spinal cord of the central nervous system. They are considered resident immune cells within the
central nervous system and increase in size and number upon activation [21]. Moreover, they have
been suggested to be responsible for initiating altered synaptic and firing activity in neurological
disorders, including chronic neurodegenerative diseases (e.g., Alzheimers and Parkinsons disease)
and chronic pain [13]. However, one major concern when analyzing the microglial cells is their
identification and counting [4, 6, 19].

In this work, we focus only on the simplified task of just counting problem of the microglial cells,
skipping to necessarily detect them. We consider the microglial cells in micrographs of lumbar
spinal cord cross-sections of rats (see Figure 2). They exhibit a variety of shapes, sizes, and
functions depending on their activation state [6, 22]. The problem of manual counting microglial
cells in immunohistochemistry is typically a time-consuming task, often requiring a budget for
hiring personnel devoted to this task and additionally entails extensive personnel training [2, 5, 21].
Indeed, computing immunopositive cells on biological tissues generally requires the ability to
detect the cells and manual annotation [5, 14]. This cell quantification is not possible with other
immunoblotting techniques like ELISA (enzyme-linked immunosorbent assay) or western blot for
tissue samples to be homogenized [9]. Several specific issues and features of the tackled problem
should be taken into account:

Microglial cells are very small and stained a distinguishable dark brown color. On the contrary,
size and shape depend on both the cutting plane and activation state [2, 21].

(a) Microglial cells are very small and stained a distinguishable dark brown color. On the
contrary, size and shape depend on both the cutting plane and activation state [2, 21]. This
is why using shape information to count (and/or detect) them can be misleading for the
learning algorithm.

(b) The images to be analyzed have a high resolution, where a huge amount of pixels are just
noise or artifacts. The number of pixels forming the microglial cells is extremely smaller
with respect to the number of pixels that are not contained in a cell. The difference in order
of magnitude, in terms of number of pixels, is approximately 104 in favor of non-microglial
objects (on average). For instance, Figure 2 depicts just very tiny portions of an entire
image, whereas an entire image is given in Figure 1. Namely, most of the input signals
in our problem represent virtually “noise”, and hence contain useless and/or misleading
information.

(c) The image dataset is created by a human expert after a long and tiresome visual inspection.
This may unequivocally lead to computing errors. Furthermore, structural uncertainty is
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sometimes present for some cells. For these cases, even the expert is often not able to provide
a clear decision (the expert could just provide an estimation of the uncertainty of being a
microglial cell).

(d) The dataset size depends on the inherent effort that demands manual processing, hence the
number of stored images (D) available in the dataset is often small. The increase of the
dataset depends mainly on costly human work (in terms of effort, time required, budget,
etc).

(e) Additionally, the quality of images in the dataset may be highly heterogeneous, depending
on the imaging capture system (jointly with human erroneous activities) in the laboratory.
Differences in magnification, resolution, brightness, saturation, contrast, and other color
shifts might be present in the stored images. Furthermore, the diversity grows if different
laboratories share their images in order to increase the size of their datasets. This
heterogeneity contributes to the need for the design of suitable algorithms.

Hence, in this work, we design an automatic and adaptive counting method according to the
requirements described above. Namely, we propose a flexible counting algorithm that can be easily
trained with small datasets and is flexible enough to be able to express all the diversity of images
in the database. First of all, in order to address the issue of having a very low signal-to-noise ratio
described in point (b), we perform a feature extraction filtering the images according to different
color thresholds. This idea is based on the observation given in the point (a) above. After the
filtering, we obtain binary filtered images with a much higher signal-to-noise ratio. In the second
stage, we perform a kernel smoother to solve the regression problem having as inputs the number
of objects in those filtered images (counted by a clustering algorithm) and the expert’s opinion as
outputs. The resulting algorithm, called kernel counter (KC), has the following characteristics:

• KC is a non-parametric and non-linear method, i.e., its flexibility grows with the number D
of data/images in the dataset. Indeed, for every possible value of D, the method can work
as an interpolator providing the perfect overfitting to the outputs, regardless of the diversity
in the data. This characteristic then responds to the requirement (e) described above.

• Moreover, in its basic version, the algorithm requires only the tuning of one hyper-parameter.
Therefore, the learning task can be performed even in small datasets, fulfilling the condition
(d). Note that neural networks, or any other kind of parametric algorithms, can satisfy just
one of the two requirements (e) or (d), but not both together as the proposed KC does.

• The proposed KC method is also able to provide an uncertainty quantification of the given
prediction. This characteristic responds to the requirement (c) above.

• The proposed algorithm is a counter, indeed the predictions/estimations are always non-
negative. Thus, the predictions can easily converter into integers by rounding them.

• The KC method can directly handle the case of receiving several expert opinions over the
same image. Namely, different experts provide their counting of the microglial cells of the
same image. This is an isotopic multi-output scenario that can be directly handled by the
KC [12] (more details are given in Section 5).
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We also discuss possible extensions and improvements to increase the robustness of the algorithm.
Several additional details are comments in appendices (as the choice of the threshold values).
Different numerical experiments show the consistency of the proposed algorithm in different
scenarios. We also test the KC method using images obtained by the Department of Basic
Health Sciences, Faculty of Health Sciences of the Rey Juan Carlos University, Madrid, obtaining
very promising results. Related Matlab code is also provided at http://www.lucamartino.

altervista.org/PUBLIC_CODE_KERNEL_COUNTER.zip.

Figure 1: Example of complete image (spinal cord cross-section). The zoom frame indicates part of the ipsilateral

dorsal horn with microglial cells (scale = 200µm).

