
1 
 

Riemann Hypothesis 
 

Bertrand Wong  
Eurotech, S’pore Branch 

Email: bwong8@singnet.com.sg 
 
Abstract. This paper discusses the distribution of the non-trivial zeros of the Riemann zeta 
function ζ. It looks into the question of whether any non-trivial zeros would ever possibly be 
found off the critical line Re(s) = 1/2 on the critical strip between Re(s) = 0 and Re(s) = 1, e.g., 
at Re(s) = 1/4, 1/3, 3/4, 4/5, etc., and why all the non-trivial zeros are always found at the 
critical line Re(s) = 1/2 on the critical strip between Re(s) = 0 and Re(s) = 1 and not anywhere 
else on this critical strip, with the first 1013 non-trivial zeros having been found only at the 
critical line Re(s) = 1/2. It should be noted that a conjecture, or, hypothesis could possibly be 
proved by comparing it with a theorem that has been proven, which is one of the several 
deductions utilized in this paper. Through these several deductions presented, the  paper shows 
how the Riemann hypothesis may be approached to arrive at a solution. In the paper, instead 
of merely using estimates of integrals and sums (which are imprecise and may therefore be of 
little or no reliability) in the support of arguments, where feasible actual computations and 
precise numerical facts are used to support arguments, for precision, for more sharpness in the 
arguments, and for “checkability” or ascertaining of the conclusions. [Published in Bulletin of 
Kerala Mathematics Association, "Distribution of Non-Trivial Zeros of Riemann Zeta 
Function", Vol. 19, No. 1 (2022, June) 55-69.] 
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Introduction 
 
The Riemann hypothesis is an important mathematical problem as its validity would affirm the 
manner of distribution of the prime numbers. The hypothesis asserts that all the non-trivial 
zeros of the zeta function ζ lie on the critical strip between Re(s) = 0 and Re(s) = 1 at the critical 
line Re(s) = 1/2 only. The moot point is whether there would be zeros appearing at other 
locations on this critical strip, e.g., at Re(s) = 1/4, 1/3, 3/4, 4/5, etc., which would disprove the 
hypothesis. All this would be looked into in this paper.  
 
Shown below is the Riemann zeta function ζ with its terms:- 
 
                                   ∞  

ζ(s) =  ∑  1/ns = 1 + 1/2s + 1/3s + 1/4s + 1/5s + …                  (1.1) 
                                                      n = 1 

 

where s is the complex number 1/2 + bi 
 
For the term 1/21/2 + bi above, e.g., whether it would be positive or negative in value would 
depend on which part of the complex plane this term 1/21/2 + bi would be found in, which 
depends on 2 (n) and b (it does not depend on 1/2 - 1/2 and 2 (n) only determine how far the 
term is from zero in the complex plane). This term could be in the positive half of the  
                                                                                           _____________________________                  
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complex plane whereby the term would have a positive value or the negative half of the 
complex plane whereby the term would have a negative value. Therefore some of the terms in 
the Riemann zeta function ζ would have positive values while the rest would have negative 
values (which depend on the values of n and b). The sum of the series in the Riemann zeta 
function ζ is found with a formula, e.g., the Riemann-Siegel formula, or, the Euler-Maclaurin 
summation formula. The Riemann zeta function ζ would turn out a non-trivial zero at the 
critical line Re(s) = 1/2, as more and more terms are added, when it reaches a point at the 
critical line Re(s) = 1/2 where the positive terms (in the positive half of the complex plane, as 
explained above) cancel out the negative terms (in the negative half of the complex plane), i.e., 
a non-trivial zero indicates the point in the Riemann zeta function ζ whereby the total value of 
the positive terms equals the total value of the negative terms. There would be an infinitude of 
such non-trivial zeros at the critical line Re(s) = 1/2, which had been proved by G. H. Hardy. 
Whether there would be zeros off this critical line Re(s) = 1/2 on the critical strip bounded by 
Re(s) = 0 and Re(s) = 1 as more and more terms are added to the Riemann zeta function ζ is 
still an open question, which Riemann himself had thought highly unlikely though he had not 
been able to provide a proof.  
       
Riemann evidently anticipated that there would be an equal, or, almost equal number of primes 
among the terms in the positive half and the negative half of the complex plane when there is 
a zero, whereby the distribution of the primes would be statistically fair - the more terms are 
added to the Riemann zeta function ζ, the fairer or “more equal” would be the distribution of 
the primes in the positive half and the negative half of the complex plane when there is a zero. 
This is like the tossing of a coin whereby the more tosses there are the “more equal” would be 
the number of heads and the number of tails. In other words, in the longer term, with more and 
more terms added to the Riemann zeta function ζ, more or less 50% of the primes should be 
found in the positive half of the complex plane and the balance 50% should be found in the 
negative half of the complex plane, the more terms there are the fairer or “more equal” would 
be this distribution, when there is a zero, when the positive terms cancel out the negative terms 
in the Riemann zeta function ζ.   
       
It is evident that through the non-trivial zeros the order or pattern of the distribution of the 
primes could be discerned.     
 
