Cantor's illusion

Richard L. Hudson 12-3-2023

abstract

This analysis shows Cantor's diagonal argument published in 1891 did not prove the cardinality of his infinite set M is greater than the set of integers N.

the argument

Translation from Cantor's 1891 paper [1]:

Namely, let \(m \) and \(n \) be two different characters, and consider a set [Inbegriff] \(M \) of elements

\[E = (x_1, x_2, \ldots, x_v, \ldots) \]

which depend on infinitely many coordinates \(x_1, x_2, \ldots, x_v, \ldots \), and where each of the coordinates is either \(m \) or \(w \). Let \(M \) be the totality [Gesamtheit] of all elements \(E \).

To the elements of \(M \) belong e.g. the following three:

\[E^I = (m, m, m, m, \ldots), \]
\[E^{II} = (w, w, w, w, \ldots), \]
\[E^{III} = (m, w, m, w, \ldots). \]

I maintain now that such a manifold [Mannigfaltigkeit] \(M \) does not have the power of the series \(1, 2, 3, \ldots, v, \ldots \).

This follows from the following proposition:

"If \(E_1, E_2, \ldots, E_v, \ldots \) is any simply infinite [einfach unendliche] series of elements of the manifold \(M \), then there always exists an element \(E_0 \) of \(M \), which cannot be connected with any element \(E_v \)."

For proof, let there be

\[E_1 = (a_{1,1}, a_{1,2}, \ldots, a_{1,v}, \ldots) \]
\[E_2 = (a_{2,1}, a_{2,2}, \ldots, a_{2,v}, \ldots) \]
\[E_v = (a_{v,1}, a_{v,2}, \ldots, a_{v,v}, \ldots) \]

\[\ldots \]

where the characters \(a_{u,v} \) are either \(m \) or \(w \). Then there is a series \(b_1, b_2, \ldots, b_v, \ldots \), defined so that \(b_v \) is also equal to \(m \) or \(w \) but is different from \(a_{v,v} \).

Thus, if \(a_{v,v} = m \), then \(b_v = w \).

Then consider the element

\[E_0 = (b_1, b_2, b_3, \ldots) \]

of \(M \), then one sees straight away, that the equation
\[E_0 = E_u \]
cannot be satisfied by any positive integer u, otherwise for that u and for all values of v.

\[b_v = a_{u,v} \]
and so we would in particular have

\[b_0 = a_{u,u} \]

which through the definition of \(b_v \) is impossible. From this proposition it follows immediately that the totality of all elements of \(M \) cannot be put into the sequence \([Reihenform]: E_1, E_2, \ldots, E_v, \ldots\) otherwise we would have the contradiction, that a thing \([Ding]\) \(E0 \) would be both an element of \(M \), but also not an element of \(M \).

(End of translation)

list

The issue is the geometric form of a list, thus this analysis begins with real world finite lists instead of speculative infinite lists. The list \(L \) is a visual aid to comprehend the properties of a finite set of sequences. The list extends vertically and is finite in length. The list is also a finite array of characters, each with a unique \((u, v)\) coordinate location, with \(u \) and \(v \) from the set of integers \(N \). Only the diagonal and its horizontal counterpart and its negation are shown for clarity.

sequence

A sequence is defined as a one dimensional pattern of characters using the set \(\{m, w\} \). Each sequence occupies one row \(u \), and extends horizontally with a finite length. The key factor is the independent property of each sequence. Each is formed independently of the others, and entered at random locations within the list. The character \(m \) or \(w \), for each position \(v \) is determined by a random process such as a coin toss, thus there is no rigid rule of formation. An alphabetical order could be imposed on the list, but for \(v>3 \), there would be no diagonal sequence of a repeating character beginning at \(u=1 \).

If \(v \) is the number of characters in a sequence, and \(c \) the number of characters used to form the sequence then the number of unique sequences \(s \) in a list \(L_v \) is a function of \(v \).

\[s = c^v \]

For \(c=2 \) the negation of a sequence results from interchanging all characters \(m \) and \(w \). Analyzing the progression of finite lists for \(c=2 \):

if \(v=1 \), then \(s=2 \).
In fig.1 the diagonal \(b \) contains \(m \) and does not extend the length of the list, and the square portion cannot contain \(E_0 \) its negation. In reality, it is contained in row 2.

In fig.2 the diagonal \(b \) does not extend the length of the list, and the square portion cannot contain \(E_0 \) its negation. In reality, it is contained somewhere within the 27 missing rows (\(u_{30} \)), and a horizontal \(b \) can appear anywhere in the list (\(u_{8} \)). The diagonal \(b \) is not new.

observation

In all cases of a list \(L_v \), where \(v \) is an integer from the set \(N \), the diagonal \(b \) does not extend the length of the list. While \(v \) increases linearly, \(u \) increases exponentially.

\[
\Delta s = 2^{v+1} - 2^v = 2^v .
\]

The list doubles in length for each increment of \(v \), and is never square.
In a truly random list, all sequences are independent of each other, and there is no factor that imposes any degree of order. The concept of an infinite dimension is a contradiction of terms. It removes the very thing that allows measurement, a boundary. An infinite sequence has no measurement. The list, being a sequence of rows is also not measurable for the same reason. There is no magic v where the list appears in a square form. Since c=2, all sequences have a corresponding negation and appear in pairs. Each Lv can be divided into two subsets. One containing sequences beginning with m, and one containing sequences beginning with w. Thus a list cannot have one missing sequence.

conclusion

Cantor envisions an extended diagonal sequence (red) with u=v, i.e. a geometric square. The real world form is a narrowing strip (black). The contradiction Cantor describes is of his own making, using a distorted incomplete list.

[1] THE LOGIC MUSEUM Copyright © E.D.Buckner 2005