Figure 2: Examples of microglial cells (up: ramified; down: amoeboid). Microglia is always represented by a

brownish tinction, whereas blue colored cells usually correspond to the nuclei of neurons.
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2 Image filtering: extracting relevant information

The high-resolution images obtained in the laboratory contain huge amount of pixels that are
just noise or artifacts. Namely, most of the signal in the input space represents noise in our
problem. Moreover, microglial cells are very small and dark objects, with different geometric
shape depending on the specific spinal cord cross-section [2, 21]. For all these reasons, we perform
a filtering of the images considering threshold color values.
Let us consider a RGB image provided by the laboratory containing possibly the microglial cells1.
Each pixel is represented by 3 color values,

p = [p1, p2, p3] ∈ [0, 1]3,

where in 0 to 1 scale, i.e., pj ∈ [0, 1], where p1 represents the amount of red, p2 represents the
amount of green, and p3 represents the amount of blue. Hence, p = [1, 1, 1] represents a white
pixel and p = [0, 0, 0] represents a black pixel. We define the vector of threshold color values,

t = [t1, t2, t3] ∈ R3,

in order to build a binary (black and white) filtered image where only the pixels that satisfy the
conditions below 

p1 ≤ t1,

p2 ≤ t2,

p3 ≤ t3,

(1)

will be considered as black pixels in this binary (black and white) filtered image. Whereas, all the
pixels such that at least one condition is not satisfied in (1), i.e., a pi > ti, are transformed
into white pixels. At each d-th image in the database, we apply different threshold vectors
t(k) ∈ [t

(k)
1 , t

(k)
2 , t

(k)
3 ], with k = 1, ..., T . Thus, from each medical colored image in the database from

the laboratory we extract T binary filtered images. The underlying idea is to count the number
of black objects (i.e., clusters of black pixels) within each of these filtered images, denoted by the
integer variable rkd ∈ N. In order to count the black objects in this filtered binary image, we can
use any kind of clustering algorithm or any alternative procedure designed for counting objects in
binary matrices.

More specifically, let us assume that we have D images in the database and we consider
the d-th image to analyze; hence, clearly, d ∈ {1, ..., D}. Given the k-th threshold vector

t(k) ∈ [t
(k)
1 , t

(k)
2 , t

(k)
3 ], the number of objects within each filtered image is denoted as rkd ∈ N,

i.e., rkd represents the number of objects (clusters black pixels) in the k-th binary filtered image,

obtained filtering d-th image i with the threshold vector t(k) ∈ [t
(k)
1 , t

(k)
2 , t

(k)
3 ]. Hence, we have a

correspondence between the thresholds and the number of objects in each d-th filtered image, i.e.,

t(k) =⇒ {rkd}Dd=1, k = 1, ..., T.

1We recall that the approach described here can be employed for completely different types of application, for
instance, with images provided by a satellite, a telescope, or any other medical machinery.
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Therefore, to the d-th image in the database, we can associate a vector rd = [r1d, r2d, ..., rTd]
of number of objects in each filtered images. Additionally, for each image in the dataset
(provided by the laboratory), the expert provided the expected number of microglial cells
Nd ∈ N = {0, 1, 2, 3, ...}. Thus, the vector rd is statistically related to Nd, i.e., we have the
correspondence,

rd = [r1d, r2d, ..., rTd]⇐⇒ Nd.

Therefore, for each medical image in the database d = 1, ..., D, we have T different components
of the inputs, rkd ∈ N, related to the number of microglial cells Nd in the d-th image (that
plays the role of outputs in a regression problem). We have now a database formed by the pairs
inputs/outputs {rd, Nd}Dd=1, i.e., the counting problem can be tackled as a regression problem.
Figure 3 depicts a graphical sketch of this image analysis. Figure 4 provides a graphical example
with Nd = 4 and T = 4 different filtered images. Recall that pixels with color values closer to 0
are darker, whereas pixels with color values closer to 1 are clearer. Table 1 summarizes the main
notation of the work.

Figure 3: Graphical representation of the analysis performed for the feature extraction in each image. In each

image filtered by t(k), the total number of objects rkd is obtained by clustering.

Table 1: Main notation of the work.

t(k) k-th threshold vector Decided by the user

Nd number of microglial cells of the d-th image in the dataset Given by the expert

rkd number of objects in the k-th filtered binary image Obtained filtering
the d-th image with t(k)

When the threshold t
(k)
i values are small close to zero (i.e., we keep only dark pixels), we have

a small number of objects rkd in the filtered image but, since microglial cells are usually formed
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Figure 4: Illustrative example of a generic d-th image and T = 4 corresponding filtered images, with different

threshold vectors t(k). In this graphical example, we have Nd = 4 objects of interest (i.e., in our application,

microglial cells). The rest of the 6 objects in the image play the role of irrelevant artifacts. In each filtered image,

the total number of objects rkd is given.

by dark pixels, most of the rkd objects would be microglial cells, hence we would have a small
number of artifacts (false positives). As the threshold values t

(k)
i grow closer and closer to 1, there

will be a greater chance of getting a larger portion of the microglial cells in the corresponding
filtered image, but also a greater number of artifacts. Furthermore, still increasing the threshold
values, all the microglial cells would be contained in the filtered images. A further increase of the
thresholds will only yield an increase in the false positives/artifacts (since all the microglial cells
are already contained in the previous filtered images).

3 A kernel smoother approach for counting microglial cells

Let us assume that D ≥ T . We also consider a new image that we can study obtaining rD+1 but
we have not the number of microglial cells ND+1 given by the expert, thus we desire to get an
estimator N̂D+1. Given the different images in the database and the new image where ND+1 is
unknown, the database (training samples) is formed by the pairs inputs/outputs {rd, Nd}Dd=1 and
the test input where we need a prediction is rD+1 obtained by analyzing the new image, i.e., we
have

r1 = [r11, r21, · · · , rT1]⇐⇒ N1, given by the expert,

r2 = [r12, r22, · · · , rT2]⇐⇒ N2, given by the expert,
...

rD = [r1D, r2D, · · · , rTd]⇐⇒ ND, given by the expert,

and

rD+1 = [r1(D+1), r2(D+1), · · · , rT (D+1)]⇐⇒ ND+1 =?