Proof of Riemann Hypothesis  
 
We bring up some notable points about the non-trivial zeros of the Riemann zeta function ζ(s) 
defined by a power series shown below:- 
 
                                                  ∞ 

ζ(s) =  ∑  1/ns = 1 + 1/2s + 1/3s + 1/4s + 1/5s + …                       
                                                 n = 1 

 
At the critical line Re(s) = 1/2 on the critical strip between Re(s) = 0 and Re(s) = 1 all the non-
trivial zeros would be found on an oscillatory sine-like wave which oscillates in spirals, there 
being an infinitude of these spirals, which represent the complex plane. All the properties of 
the prime counting function π(n) are in some way encoded in the properties of the Riemann 
zeta function ζ, evidently resulting in the primes and the non-trivial zeros being some sort of 
mirror images of one another - the regularity in the way the primes progressively thin out and 
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the progressively better approximation of the quantity of primes towards infinity by the prime 
counting function π(n), as is described by the following equation:-  
 

lim  π(n)/(n/log n) = 1                  (2.1)            
                                           n→∞ 
 
(The prime number theorem states that the limit of the quotient of the 2 functions π(n) and 
n/log n as n approaches infinity is 1, the larger the number n is, the better is the approximation 
of the quantity of primes by the prime counting function π(n), as is implied by Equation (2.1) 
above; all this is in spite of the fact that the primes are scarcer and scarcer as n is larger and 
larger.), 
 
mirror or reflect the regularity in the way the non-trivial zeros of the Riemann zeta function ζ 
line up at the critical line Re(s) = 1/2 on the critical strip between Re(s) = 0 and Re(s) = 1, the 
non-trivial zeros becoming progressively closer together there, with no zeros appearing 
anywhere else on the critical strip, and, all this has been found to be true for the first 1013 non-
trivial zeros.  
 
Riemann had posited that the margin of error in the estimate of the quantity of primes less than a 
given number with the prime counting function π(n) could be eliminated by utilizing the 
following J function which is a step function involving the non-trivial zeros expressed in terms 
of the zeta function ζ, which has been shown to be effective (2 steps are involved here - first, the 
prime counting function π(n) is expressed in terms of the J(n) function, then the J(n) function is 
expressed in terms of the zeta function ζ, with the J(n) function forming the link between the 
counting of the prime counting function π(n) and the measuring (involving analysis and calculus) 
of the zeta function ζ, which would result in the properties of the prime counting function π(n) 
somehow encoded in the properties of the zeta function ζ):- 
 
                                                                                                       ∞ 

J(n) = Li(n) - ∑ Li(np) - log 2 + ∫ dt/(t(t2 - 1) log t)                (2.2)                  
                                                                          p                                         n 

 

where the first term Li(n) is generally referred to as the “principal term” and the second term 
∑ Li(np) had been called the “periodic terms” by Riemann, Li being the logarithmic integral 
 p 

 
The above formula might look fearsome but is actually not. The third term log 2 is a number  
                                                                                         ∞ 
which is 0.69314718055994… while the fourth term ∫ dt/(t(t2 - 1) log t) which is an integral  
                                                                                         n 
representing the area under the curve of a certain function from the argument all the way out to 
infinity can only have a maximum value of 0.1400101011432869…. Since these 2 terms taken 
together (and minding the signs) are limited to the range from -0.6931… to -0.5531…, and since 
the prime counting function π(n) deals with really large quantities up to millions and trillions 
they are much inconsequential and could be safely ignored. The first term or principal term Li(n), 
where n is a real number, should also be not much of a problem as its value could be obtained 
from a book of mathematical tables or computed by some math software package such as 
Mathematica or Maple. However, special attention should be given to the second term  
∑ Li(np)  which concerns the sum of the non-trivial zeros of the zeta function ζ (p in this second     
 p 
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term is a “rho”, which is the seventeenth letter of the Greek alphabet, and it means “root” - a root 
is a non-trivial zero of the Riemann zeta function ζ (a root is technically speaking a solution or 
value of an unknown of an equation that could be factorized)). Riemann had evidently called the 
second term “periodic terms” as the components there vary irregularly. 
                                                                                                                      n  

The prime number theorem asserts that π(n) ~ Li(n) (technically Li(n) = ∫ dx/log (x)) which also                                               
                                                                                                                      2  
implies the weaker result that π(n) ~ n/log n. However, with Li(n) the prime count estimate would 
have a margin of error. The Riemann hypothesis asserts that the difference between the true 
number of primes p(n) and the estimated number of primes q(n) would be not much larger than 
√n. With the above J(n) function we could eliminate this margin of error and obtain an exact 
estimate of the quantity of primes less than a given number as follows:- 
 

J(n) = exact quantity of primes less than a given number 
 

Since the third and fourth terms of the J(n) function are inconsequential and could be safely 
ignored, as is described above, deducting the second term from the first term should be sufficient, 
as is shown below:- 
 

J(n) = Li(n) - ∑ Li(np) = exact quantity of primes less than a given number 
                                                              p                   
 
The above in brief shows the close connection between the primes and the non-trivial zeros of 
the Riemann zeta function ζ, the primes and the non-trivial zeros being some sort of mirror 
images of one another as is described above, with the distribution of the non-trivial zeros being 
regarded as the music of the primes by mathematicians.                                                 
 
An important point to note is that though the non-trivial zeros at the critical line Re(s) = 1/2 
become more and more closely packed together the farther along we move up this critical line 
while the primes occur farther and farther along the number line, the density of the one is 
approximately the reciprocal of the density of the other whereby the complementariness, 
regularity, symmetry is evident, this regularity of the distribution of the non-trivial zeros 
mirroring the regularity of the distribution of the primes.  
 
Thus the regularity in the way the primes progressively thin out and the progressively better 
approximation of the quantity of primes towards infinity by the prime counting function π(n) 
as is described by Equation (2.1) above and stipulated by the prime number theorem, which all 
implies the regularity of the distribution of the primes, also somehow implies the regularity of 
the distribution of the non-trivial zeros of the Riemann zeta function ζ (the non-trivial zeros are 
found only at the critical line Re(s) = 1/2, lined up there in an orderly manner, as is described 
above) which is in accordance with the Riemann hypothesis, since the properties of the prime 
counting function π(n) are in some way encoded in the properties of the Riemann zeta function 
ζ, with the distribution of the primes (which shows regularity) and the distribution of the non-
trivial zeros (which also shows regularity) mirroring one another, as is explained above. Refer 
to Appendix 1 below to see further this close connection between the primes and the Riemann 
zeta function ζ whereby it is shown in the appendix that the Riemann zeta function ζ has the 
property of prime sieving encoded within it (compare: sieve of Eratosthenes), which further 
supports the reasoning here. The input of a function determines its output. The input of the 
Riemann zeta function ζ are the terms in its series while its output are the non-trivial zeros, and, 
these terms would determine the status of the non-trivial zeros, e.g., whether the non-trivial 
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zeros would be found or would not be found after the terms are added together and whether the 
non-trivial zeros would be orderly or disorderly if found. In the case here, the regularity of the 
distribution of the primes at the terms which also have the property of prime sieving encoded 
within as is explained above and in Appendix 1 below, on the input side of the zeta function ζ 
evidently leads to the regularity of the distribution of the non-trivial zeros at the critical line 
Re(s) = 1/2 only on its output side (i.e., the non-trivial zeros are found grouped in an orderly 
manner on the output side only when the terms on the input side of the zeta function ζ have the 
power a + bi (which is a complex number) with a (the real axis) = 1/2), as is described above. 
 
We proceed to consider whether the Riemann hypothesis could be false. Let us here assume 
that the Riemann hypothesis is false. If the Riemann hypothesis is false, there would be non-
trivial zeros appearing at other locations on the critical strip bounded by Re(s) = 0 and Re(s) = 
1, e.g., at Re(s) = 1/4, 1/3, 3/4, 4/5, etc., i.e., the distribution of the non-trivial zeros would be 
irregular, which would contradict the reasoning above, and also would imply that the 
distribution of the primes would also be irregular (since the primes and the non-trivial zeros 
are mirror images of each other, having similar “distribution” characteristics, as is explained 
above), which means that the prime number theorem described above, whose effectiveness is 
evidently due to the regularity and orderliness of the distribution of the primes, as is described 
above (wherein it is stated that there is regularity in the way the primes progressively thin out), 
would hence be false. But this would be an absurdity as the prime number theorem had been 
proved through non-elementary methods by Hadamard and de la Vallee Poussin who had in 
1896 independently proved that none of the non-trivial zeros lie on the very edge of the critical 
strip on the lines Re(s) = 0 or Re(s) = 1, which was enough for deducing the prime number 
theorem; the prime number theorem had also been proved later by Erdos and Selberg using 
elementary methods. Therefore, since the assumption of the falsity of the Riemann hypothesis 
would lead to the absurdity that the prime number theorem is false, the Riemann hypothesis 
cannot be false, and, since it cannot be false it has to be true. The reasoning here is reasoning 
by contradiction or reductio ad absurdum which is commonly used in mathematics. 
 
Furthermore, Riemann’s J(n) function with its error term as is described above has been found 
to be able to estimate the quantity of primes less than a given number with accuracy; this 
somehow implies that the non-trivial zeros, many thousands of which are used to compute the 
error term ∑ Li(np) (with thousands of zeros with positive values (in the positive 
                               p                                                                                                       
half of the complex plane) cancelling out thousands of zeros with negative values (in the 
negative half of the complex plane) when added together, the difference between these positive 
values and these negative values after adding together being the quantity in the error term, 
which is deducted from Li(n) the principal term to give the exact quantity of primes less than 
a given number), are orderly and well-behaved as per the Riemann hypothesis, for if the non-
trivial zeros were disorderly and poorly behaved the J(n) function would in all probability not 
be able to estimate the quantity of primes less than a given number with accuracy - this could 
be regarded as further though perhaps subtle proof that the Riemann hypothesis is true.  
 
All of this somehow implies the truth of the Riemann hypothesis with the first 1013 non-trivial 
zeros all nicely, neatly and orderly lined up at the critical line Re(s) = 1/2 exactly mid-way on 
the critical strip between Re(s) = 0 and Re(s) = 1.  
 
So far the role of the non-trivial zeros of the Riemann zeta function ζ and the close connection 
between the primes and the Riemann zeta function ζ and how this is in some way responsible 
for the regularity of the distribution of the non-trivial zeros on the critical strip bounded by 
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Re(s) = 0 and Re(s) = 1 have been explained, with some other deductions about the distribution 
of the non-trivial zeros having been presented as well. Next would be the explanation of the 
actual reason why all the non-trivial zeros of the Riemann zeta function ζ would lie on the 
critical strip between Re(s) = 0 and Re(s) = 1 at the critical line Re(s) = 1/2 only. 
 
The locations of these non-trivial zeros on the critical strip are described by a complex number 
s = 1/2 + bi where the real part is 1/2 and i stands for the square root of -1. It should be noted 
that the mathematical operations and logic of the complex numbers a + bi, where a and b are 
real numbers and i is the imaginary number square root of -1, are practically the same as for 
the real numbers and are even more versatile. For the Riemann zeta function ζ to be zero, its 
series would have to have both the positive terms and negative terms cancelling each other out, 
though the positive or “+” signs in the series may indicate positive values only which is 
misleading. We would here consider the possibility of any non-trivial zeros being off the 
critical line Re(s) = 1/2 on the critical strip between Re(s) = 0 and Re(s) = 1, e.g., at Re(s) = 
1/4, 1/3, 3/4, 4/5, etc. 