Then, the goal is to obtain N̂D+1 as a prediction of the number of microglial cells ND+1 in the new
image that has not been analyzed by the expert. Recall that each component rk(D+1) represents
the number of objects in the k-th filtered image obtained by filtering the new test image using
the threshold vector t(k).
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3.1 The kernel counter (KC)

The proposed algorithm, called kernel counter (KC), is composed of the following steps: (a)
standardization, (b) weighting, and (c) prediction, which are detailed below.

Standardization. We can standardize each of the (D + 1) values for each t, as

r̄kd =
rkd − µ̂k
σ̂k

, µ̂k =
1

D + 1

D+1∑
d=1

rkd, σ̂k =

√√√√ 1

D

D+1∑
d=1

(rkd − µ̂k)2, (2)

for all d = 1, ..., D + 1.

Weighting. Denoting as r̄d = [r̄1d, r̄2d, · · · , r̄Td] the vectors with the standardized values, we
can compute the D distances with respect to r̄t(D+1),

Ld = ||̄rd − r̄D+1||2 =
T∑
k=1

(r̄kd − r̄k(D+1))
2, d = 1, ..., D, (3)

and the D different weights with the corresponding normalized weights,

wd = exp

(
−1

η
Ld

)
= exp

(
−1

η
||̄rd − r̄D+1||2

)
,

= exp

(
−1

η

T∑
k=1

(r̄kd − r̄k(D+1))
2

)
, w̄d =

wd∑D
i=1wi

, d = 1, ..., D, (4)

where η > 0 is chosen by the user, or learnt by leave-one-out cross-validation (LOO-CV). Note
that, in this weighting step, we convert distances into weights.

Prediction. The kernel smoother estimator is then given by

N̂D+1 =
D∑
d=1

w̄dNd. (5)

If we desire to get an integer estimation, we can round it, i.e., bN̂D+1e. Note that, even if the
formula above is linear, the estimator performs a non-linear regression with respect to the input
vectors r̄ [12]. An estimation of the variance σ̂2

D+1 associated to N̂D+1 is given in Eq. (9) below
(see also [1]).

The KC estimator has some interesting properties that we discuss below.

Property 1. Note that N̂D+1 ≥ 0, which is a desired property for a counting algorithm. This is
because N̂D+1 is obtained as a linear combination of non-negative quantities, i.e., Nd ≥ 0, and all
the weights are also non-negative, i.e., w̄d ≥ 0.
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Property 2. We have that min
d
Nd ≤ N̂D+1 ≤ max

d
Nd. Therefore, the increase in the database is

also beneficial for increasing the prediction ability and flexibility of the algorithm.

Remark. In this version of the algorithm, we have a unique hyper-parameter to learn that
is the non-negative scalar η. It can be learnt by leave-one-out cross-validation (LOO-CV). For
this reason, the proposed KC is easy and fast to train. However, other possible KC versions (with
more hyper-parameters) are discussed in the next sections below.

Remark. Even if we have only one hyper-parameter to learn, the method is a non-parametric
regressor, i.e., the complexity of the solution in Eq. (5) grows with D (that is the number of
images in the database). Moreover the solution is non-linear with respect to the inputs r̄. Hence,
the proposed method is able to express the complexity of rich datasets. This kernel procedure
allows also the estimation of the variance σ̂2

D+1 given in Eq. (9). Furthermore, the extensions with
multi-expert’s opinions is straightforward as shown in the next section.

3.2 Smoothing of the expert’s opinions and variance of the prediction

The KC algorithm can also used to propose a correction of the expert’s opinions, given all the
information in the dataset. Generalizing slightly the previous formulas changing the reference
vector, we have

Ldj = ||̄rd − r̄j||2 =
T∑
k=1

(r̄kd − r̄kj)2, d = 1, ..., D, j = 1, ..., D. (6)

Note that Ljj = 0 for all j. Fixing now j, we can again define D different weights and the
corresponding normalized weights,

ρdj = exp

(
−1

η
Ldj

)
, ρ̄dj =

ρdj∑D
i=1 ρij

, d = 1, ..., D. (7)

Note that ρkj = ρjk since Lkj = Ljk. Note that wd = ρd(D+1) for all d, i.e., if we use r̄D+1 as
reference vector, we recover the previous weights in Eq. (4), as expected. The smoothing of the
expert’s opinion for the j-th image is

N̂d =
D∑
k=1

ρ̄kdNk, d = 1, ..., D. (8)

Variance of the prediction. Considering the smoothing values N̂d computed above, we can
also estimate the variance in the prediction N̂D+1 in (5) as suggested in [1], i.e.,

σ̂2
D+1 =

D∑
d=1

w̄d

(
Nd − N̂d

)2
. (9)
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Note that this estimation of the variance is obtained directly by applying a formula without any
bootstrap or similar procedures. In the same fashion, the variances of the smoothing values N̂d

can be approximated by

σ̂2
d =

D∑
k=1

ρ̄kd

(
Nk − N̂k

)2
. (10)

Estimation of correlations or higher moments could be also provided as suggested in [1].

4 Learning η and extension with more hyper-parameters

The described KC has a unique hyper-parameter η. Note that η controls the
underfitting/overfitting trade-off. Indeed, for instance, for big values of η we tend to the
underfitting. In the limit case of η →∞, we have that

w̄d =
1

D
, N̂D+1 =

1

D

D∑
d=1

Nd,

so that the prediction is just the arithmetic mean of the number of microglial cells Nd in the
different images. As η decreases, we tend to the overfitting. In the limit case of η → 0, we have
that N̂D+1 is given by the number of microglial cells Nd∗ corresponding to the nearest neighbor
solution, i.e., N̂D+1 = Nd∗ , where

d∗ = arg min
d
||̄rd − r̄D+1||, d = 1, ..., D.

In this scenario, only the value Nd∗ is taken into account, i.e., w̄d∗ = 1 whereas the rest of the
weights are zero, w̄d = 0 for any d 6= d∗. Hence, the KC contains the nearest neighbor algorithm
as a special case (see [12] for more details).

An optimal value η∗ can be obtained by LOO-CV, trying to minimize an error loss between
the predicted and true numbers of cells, or maximizing the coefficient of determination of the
linear regression between the predicted and true numbers of cells (any other metric within LOO-
CV can be employed). Note that, in any case, as the size D of the dataset grows, the optimal
value of η∗ decreases, i.e., as D → ∞ then η∗ → 0. As a good starting point for the LOO-CV
procedure (to understand the order of magnitude of η), or as a reasonable proxy of η∗, one can
use the following rule of thumb:

η̂ =
2

DT

D∑
d=1

T∑
k=1

(r̄kd − r̄k(D+1))
2, (11)

based on the empirical estimator of a variance. This is based on the fact that we are employing
Gaussian kernels and 1

2
η̂ plays the role of a variance parameter. The value η̂ tends to the under-

fitting for big values of D (i.e., η∗ < η̂), whereas is already a reasonable value for small D.
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As already remarked above, even with just one hyper-parameter to learn, the method is a non-
parametric and non-linear regressor, with respect to the input vectors r̄. The complexity of the
final estimator in Eq. (5) grows with D. However, even more flexible versions of KC, with more
hyper-parameters, can be easily designed. For instance, we can have one hyper-parameter ηd for
each d-th image and, as a consequence, for each weight wd as shown below,

wd = exp

(
− 1

ηd
||̄rd − r̄D+1||2

)
, d = 1, ..., D. (12)

Therefore, in this scenario, we have D hyper-parameters ηd, for d = 1, ..., D, i.e., also the number
of hyper-parameters grows with the number of data D in the dataset. The rules of thumb in this
scenario would be η̂d = 2

T

∑T
k=1(r̄kd − r̄k(D+1))

2, for any d.

5 Increasing the robustness of the KC

In the data-collecting process, the quality of the obtained image can vary according to the employed
imaging systems and the human activities that can yield distortion or information loss. For
instance, an image can be obtained in different lighting conditions. Moreover, the counting
procedure by the expert is also a noisy process. Recall also that the database is quite small
since the analysis of the expert’s opinion is costly. In this section, we discuss strategies to handle
these issues and improve the robustness of the KC.

Adaptive thresholds. The validity of the proposed algorithm is ensured for any choice possible
of t(k), with the unique requirement that the vectors t(k), with k = 1, ..., T , must be different from
each other. However, the performance of the algorithm depends on the choice of threshold vectors.
See Appendix B for more details. In order to reduce the sensitivity of the image conditions (such
as filter type, lighting conditions, etc.), we suggest to covert the threshold values into areas below
the approximated densities of each color, and then into the quantile values of each new image.
Namely, choosing the threshold vector t = [t1, t2, t3], we can convert it into a probability vector a,

a = [a1, a2, a3], where ak ≈ Prob(a pixel has the k-color ≤ ti),

obtained studying all the histograms of the colors of all the images in the database. Then, given
a new test image, analyzing its histograms of color we can compute the approximated quantile
values,

qk ≈ quantile of order ak/100, for i = 1, 2, 3.

Finally, the corresponding threshold vector for analyzing the new image will be

tnew = [q1, q2, q3],

which is the new vector of the thresholds adapted to the new image. This procedure improves
the robustness of the KC by analyzing darker or lighter images (due to experimental changes in
the laboratory) included in the same dataset. Hence, the adaptive threshold strategy described
above has another advantage: it allows us to include the same image but with a different degree
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of clarity for increasing the size dataset. This is a straightforward data augmentation procedure
that can be used that also increase the robustness of the proposed algorithm.

Including the expert’s uncertainty. The first simple possibility for including the expert’s
uncertainty (within the proposed KC algorithm) is to consider a “soft” labeling approach. Namely,
in the d-th image of the dataset, let us consider that we have a certain number of objects, O,
which can be considered possibly a microglial cell by the expert. For each one of these objects,
the expert can associate a value po between [0, 1] (as a probability) where values close to zero, i.e.,
po ≈ 0, represent very high uncertainty that the object is a microglial cell, whereas po = 1 means
a complete guarantee that this o-th object is a microglial cell. In this framework, finally, we have

Nd =
O∑
o=1

po ∈ R+, po ∈ [0, 1],

which is a positive real number, Nd ∈ R+, representing the number of microglial cells in the d-th
image of the dataset, including the expert’s uncertainty. The rest of the algorithm would remain
the same. Another possibility to encode the expert’s uncertainty is to include is to add some
additional weights αd ∈ [0, 1] directly in the final KC estimator

N̂D+1 =
D∑
d=1

w̄d αdNd, (13)

where if αd = 0 represents maximum uncertainty so that Nd is not considered in the linear
combination, whereas if αd = 1 represents zero uncertainty to the value Nd computed by the
expert.