 
It had been proven that there would not be zeros at Re(s) = 0 and Re(s) = 1. As is stated above, 
the first 1013 non-trivial zeros are found only at the critical line Re(s) = 1/2. Nature appears to 
demand that these zeros must appear only at Re(s) = 1/2, exactly mid-way on the critical strip 
bounded by Re(s) = 0 and Re(s) = 1 whereby the symmetry is perfect. “1/2” in the complex 
number 1/2 + bi, which is “square root”, also appears to be compatible with and work fine with 
“i”, which is “square root of -1” - both of them are square roots. 1/2 + bi has what is called a 
complex conjugate 1/2 - bi so that when 1/2 + bi and 1/2 - bi are added together the terms bi in 
both 1/2 + bi and 1/2 - bi would cancel out one another leaving behind their respective real 
parts only - in this way the troublesome i which does not actually make mathematical sense 
would be exterminated. 1/2 is also the reciprocal of the smallest prime and the smallest even 
number 2, which is significant.  
 
The following list of the first 10 terms of the series of the Riemann zeta function ζ with 
consecutive fractional powers s ≤ 1/2 shows that the sums with smaller powers increase 
progressively, i.e., the smaller the power s is the larger the percentage of increase in the quantity 
is:- 
 
[1] ζ(1/2) = 1 + 1/21/2 + 1/31/2 + 1/41/2 + 1/51/2 + 1/61/2 + 1/71/2 + 1/81/2 + 1/91/2 + 1/101/2 + … =  
      5.03 
      (The Riemann hypothesis asserts that all zeros would be found in this series only.) 
        
[2] ζ(1/3) = 1 + 1/21/3 + 1/31/3 + 1/41/3 + 1/51/3 + 1/61/3 + 1/71/3 + 1/81/3 + 1/91/3 + 1/101/3 + … =  
      6.20  
      (The sum 6.20 here represents an increase of 23.26% compared to the sum 5.03 in [1]  
      above while the percentage of decrease in power from s = 1/2 to s = 1/3 is 33.33%.)   
              
[3] ζ(1/4) = 1 + 1/21/4 + 1/31/4 + 1/41/4 + 1/51/4 + 1/61/4 + 1/71/4 + 1/81/4 + 1/91/4 + 1/101/4 + … =  
      6.97 
      (The sum 6.97 here represents an increase of 38.57% compared to the sum 5.03 in [1]  
      above while the percentage of decrease in power from s = 1/2 to s = 1/4 is 50%.)   
             
[4] ζ(1/5) = 1 + 1/21/5 + 1/31/5 + 1/41/5 + 1/51/5 + 1/61/5 + 1/71/5 + 1/81/5 + 1/91/5 + 1/101/5 + … =  
      7.46 
      (The sum 7.46 here represents an increase of 48.31% compared to the sum 5.03 in [1]  
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      above while the percentage of decrease in power from s = 1/2 to s = 1/5 is 60%.)  
. 
. 
. 

 
Note: Though the respective percentages of increase in quantity above, namely, 23.26%,  
          38.57% & 48.31%, are disproportionate with and lower than the respective percentages  
          of decrease in power, namely, 33.33%, 50% & 60%, at a later stage when there are  
          more and more terms in the series, there being an infinitude of terms, when the sums  
          get larger and larger, the percentages of increase in quantity would all be infinitely  
          higher than the percentages of decrease in power, as is evident from Table 1 below.  
          The same would apply for the quantities when the powers s > 1/2, e.g., s = 3/4, 4/5, 5/6,  
          etc., as could be extrapolated from the above list (and is evident from Appendix 3  
          below). 
 
(The series of the Riemann zeta function ζ with powers s > 1/2, e.g., s = 3/4, 4/5, 5/6, etc., 
would have sums which are all smaller than the sums shown in the above list for powers s ≤ 
1/2  as could be extrapolated from the above list. For the largest power on the critical strip s = 
1, which has no zeros, the sum of the first 10 terms is a mere 2.93. Refer to Appendix 2 below 
for an analogous example.) 
 
It is evident from all the above that when the sum of the series in the Riemann zeta function ζ 
increases too quickly as is the case when the powers s < 1/2, when disproportionateness 
between the increases and decreases in the respective quantities and powers sets in as is 
described above, or, too slowly as is the case when the powers s > 1/2, e.g., s = 3/4, 4/5, 5/6, 
etc., as could be extrapolated from the above list, the equilibrium, balance or regularity would 
be lost and there would not be zeros. (Refer to Appendix 2 below for an analogous example.) 
All the non-trivial zeros of the Riemann zeta function ζ would be at the optimum or equilibrium 
power s = 1/2 only. (The analogue of this optimum or equilibrium power could be that of a 
shirt or pants which exactly fits a person, e.g., size A could be too small for the person, size C 
too large, while size B fits just fine.) At least 1013 zeros have been found at s = 1/2 while none 
has been found for s < 1/2 and s > 1/2. Also, there is the easier solubility of equations with 
fractional powers s = 1/2 as compared to equations with fractional powers s < 1/2, e.g., s = 1/3, 
1/4, 1/5, etc., and s > 1/2, e.g., s = 3/4, 4/5, 5/6, etc., which is explained below:- 
 