Several experts. Let us consider that different experts provide their counting of the microglial
cells of the same image. Namely, for the d-th image a j-th expert suggests that the number of
microglial cells is Ndj. Moreover, let us consider that the total number of experts is E. Therefore,
after the filtering, we have the correspondence:

rd ⇐⇒ Nd = [Nd1, Nd2, ..., NdE],

i.e., we have a vector as output in the regression problem. This multi-output scenario can be
directly handled by the KC just considering the different pairs {rd, Ndj} for j = 1, ..., E and
d = 1, ..., D as different data points [12]. The total number of data will be then ED.

6 Numerical experiments

In this section, we test the KC algorithm in two synthetic experiments, where we can check
and verify the convergence behaviors of the proposed scheme (since the ground-truth values are
known). Then, in the last section, we apply the KC algorithm to the dataset obtained by our
laboratory. Related Matlab code is also provided.
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6.1 First synthetic experiment

In Appendix A, we provide a statistical model that can be employed for synthetic experimental
analysis and study the theoretical behavior of the proposed KC algorithm. Thus, we consider the
statistical model presented in Appendix A, i.e.,

rid = bαiNd + Fie, αi ∈ (0, 1], i = 1, ..., T, d = 1, ..., D,

Fi ∈ {vi, vi + 1, ..., si} si, vi ∈ N+, si > vi.
(14)

where bbe returns the nearest integer to b; the coefficient αi ∈ (0, 1] depends on the vectors t(i),
i.e., αi = α(t(i)), and Fi is a discrete random variable which takes non-negative integer values,
contained in [vi, si]. Eq. (19) shows the relationship between each rid and Nd. Indeed, the value
100αi% is the percentage of microglial cells Nd in the i-th filtered image (i.e., percentage of true
positives), whereas Fi is the number of false positives (artifacts). We consider that in each d-th
image, we can have a number of microglial cells between 0 and 200, i.e., Nd ∈ [0, 200]. More
precisely, we consider a uniform discrete pmf,

Nd ∈ Udiscrete([0, 200]). (15)

In this section, we assume that the expert is able to detect perfectly all the number of microglial
cells Nd in the d-th image, observing the values N1, ..., ND.
Recall that the value αi ·100 represents the percentages of microglial cells in the i-th filtered image
(see App. A), obtained by filtering the d images with the i-th threshold vector t(i). We consider
T threshold vectors t(i) such as

αi =
i− 1

T − 1
, i = 1, ..., T,

i.e., we assume that t(1) is chosen such that α1 = 0, t(2) is chosen such that α2 = 2
T−1 , t(3) is

chosen such that α3 = 3
T−1 and so on, until t(T ) that is chosen such that αT = T−1

T−1 = 1. Hence,
we have always α1 = 0 and αT = 1. Moreover, we assume uniform discrete pmf for the random
variable Fi,

Fi ∼ Udiscrete([vi, si]) ∈ N,
where we can write the minimum and maximum values as function of αi like in Eq. (25), for
instance,

vi =

⌊
24

(
1

1 + exp(−3αi)

)
− 12

⌉
, (16)

si =

⌊
1 + 40

(
1

1 + exp(−3.5αi)

)
− 20

⌉
. (17)

Figure 5(a) depicts these curves. Note that this is equivalent to be function of t(i). We generate
Nd and rid by the model above assuming D = 104 images in the dataset, i = 1, ..., D. In this
synthetic experiment, we are considering a high value of D since we are studying the convergence
behavior of the proposed algorithm. We also consider different values of

T ∈ {2, 3, 5, 10, 20, 40, 60, 100, 150, 200, 500, 1000},
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i.e., different numbers of threshold vectors t(i) (and consequently generating different filtered
images). Since in this artificial experiment, we know the ground-truth values N1, ..., ND, and we
can compute the mean square error (MSE) in smoothing, i.e.,

MSE(T ) =
1

D

D∑
d=1

(N̂d −Nd)
2. (18)

We have averaged all the results over 105 independent runs. We employ LOO-CV for learning η
at each run. Figure 5(b) depicts the results. We can observe that the MSE is decreasing quickly
as T grows. Note that when T = 200, the MSE is already virtually zero.
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Figure 5: (a) The two functions vi = v(αi) and si = s(αi) in Eqs.(16) and (17). Recall that
minFi = vi and maxFi = si. (b) The mean square error (MSE) in Eq. (18) as function of the
number of threshold vectors used, i.e., T .

6.2 Second synthetic experiment

In this section, we consider a more complex version of the previous model,

rid = bαiNd + Fie, αi ∈ (0, 1], i = 1, ..., T, d = 1, ..., D,

Fi ∈ {vi, vi + 1, ..., si} si, vi ∈ N+, si > vi,

Ñd = Nd + εd, εd ∼ Udiscrete([−γ, γ]),

(19)

where εd ∈ [−γ, γ] is a uniform noise variable and γ is a constant integer parameter that indirectly

determines the power of this noise perturbation. We assume to observe a noisy measurement Ñd,
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i.e., instead of the true number of microglial cell Nd, as in the previous experiment, so that that
the data pairs

{rd, Ñd}Dd=1,

where rd = [r1d, ..., rTd]. Namely, in this experiment, we are assuming that the expert provides

noisy versions Ñd of the number Nd of microglial cells in the d-th image, so that we can test the
robustness of the KC algorithm. In this experiment, we have considered γ ∈ {0, 5, 10}. Therefore,

we use Ñd in the estimators in Eqs. (5) and (8). Note that, setting γ = 0, we recover to the
non-noisy framework in the previous section. We fix D = 104 and use LOO-CV for learning η
at each run. We consider the same equations (15), (16), and (17) for the variables of the model
above.

The results are averaged over 105 independent runs. At each run, we compute the MSE that
is still computed considering the true corresponding values N1, ..., ND, exactly as in Eq. (18), i.e.,

MSE(T ) =
1

D

D∑
d=1

(N̂d −Nd)
2. (20)

In this way, we can appreciate the deterioration of the performance of the algorithm as γ grows, as
shown in Figure 6(a), where the MSE curve is depicted in log-scale to facilitate the visualization.
However, the MSE of the algorithm vanishes to zero as T grows, regardless regardless the noise
power. This proves the robustness of the proposed KC scheme.

6.3 Counting microglial cells in a real dataset

In this section, we present an application of presented automatic procedure applied to a real
database. The images have been obtained by the Department of Basic Health Sciences, Faculty
of Health Sciences of the URJC in Madrid.

Data collection. Immunoreactivity of spinal cord sections (L3L5) was performed for ionized
calcium-binding adapter molecule 1 (Iba-1) as marker of microglia using diaminobenzidine (DAB)
immunohistochemistry. Tissue processing and immunohistochemistry are described in [5]. A
Zeiss Axioskop 2 microscope equipped with the image analysis software package AxioVision 4.6
was used to make montages of series of photomicrographs at final magnifications of 20x. The
immunohistochemistry technique yields a dark brown color reaction. However, heat induced
epitope retrieval (HIER), deficient rising/washing step or excessively high concentrations of DAB
or hematoxylin counterstain can ultimately cause burgundy, blackish, brownish or dark purple
staining artifacts. Subsequent to manual cell counting for D = 10, images were preprocessed.
Anything other than the grey matter was removed and the background colored in white.

Results. We apply the presented technique to the stored database of D images. We perform a
LOO-CV procedure minimizing the L∞ distance (i.e., minimizing the maximum error) between
the predicted number and the true number of microglial cells. We obtain an L∞ error curve as
a function of 1/η, where there is a flat zone of minimum values between 1/η ∈ [1.3, 3.75]. We
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Figure 6: (a) The MSE curve in log-scale as a function of the number T of used threshold vectors,
and different values of γ = 0, 5, 10. Note that the curve in solid line corresponds γ = 0 (i.e.,
without noisy evaluations of Nd) and is the same as in the curve in Figure 5(b) but in log-scale.
For any value of γ, the MSE of the algorithm vanishes to zero as T grows, regardless of the power
of the noise that affects Nd. (b) Results applying the KC to the real dataset. After LOO-CV, we
get η∗ ≈ 2.5. The coefficient of determination between the numbers of cells given by the expert
and the predicted numbers is R2 ≈ 0.90. The KC is also able to provide σ̂2

d: the error bars show
±2
√
σ̂2
d corresponding to the 95% of the probability. Note that the error bar always contains the

black line, hence the expert’s opinion is always contained in the uncertainty interval.

choose an intermediate value setting 1/η∗ ≈ 2.5, i.e., η∗ ≈ 0.40. With the values of η such that
1/η ∈ [1.3, 3.75], the maximum error in prediction never exceeds 25 units. Just to show the
robustness of the technique, we also provide the results of LOO-CV procedure minimizing the L1

distance: 1/η∗ ≈ 0.85, i.e., η∗ ≈ 1.17. With this value of η, we obtain an averaged absolute error
in LOO-CV procedure of less than 10 units in prediction. Considering all the data points and
η∗ ≈ 0.40, the average absolute error decreases to 3.68, i.e., less than 4 units. Note that, we are
obtaining already remarkable results with a small and heterogenous dataset.
In Figure 6(b), we depict the points with the numbers of cells given by the expert as x-values
and the numbers of cells predicted by the KC method as y-values, using η∗ ≈ 0.40 obtained with
LOO-CV above. Ideally, we would like to have all the points belonging to the black straight line
x = y in Figure 6(b). This ideal case would correspond to the perfect prediction of all numbers of
microglial cells. We can observe that the points are all very close to the black straight-line with a
coefficient of determination of R2 ≈ 0.90 (in ideal scenario, we would have R2 = 1). Considering
all the data points (instead of leave-one-out as in LOO-CV), we obtain an average absolute error
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less than 4 units with a standard deviation of 5.44.
Additionally, The KC algorithm also provides uncertainty estimations of its predictions, i.e., σ̂2

d:
the error bars show ±2

√
σ̂2
d corresponding to the 95% of the probability. Note that the error bar

always contains the black line, hence the expert’s opinion is always contained in the uncertainty
interval. Moreover, the three points virtually belong to the black straight line, having (all of
them) uncertainty intervals with almost a zero length. This shows that the algorithm is working
extremely well estimating properly the uncertainty. The points with higher uncertainty can suggest
a need for the revision of the image by the expert.2

7 Conclusions

We have proposed an automatic counter of microglial cells in immunohistochemical images.
Automated cell counting is superior to manual cell counting at least in terms of speed efficiency,
and the proposed scheme provides similar accuracy. Moreover, conventional manual cell counting
is dependent on the researchers expertise and is time-consuming. The proposed KC algorithm is
a counter, indeed the predictions/estimations are always non-negative. Thus, the predictions can
easily converter into integers by rounding them. KC also provides an uncertainty estimation of
the predictions (e.g., see Eq. (9)). In the smoothing case, if a smoothed value presents a high
uncertainty, this can indicate a need for revision of the image by the expert. Furthermore, the
multi experts scenario can be directly handled by the novel scheme.
The designed method has a unique hyper-parameter to learn, that is the non-negative scalar η,
that can be learnt by leave-one-out cross-validation (LOO-CV). For this reason, the proposed KC
is easy and fast to train even in small datasets. Even if we have only one hyper-parameter to
learn, the method is a non-parametric regressor, i.e., the complexity of the solution in Eq. (5)
grows with D (that is the number of images in the database). Moreover, the solution is non-linear
with respect to the inputs. Hence, the proposed method is able to express the complexity of
rich datasets. However, other possible KC versions (with more hyper-parameters) have been also
discussed. Finally, the results obtained in the different experiments are very promising. Related
Matlab code has been also provided in order to facilitate the use by interested practitioners.
Note also that the problem of counting objects in images is still one of the relevant tasks in different
applications: for instance, counting cells in microscopic and biomedical images, monitoring crowds
in surveillance systems, counting the number of green spots in satellite images [23, 17, 18] etc.
Therefore, the proposed approach has a vast range of application, since it can be employed
for counting different objects in different types of images, for instance, provided by a satellite,
telescope, or drones, to name a few [7, 10, 15, 20, 11].
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A A related statistical model