s = 1/2 is the largest root among the roots with 1 as the numerator. As such s = 1/2 as a fractional 
power with 1 as the numerator gives the largest result as compared to the fractional powers 
with 1 as the numerator s < 1/2, e.g., s = 1/3, 1/4, 1/5, etc. (but this largest result brings the 
smallest increase in quantity as compared to the results of the fractional powers with 1 as the 
numerator s < 1/2, e.g., s = 1/3, 1/4, 1/5, etc., when divided by 1, e.g., 1/21/2 < 1/21/3 < 1/21/4 < 
1/21/5, etc. - this is an important similarity to the case for n = 2 for Fermat’s last theorem 
described in Appendix 4 below) - equations with fractional powers s = 1/2 would evidently be 
easier to solve than equations with fractional powers s < 1/2 (e.g., in a computation s = 1/2 
needs only 1 rooting step while s = 1/5 needs 4 rooting steps) and s > 1/2, e.g., s = 2/3, 3/4, 4/5, 
etc. (e.g., in a computation s = 1/2 needs only 1 rooting step, while s = 4/5 needs 7 steps - 3 
squaring steps for s = 4 & 4 rooting steps for s = 1/5). 
 
All of this is similar to the case for Fermat’s last theorem, which had been proved by Andrew 
Wiles. (Refer to Appendix 4 below for explanation on Fermat’s last theorem to see this  
important similarity with Fermat’s last theorem - it could be seen that the Riemann hypothesis 
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is analogous to Fermat’s last theorem which means what is true for Fermat’s last theorem would 
also be true for the Riemann hypothesis.) 
       
We bring up an important point here. If more and more terms are added to the series in the list 
of the sums of the Riemann zeta function ζ above where the consecutive fractional powers s ≤ 
1/2, which presently have 10 terms each, the differences in the sums between that for power s 
= 1/2 and that for powers s < 1/2, e.g., s = 1/3, 1/4, 1/5, etc., and, that for power s = 1/2 and 
that for powers s > 1/2, e.g., s = 3/4, 4/5, 5/6, etc., would be greater and greater, i.e., the 
differences between these sums would be more pronounced the more terms are added to the 
series. We could see this point by comparing, e.g., the sums of the first 5 terms of the Riemann 
zeta function ζ for consecutive fractional powers s ≤ 1/2 and the sums of the first 10 terms of 
the Riemann zeta function ζ for consecutive fractional powers s ≤ 1/2, which is as follows, and 
extrapolating from there:- 
 
For the comparison, we here compute the sums for the first 5 terms of the series of the Riemann 
zeta function ζ with consecutive fractional powers s ≤ 1/2 as follows, after which the results of 
this computation are incorporated in Table 1 (shown in bold) below: 
 
[1] ζ(1/2) = 1 + 1/21/2 + 1/31/2 + 1/41/2 + 1/51/2 + … = 3.24 
      (The Riemann hypothesis asserts that all zeros would be found in this series only.) 
              
[2] ζ(1/3) = 1 + 1/21/3 + 1/31/3 + 1/41/3 + 1/51/3 + … = 3.69  
      (The sum 3.69 here represents an increase of 13.89% (the increase here is 23.26% for the  
      1st. 10 terms as is shown in the list above) compared to the sum 3.24 in [1] above.)                                                 
       
[3] ζ(1/4) = 1 + 1/21/4 + 1/31/4 + 1/41/4 + 1/51/4 + … = 3.98 
      (The sum 3.98 here represents an increase of 22.84% (the increase here is 38.57% for the  
      1st. 10 terms as is shown in the list above) compared to the sum 3.24 in [1] above.) 
       
[4] ζ(1/5) = 1 + 1/21/5 + 1/31/5 + 1/41/5 + 1/51/5 + … = 4.15  
      (The sum 4.15 here represents an increase of 28.09% (the increase here is 48.31% for the  
      1st. 10 terms as is shown in the list above) compared to the sum 3.24 in [1] above.) 

. 

. 

. 
 

Table 1 below of the above-mentioned percentage increases for the sums for the first 2 terms 
to the first 10 terms for ζ(1/3), ζ(1/4) & ζ(1/5) would give a clearer picture:- 
 
                   1st. 2 Terms    1st. 3 Terms    1st. 4 Terms    1st. 5 Terms    1st. 6 Terms    1st. 7 Terms    1st. 8 Terms    1st. 9 Terms    1st. 10 Terms    1st. 11 Terms    …  

[1] ζ(1/2)                    -                 -                 -                 -                -                 -                 -                -                  -                  -    
 

[2] ζ(1/3)               4.68%        8.30%       11.47%      13.89%     16.16%      18.11%      20.09%     21.87%      23.26%      To Be Extrapolated  
 
[3] ζ(1/4)               7.60%       13.54%      18.28%      22.84%     26.30%      29.78%      32.88%     35.88%      38.57%      To Be Extrapolated 
 
[4] ζ(1/5)               9.36%       16.59%      22.94%      28.09%     32.88%      37.22%      41.32%      45.01%     48.31%      To Be Extrapolated  

. 

. 

. 

 
Table 1 
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It is evident that the percentage increases shown above would go up in value continuously to 
infinity with the infinitude of the terms of the Riemann zeta function ζ. All this indicates more 
and more bad news for the solubility of the Riemann zeta function ζ for powers s < 1/2, and, 
s > 1/2 (as could be extrapolated from the above; refer to Appendix 2 and Appendix 3 (which 
provides an example) below) when there are more and more terms in the Riemann zeta function 
ζ, i.e., for powers s < 1/2 and s > 1/2, the more terms there are in the Riemann zeta function ζ 
the less soluble it would be. This is a serious irregularity and is the reason why there are no 
zeros for the Riemann zeta function ζ for powers s < 1/2 and s > 1/2. 
       