In this section, we provide a statistical model that can be employed for synthetic experimental
analysis and study the theoretical behavior of the proposed KC algorithm. Each filtered image
will contain a certain percentage α ∈ [0, 1] of total number of microglial cells Nd ( true positives,
bαNde = #TP ) and also a certain number F of other objects ( false positives F = #FP , or
number of artifacts in the filtered image) that do not represent microglial cells.

Mathematically speaking, we can express the behavior above with the following statistical model,

rkd = bαkNd + Fke, αk ∈ (0, 1], k = 1, ..., T, d = 1, ..., D, (21)

Fk ∈ {vk, vk + 1, vk + 2, ..., sk} sk, vk ∈ N+, sk > vk, (22)

where bbe returns the nearest integer to b; the coefficient αk ∈ (0, 1] depends on the t(k), i.e.,
αi = α(t(k)), and Fk is a discrete random variable which takes non-negative integer values,
contained in [vk, sk]. The other coefficients sk, vk ∈ R+, are a positive real values depending
also on t(k), i.e., sk = s(t(k)), and vk = v(t(k)). Clearly, sk affects the support of the random
variable Fk such that

vk = minFk ∈ N+, (23)

sk = maxFk ∈ N+. (24)

We have vk < ∞ whereas sk could be infinity as well. The probability mass function (pmf) of
Fk defined in this support can change depending on the specific application. Note that, with this
model, we are assuming that αk, sk, vk and Fk are in some sense stationary quantities/variables,
which do not depend on the specific image to analyze. However, αk = α(t(k)), vk = v(t(k)) and
sk = s(t(k)) depend on the threshold vector, so that the signal noise ratio (SNR) is different in
each filtered image. Note that #TP = bαkNde and #FP = Fk.
Note that Eq. (21) shows the relationship between each rkd and Nd. Since, αk ∈ (0, 1] and it
multiplies the number of microglial cells Nd in the d-th analyzed image, the value 100αk% is
the percentage of microglial cells in the d-th filtered image (i.e, percentage of true positives),
whereas Fk is the number of false positives. Thus, sk and vk are the maximum and minimum
possible number of false alarms in the image filtered with the threshold vector t(k). Finally, since
αk = α(t(k)), sk = s(t(k)) and vk = v(t(k)), we can also write

vk = v(αk), sk = s(αk), (25)

i.e., vk and sk can be also seen as functions of the percentage of number of microglial cells in the
k-th filtered image. An illustrative example of filtered images and the corresponding rkd values
is given in Figure 7. Assuming this model, an upper bound and a lower bound for Nd can be
obtained as shown in Appendix C.
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Figure 7: We recover the illustrative example in a previous figure: a generic d-th image is filtered T = 4 times

with different threshold vectors t(k), obtaining the corresponding filtered images. In this example, we have Nd = 4

microglial cells. In each filtered images, we also show the total number of objects rkd, the percentage αk ∈ [0, 1] of

the contained microglial cells, and also the number Fk of other objects (artifacts).

B Choice of the threshold vectors

The proposed algorithm works for any choice possible of t(k), with the unique requirement that
the vectors t(k), with k = 1, ..., T , must be different to each others. However, the performance of
the algorithm depends on the choice of threshold vectors,

t(k) ∈ [t
(k)
1 , t

(k)
2 , t

(k)
3 ] ∈ [0, 1]3,

with k = 1, ..., T , that are employed to obtain T different filtered images from each d-th image
in the database. This is actually an experimental design and/or active learning problem: see, for
instance, [3, 11, 20]. In this section, we discuss some required concepts and a procedure for a
proper choice of t(k).

Note that large values of t
(k)
i (close to 1) ensure the presence of the microglial cells, but also

a huge number of other artifacts that are false alarm. Small values of t
(k)
i (close to 0) ensure

to substantially reduce the number of false alarm, however, some microglial cells can be missed.
Considering the model in Eq. (21), we have that αk = α(t(k)) and sk = s(t(k)), hence the signal
noise ratio (SNR) is different in each filtered image (different #TP and #FP ). For our purpose,
the SNR can be defined as

SNR =
#TP

#FP
=
αNd

F
.

Clearly, the vectors t(k) corresponding to larger SNR values are preferable.

Remark 1. The idea is to choose the vectors t(k) which provide the higher values of SNR = #TP
#FP

.
For instance, this can be directly done by a Monte Carlo search. However, below we divide this
search in two steps.

Another interesting observation is that different vectors t(k) can provide the same number of
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true positives #TP , but different number of #FP . Clearly, given a value #TP , we prefer the
vectors t(k) which provide the smallest value of false positives #FP . We call them as optimal
conditional thresholds.
Therefore, conceptually the search of proper threshold vectors can be divided in two steps:

• First of all, fixing a value of true positives #TP , find the optimal conditional thresholds,
i.e., the thresholds that maximizes the SNR providing the smallest number of false positives
#FP .

• Among the optimal conditional thresholds previously obtained, choose the thresholds
corresponding with the larger SNRs (possibly SNR > 1).