For the Riemann zeta function ζ, s = 1/2 is evidently the optimum or equilibrium power 
whereby there would be zeros. No zeros would be found on the critical strip bounded by Re(s) 
= 0 and Re(s) = 1 for s < 1/2 and s > 1/2 because if s < 1/2 the sum of the series in the zeta 
function ζ increases too fast when more and more terms are added to the series and if s > 1/2 
the sum of the series in the zeta function ζ increases too slowly when more and more terms are 
added to the series; s = 1/2 is evidently optimum, just fits - evidently the only power which is 
conducive for the production of zeros, i.e., solutions for the Riemann zeta function ζ - all of 
this is similar to the case for Fermat’s last theorem which is explained in Appendix 4 below, 
as is stated earlier. We clarify here what solubility of an equation such as the Riemann zeta 
function ζ means - a non-trivial zero of the Riemann zeta function ζ is a root - a root here is a 
solution or value of an unknown of an equation which could be factorized.           
       
We here elaborate more on the apparently subtle points in the above paragraph which might be 
difficult to comprehend. To comprehend the point that if s < 1/2 the sum of the series in the 
Riemann zeta function ζ increases too fast when more and more terms are added to the series 
we need to make a close study of and understand Table 1 above referring also to the 
computations above this table, and, to comprehend the point that if s > 1/2 the sum of the series 
in the Riemann zeta function ζ increases too slowly when more and more terms are added to 
the series we need to study closely and understand Table 2 in Appendix 3 below referring also 
to the computations above this table. A careful study of Table 1 above would reveal that for s 
< 1/2 all the sums for these series, e.g., for s = 1/3, 1/4, 1/5, 1/6, etc., would diverge more and 
more from the sum for s = 1/2 when more and more terms are added to all these series including 
s = 1/2. As evidently only the series for s = 1/2 are conducive for the production of zeros, what 
this implies is that as more and more terms are added to the series for s < 1/2 such as s = 1/3, 
1/4, 1/5 and 1/6, it would be less and less likely for these series to be able to produce zeros (i.e., 
these series would be less and less soluble) due to the rate of increase of their sums (relative 
to the sum for s = 1/2) becoming greater and greater (in fact too greatly) with more and more 
terms added to these series including s = 1/2. Likewise, a careful study of Table 2 in Appendix 
3 below would also reveal that for s > 1/2 all the sums for these series, e.g., for s = 2/3, 3/4, 
4/5, 5/6, etc., would diverge more and more from the sum for s = 1/2 when more and more 
terms are added to all these series including s = 1/2. Since evidently only the series for s = 1/2 
are conducive for the production of zeros, what this also implies is that as more and more terms 
are added to the series for s > 1/2 such as s = 2/3, 3/4, 4/5 and 5/6, it would be less and less 
likely for these series to be able to produce zeros (i.e., these series would be less and less soluble) 
due to the rate of decrease of their sums (relative to the sum for s = 1/2) becoming greater and 
greater (in fact too greatly) with more and more terms added to these series including s = 1/2. 
In other words, for the Riemann zeta function ζ for powers s < 1/2 and s > 1/2, the more terms 
there are in the Riemann zeta function ζ the less soluble it would be, which is a serious 
irregularity. Extrapolating from Table 1 and Table 2 it is evident that the non-trivial zeros 
would not be found on the critical strip bounded by Re(s) = 0 and Re(s) = 1 for s < 1/2 and s > 
1/2. 



10 
 

       
There is the feeling that for s < 1/2 and s > 1/2 the Riemann zeta function ζ might yield some 
non-trivial zero or zeros after innumerable terms, e.g., after many billions, trillions or more 
terms, have been added to the series, as past experience has shown this could happen. However, 
extrapolations with Table 1 above and Table 2 in Appendix 3 below would show that this is 
not possible. It may happen only when the following occur: (a) For s < 1/2 all the sums for 
these series, e.g., for s = 1/3, 1/4, 1/5, 1/6, etc., would diverge less and less (instead of more 
and more), even gradually so, from the sum for s = 1/2 when more and more terms are added 
to all these series including s = 1/2. (b) For s > 1/2 all the sums for these series, e.g., for s = 2/3, 
3/4, 4/5, 5/6, etc., would diverge less and less (instead of more and more), even gradually so, 
from the sum for s = 1/2 when more and more terms are added to all these series including s = 
1/2. As the Riemann hypothesis is shown to be analogous to Fermat’s last theorem in Appendix 
4 below (which means what is true for Fermat’s last theorem is also true for the Riemann 
hypothesis) and Fermat’s last theorem posits that there are solutions only for n = 2 and none 
for n > 2 and n < 2, by the same principle there should not be solutions for s < 1/2 and s > 1/2 
and the feeling that for s < 1/2 and s > 1/2 the Riemann zeta function ζ might yield some non-
trivial zero or zeros after innumerable terms have been added to the series appears misplaced.   
 
As per the explanations in the paper, we conclude that all the non-trivial zeros of the Riemann 
zeta function ζ could be expected to be found at the critical line Re(s) = 1/2 only and not 
anywhere else on the critical strip bounded by Re(s) = 0 and Re(s) = 1. □ 
 
Appendix 1 
 
The Riemann zeta function ζ(s), shown below, is the sum over all natural numbers n:- 
 
                                                  ∞    

ζ(s) =  ∑  1/ns = 1 + 1/2s + 1/3s + 1/4s + 1/5s + …                     
                                                                          n = 1 

 
The function could also be written in the following way (using Euler’s product formula) 
showing its connection with the primes:-  
 

ζ(s) =    ∏       ps/ps - 1 = 2s/2s - 1 x 3s/3s - 1 x 5s/5s - 1 x 7s/7s - 1 x …        (3.1) 
                     p prime 
 
where the product is over the consecutive primes p, providing the first hint that the Riemann 
zeta function ζ(s) is closely connected to the primes; it could be seen above that the Riemann 
zeta function ζ(s) has the property of prime sieving encoded within it (compare: sieve of 
Eratosthenes). 
 
Appendix 2 
 
Below are the values of the reciprocals of, say, 100, with consecutive fractional powers s ≤ 4/5, 
these reciprocals being representative of the terms of the Riemann zeta function ζ:- 
 
[1] 1/1004/5    = 1/39.8107171 = 0.025 (This quantity represents a decrease of 75% compared  
                                                             to [4] below while the increase in power from s = 1/2 to  
                                                             s = 4/5 is only 60%.) 
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[2] 1/1003/4   = 1/31.62278     = 0.032 (This quantity represents a decrease of 68% compared  
                                                             to [4] below while the increase in power from s = 1/2 to  
                                                             s = 3/4 is only 50%.) 
 
[3] 1/1002/3   = 1/21.5444       = 0.046 (This quantity represents a decrease of 54% compared   
                                                             to [4] below while the increase in power from s = 1/2  
                                                             to s = 2/3 is only 33.33%.) 
 
[4] 1/1001/2    = 1/10                = 0.100 (The terms of the series of the Riemann zeta function ζ                                                   
                                                             as per the Riemann hypothesis fall under this category.  
                                                             1013 zeros have been found under this category only.) 
      
[5] 1/1001/3   = 1/4.6416         = 0.215 (This quantity represents an increase of 115%   
                                                             compared to [4] above while the decrease in power   
                                                             from s = 1/2 to s = 1/3 is only 33.33%.)                          
                                                           
[6] 1/1001/4   = 1/3.1623         = 0.316 (This quantity represents an increase of 216%  
                                                             compared to [4] above while the decrease in power  
                                                             from s = 1/2 to s = 1/4 is only 50%.) 
 
[7] 1/1001/5    = 1/2.5119         = 0.398 (This quantity represents an increase of 298%  
                                                             compared to [4] above while the decrease in power  
                                                             from s = 1/2 to s = 1/5 is only 60%.) 

. 

. 

. 
 
Note the disproportionateness between the respective percentages of decrease in quantity and 
the respective percentages of increase in power for the reciprocals with powers s > 1/2, and, 
between the respective percentages of increase in quantity and the respective percentages of 
decrease in power for the reciprocals with powers s < 1/2.  
 
Appendix 3 
 
The following list of the first 5 terms of the series of the Riemann zeta function ζ with 
consecutive fractional powers s ≥ 1/2 shows that the sums with larger powers decrease 
progressively, i.e., the larger the power s is the larger the percentage of decrease in the quantity 
is:- 
 
[1] ζ(1/2) = 1 + 1/21/2 + 1/31/2 + 1/41/2 + 1/51/2 + … = 3.24 
      (The Riemann hypothesis asserts that all zeros would be found in this series only.) 
        
[2] ζ(2/3) = 1 + 1/22/3 + 1/32/3 + 1/42/3 + 1/52/3 + … = 2.85 
      (The sum 2.85 here represents a decrease of 12.04% compared to the sum 3.24 in [1]  
      above.)  
                    
[3] ζ(3/4) = 1 + 1/23/4 + 1/33/4 + 1/43/4 + 1/53/4 + … = 2.68 
      (The sum 2.68 here represents a decrease of 17.28% compared to the sum 3.24 in [1]  
      above.)  
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[4] ζ(4/5) = 1 + 1/24/5 + 1/34/5 + 1/44/5 + 1/54/5 + … = 2.59 
      (The sum 2.59 here represents a decrease of 20.06% compared to the sum 3.24 in [1]   
      above.) 

. 

. 

. 
 
Table 2 below is a tabulation of the above-mentioned percentage decreases for the sums for 
the first 2 terms to the first 5 terms for ζ(2/3), ζ(3/4) & ζ(4/5):- 
 
                   1st. 2 Terms    1st. 3 Terms    1st. 4 Terms    1st. 5 Terms    1st. 6 Terms    …  

[1] ζ(1/2)                    -                 -                 -                 -                -                     
 

[2] ζ(2/3)               4.52%        7.63%        9.98%       12.04%    To Be Extrapolated  
 
[3] ζ(3/4)               6.65%       11.08%      14.37%      17.28%    To Be Extrapolated 
 
[4] ζ(4/5)               7.86%       12.98%      16.78%      20.06%    To Be Extrapolated  
                                                                       . 
                                                                       . 
                                                                       . 

 
                                          Table 2 
 
Appendix 4 
 
For the case for xn + yn = zn for Fermat’s last theorem which asserts that there are no solutions 
for n > 2, we here explain why there are no solutions for n > 2. We begin by selecting a 
Diophantine equation which has the smallest odd prime number 3 and the smallest composite 
number 4 (which is the square of the smallest prime number 2), i.e., the smallest Diophantine 
equation which has 2 as the power, for illustration which is presented below:- 
 

32 + 42 = 52                          (3.2)          
 
If the power of 2 in the series on the left above were increased to 3, which is the next, 
consecutive whole number, e.g., the sum on the right would not be a whole number anymore, 
which is in accordance with Fermat’s last theorem, as is shown below:- 
  

33 + 43 = 4.497953 
 
The regularity of the power of 2 is now lost, which is for the smallest Diophantine equation 
which initially had 2 as the power. For the larger Diophantine equations with initial powers of 
2 the irregularity after increasing their powers to 3, which is the next, consecutive whole 
number, or, higher powers, could be expected to be worse. 
       