With the first step, we can build the curve “minimum number of #FP” versus #TP (or percentage
of #TP ), as shown in Figures 8 and 9(a). This allows to detect the range of #TP values with
SNR> 1, as depicted in Figure 9(b). Moreover, the division in these two phases, also allows the
use of a different payoff function in the second step, instead of maximizing the SNR (i.e., in the
proposed procedure, the payoff function is the SNR). The following two subsections describe these
two steps.

B.1 Optimal conditional thresholds

First or all, we have to notice that, given a threshold vector t ∈ R3, in the filtered image we have
a certain number of true positives #TP (microglial cells), and a certain number of false positives
#FP (i.e., false alarms). Two different threshold vectors t1, t2 could give the same number of true
positives #TP but different values of false positives #FP . Clearly, given a number of true pos-
itives #TP , we prefer the threshold vector which provides the smallest number of false positives
(i.e., that minimizes #FP ). We call this vector as optimal conditional threshold vector, i.e., the
optimal vector corresponding to the true positive value #TP . Namely, the optimal conditional
vector maximizes the signal-to-noise ratio (SNR), fixing #TP , SNR = #TP

#FP
. In order to find the

optimal conditional threshold vectors, we employ a Monte Carlo search:
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1. For s = 1, ...,Mruns:

• Draw ti,s ∼ U([0, 1]), for i = 1, 2, 3.

• Set ts = [t1,s, t2,s, t3,s] and obtain the filtered image corresponding to ts.

• Count the number of true positives #TP (s), and false positives #FP (s) in this filtered
image.

2. For each value γ = 1, 2..., Nd:

• Find all the indices s∗ such that #TP (s∗) = γ, defining a set of indices Sγ.
• For all s∗ ∈ Sγ:

– Find

soptγ = arg min
s∗∈Sγ

#FP (s∗). (26)

– Then the optimal conditional vector of thresholds (for r true positives) is tsoptγ =[
t1,soptγ , t2,soptγ , t3,soptγ

]
.

Therefore, given a pre-established number of true positives γ = #TP with 1 ≤ γ ≤ Nd, the
optimal conditional threshold vector is tsoptγ : this is the vector which provides the minimum pos-

sible number of false alarms #FP (given the pre-established value #TP = γ). Clearly, tsoptγ is an
estimation of the optimal vector due to the Monte Carlo procedure: as Mruns →∞, this approxi-
mation improves.
In our specific application, we use Mruns = 104 independent runs. Figure 8 depicts the minimum
possible number of false alarm objects (#FP ), obtained by the optimal conditional thresholds,
versus the percentage of true positives (#TP

Nd
100%). Clearly, there is a trade-off between the

number of false alarms and true positives.

B.2 Choosing among the optimal conditional thresholds

Each point of the curve in Figure 8 corresponds to an optimal conditional vector tsoptγ with

1 ≤ γ ≤ Nd and #TP = γ. Figure 9(a) shows the same curve in Figure 8 but, in this case, the
values of #TP are directly given in the horizontal axis. Moreover, the straight line #FP = #TP
is depicted with a solid black line. Clearly, when the blue curve is below the black straight line,
we have

SNR =
#TP

#FP
> 1.

The corresponding value of the SNR are provided in Figures 9(b). The rectangular region depicted
by dashed lines, shows the values of SNR bigger than 1 (obtained by the optimal conditional
thresholds for 25 ≤ #TP ≤ 53). Hence, we should choose T points in this interval, e.g., in this
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Figure 8: Example of minimum possible number of possible false alarms (false positives) (#FP ) versus the

percentage of true positives (#TP
Nd

100%) in a specific image of the dataset, obtained by the corresponding optimal

conditional thresholds. By increasing the values of thresholds, more #TP but also more #FP are obtained. Here,

the minimum possible number of false alarms for each given value of #TP is shown.

example (corresponding to results from our database), 25 ≤ γk ≤ 53, i = 1, ..., T , and we use the
corresponding optimal conditional vector tsoptγk
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Figure 9: (a) The minimum number of false positives (#FP ) obtained by the optimal conditional thresholds,

versus number of true positives (#TP ), in a range of values where we can obtain SNR ≥ 1 (for a specific image

of the dataset). The solid black line represents the straight line #FP = #TP , then when the blue curve is below

the black straight line, we have SNR ≥ 1. (b) The SNR = #FP
#TP corresponding to the values in Figure 8. The

rectangular region depicted by dashed lines, shows the values of SNR bigger than 1 (obtained by the optimal

conditional thresholds for 25 ≤ #TP ≤ 53).
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C Lower and upper bounds

Let us consider both vi <∞, si <∞, finite and known (recall that 0 ≤ vi < si). Moreover, let us
also assume the coefficients αi ∈ (0, 1], as known value (or approximately known - estimated). In
this scenario, if the observations rid are generated according to the model

rid = bαiNd + Fie, αi ∈ (0, 1], i = 1, ..., T, d = 1, ..., D,

we can obtain some lower and upper bounds. Since Fi ∈ [vi, si], we have

N̂d,lower =

⌊
rid − si
αi

⌋
, N̂d,upper =

⌈
rid − vi
αi

⌉
. (27)

where bbc gives as output the greatest integer less or equal to b, whereas bbc returns the least
integer greater or equal to b. Namely, if the observations rid are generated according to the model
above, we can assert that the true number Nd of microglial cells is contained (with probability 1)
in the following interval:

N̂d,lower ≤ Nd ≤ N̂d,upper. (28)

Therefore, by estimating si and vi (for a certain percentage αi of microglial cells in the filtered
images) we can obtain lower and upper bounds for Nd, using the inequalities above.
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