In the next step we bring up the values of, say, 100, of consecutive whole number powers n, 
say, 2 to 5, this quantity 100 being representative of the terms of the equation xn + yn = zn as 
per Fermat’s last theorem, to explain the reason for this irregularity, which is as follows:- 
 
[1] 1002 = 10,000                  (The terms of the series of Fermat’s last theorem fall under this                            
                                              category. All zeros would be found under this category only.) 
 
[2] 1003 = 1,000,000             (This quantity represents an increase of 9,900% compared to [1] 
                                              above while the increase in power from n = 2 to n = 3 is only  
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                                              50%.) 
 
[3] 1004 = 100,000,000         (This quantity represents an increase of 999,900% compared to  
                                              [1] above while the increase in power from n = 2 to n = 4 is only  
                                              100%.) 
          
[4] 1005 = 10,000,000,000    (This quantity represents an increase of 99,999,900% compared  
                                              to [1] above while the increase in power from n = 2 to n = 5 is  
                                              only 150%.) 

. 

. 

. 
 
The quantities from the consecutive whole number powers n > 2 above increase progressively 
compared to [1], the larger the power n is the larger the percentage of increase in the quantity 
is. The increases in the respective quantities and powers are also disproportionate when 
compared to one another, with the increases in the respective quantities being evidently much 
too quick. All this shows that the equilibrium, balance or regularity of xn + yn = zn when n = 2 
as per Fermat’s last theorem cannot be maintained when n > 2, when disproportionateness 
between the increases in the respective quantities and powers sets in as is described above, as 
the increase in quantity is too quick, and, when n < 2, e.g., n = 5/4, 3/2, 7/4, etc., as the increase 
in quantity is too slow as could be extrapolated from the above example. (Refer to Appendix 2 
above for an analogous example.) For Fermat’s last theorem, n = 2 could be regarded as the 
optimum or equilibrium power, the only power whereby xn + yn = zn is possible. There is also 
the easier solubility of equations with whole number powers n = 2 as compared to equations 
with powers n > 2, e.g., n = 3, 4, 5, etc., and n < 2, e.g., n = 5/4, 3/2, 7/4, etc., which is explained 
below:- 
 
n = 2 is the smallest whole number power which brings an increase in quantity. As such n = 2 
is the whole number power which brings the smallest increase in quantity as compared to the 
whole number powers n > 2, e.g., n = 3, 4, 5, etc., for instance 22 < 23 < 24 < 25, etc. - equations 
with whole number powers n = 2 would evidently be easier to solve than equations with powers 
n > 2 (with general equations with powers n = 5 having been proven unsolvable - n = 2 needs 
only 1 squaring step while n = 5 needs 4 squaring steps) and n < 2, e.g., n = 5/4, 3/2, 7/4, etc. 
(e.g., in a computation n = 2 needs only 1 squaring step, while n = 7/4 needs 9 steps - 6 squaring 
steps for n = 7 & 3 rooting steps for n = 1/4). 
 
Like the Riemann zeta function ζ (which comprises of a series) that is able to turn out zeros, 
the series in Fermat’s last theorem all have their own zeros, e.g., for the series 32 + 42 = 52, 132 
+ 842 = 852 and  652 + 722 = 972, their zeros are respectively as follows:-                                               

                                           
(1) 32 + 42 - 52 = 0 
(2) 132 + 842 - 852 = 0       
(3) 652 + 722 - 972 = 0 
Etc. 
 
Like the case of the Riemann zeta function ζ wherein its longer series of positive and negative 
terms would cancel out each other when added up together to produce a zero, the various 
shorter series of Fermat’s last theorem could also be added up together with their positive terms 
and negative terms cancelling out each other to produce a zero. For instance, the above series 
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(1), (2) and (3) with their zeros for Fermat’s last theorem could be added together as a longer 
series to produce a zero as follows:- 
 
32 + 42 - 52 + 132 + 842 - 852 + 652 + 722 - 972 = 0 
 
or, as follows with the terms in ascending order of magnitude:- 
 
32 + 42 - 52 + 132 + 652 + 722 + 842 - 852 - 972 = 0 
 
Hence, the uncanny similarity or resemblance between Fermat’s last theorem and the Riemann 
hypothesis, as is evident above. 
 
The optimum or equilibrium power whereby zeros are possible n = 2 (square) for Fermat’s last 
theorem is the reciprocal and opposite of the optimum or equilibrium power s = 1/2 (square 
root) for the Riemann hypothesis. Also, both these powers have the number “2” which is the 
smallest prime number and the smallest even number. There also appears to be 
complementariness and symmetry between these 2 powers. n = 2 and its reciprocal s = 1/2 are 
evidently important quantities which may be comparable to π (3.14159265) or e (2.71828).  All 
this is significant. 
 
There are evidently great similarities between Fermat’s last theorem and the Riemann 
hypothesis, both being analogues of one another, which implies that if Fermat’s last theorem 
is true, as it indeed is true as Andrew Wiles had proved it in 1994, then the Riemann hypothesis 
is also true. 
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