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In this paper we will use Geometric Algebra to be able to embed the Klein-Gordon
equation for a particle in a non-Euclidean field (vacuum solution in a gravitational

field) arriving to the following equation:

ePVg(v, (w’fl,b)e“)——( mc —h—R)IIJTl/)

2 2

PV (Va(@Tp)e®) = ——yty — RYty
Which is similar to the Klein-Gordon equatlon but with an extra term involving the

Ricci scalar R.

The element Ty isthe wavefunction collapsed (multiplied by its reverse), this way:

Y = YPOe + YPle; + P2e, +P3e; — e, —Poes —PCes —P7e;) (Ye
+yYle; +Ple, +Ples +Pte, +Ples + Yles +Y7e) = p+J

Being p and j the probability density and the fermionic current respectively.

The equation above can be factored to be simplified into:

[ -t)
V. = mc?2 ——R | Ye,
Y = mct R
W= 7 T Ye,

Which again, is similar to the Dirac equation but with an extra term involving the

Ricci scalar R.

Meaning that the energy of a particle is somehow decreased by a term that depends

on the Ricci scalar (the curvature of the space where it lies in):
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This reduction is in general negligible, being several orders of magnitude below the
normal energy. Anyhow, as the mass increases, the Ricci scalar increases also due to
gravitational effects. As the Ricci scalar is being subtracted to the energy depending

on the mass, the system will arrive to a balance before becoming a singularity.

This is summed up in the following equation that impose a limit to the Ricci scalar
depending on the mass (not the mass density), highly reducing the possibilities of

arriving to singularities:

Even considering the Dirac equation in standard tensor notation:
. mc
yhop = ¥

m2c2

iyto, = 71/)

We could adapt it, just adding that element to the equation:

m?2c?
l]/ua#l/) = 7 — Rl/)

In a similar way we obtain a variation of the Einstein equation with this form:

8nG h? 1
C_4THV 1_m2C2R =RHV—§ngR+Ang

Following other path, we will find another equation:

2 C4

1h% 1 h 1
EEQMV (eﬁvﬁ(va(lpfw)ea)) + Egﬂv (ER - mcz)w*w - %(Rﬂv - EgﬂvR + Ag;w) =0

This equation (that are in fact 8 embedded equations) have 14 or 15 unknown varia-
bles: 8 coefficients of the wavefunction ¥° to ¢” and 6 metric elements g;; (i

from 1 to 3) with a possible added gq,.

The rest of the needed equations (8 equations more) come from the continuity equa-

tion:
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V,T* =0
Being:

1 (h? 1 h?
T4 = gMghT,, = > (ER - mcz) etptper + Eae’l(eﬁvﬁwﬂpV;e“)ep

So, the equation is in fact, solvable.

Also, it is commented how the magnetic-like effects of the gravitation appearing from
the equations can explain the speed of rotation of the galaxies (studied NGC 1560,
NGC 3198 and NGC 3115) without the need of Dark Matter.

The last point studied is how the obtained equation:
E? =m?c* + p%c? — Rh%c?
E2 m2C2 p2
= — 4 —
hZCZ hZ h2
Has an element (-R, representing the Ricci scalar curvature) that here is acting reduc-

-R

ing the energy of the particles. It represents a reduction of the Energy but in units
Length in the latter equation. This value of R is calculated (considering different
metrics for the universe) to find that corresponds almost exactly with the expected
value of the cosmological constant (the effects created by the Dark Energy):
Rintschw = 1.603E — 52m™2
Rintschwi/z = 0.5345E — 52m™2

Rexescnw = VK = 1.852E — 52m™2
While the cosmological constant is in the order of:
A = 1.1056E — 52m™2
So, making this -R a perfect candidate for the Dark Energy. But not as an added ele-
ment to match the observations, on the contrary, an element that appears directly in

the equations resulting that match the observations.

Keywords
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1. Introduction

In this paper we will embed the Klein-Gordon equation for a particle in a non-Euclidean
field (gravitational field) using Geometric Algebra and the Einstein equations. This will
lead to new equations that we will show in the paper.
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2. Geometric Algebra Cls,. Basis vectors

There is a discipline in mathematics that is called Geometric Algebra [1][3] also known as
Clifford Algebras.

In the specific Geometric Algebra Clsy, it is considered a three-dimensional space, so we
need three independent vectors to define a basis. The classical definition of a basis is as
follows:

Fig. 1 Basis vectors in three-dimensional space.
In this paper we will use the nomenclature e; (without any hat or vector sign) to name these
three vectors instead the classical X y Z. Above, | have considered an orthonormal basis as
an example.
But in the general case, this is not even necessary. The only necessary constraint to form a

basis is that the three vectors are linearly independent (this is, they do not lie on the same
plane). An example below:

In geometric algebra, it is defined an operation called the geometric product. The geometric
product is not represented by any symbol. It is the implicit operation when two vectors are
represented one after the other.
Its definition is:
eiej = €; ‘ej+ei/\€j
Being:
e; - ¢ = lleill|le]| cos(ayy)

The classical definition of the scalar product. The product of the two norms (the length) of
the vectors by the cosine of the angle formed by them (we have called it ojj in this case).

The result of the scalar product is a number, a scalar. An important property of the scalar
product is that it is commutative:

ejrej=e-e = ||ei||||ej||co s(aij)
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As the cosine of the angle is included in the product, you can check that when e; and e; are
perpendicular (right angle), the scalar product is zero. And the vectors are colinear (the
angle is zero), the scalar product is just the product of the modules of the vectors.
The other element of the geometric product above is:

e; N ej
What it is called the outer, exterior or wedge product of the two vectors.
The result of this operation is not a number. It is another entity that is not a number and not

a vector. Itis called a bivector. The bivector is an entity that represents an oriented surface
area (in a same way that a vector “represents” an oriented line segment).

e eNe,
& —
/ e »
. g ) _—
v e

It can be checked above that the module (area of the surface) when reversing the order of
the exterior product is the same. But the orientation (its sign) changes. So, the exterior
product is anticommutative:
ei/\e]' = —e]-/\el-

The module (area of the surface) of the exterior product is:

lle: Aejll = lley el = lleall[le| sin(er;;)
You can see that when the vectors are colinear (the angle is zero), the exterior product
result is zero. And when the vectors are perpendicular, the module of the exterior product
is the product of the modules of the vectors.
Coming back to the definition of the geometric product:

eiej=ei'ej+€i/\6j

We can see that when we perform the square of a vector, this is, the product of a vector by
itself (the vector is colinear with itself, its angle is zero) the result is:

(e)? =eie;=¢;-e;+e; Nep=llellllell - 1+ 0= llegllllegll = lle;ll?
So, the square of a vector is its norm squared. The important thing here, is that the result is
just a number. It is not a vector, it is not a bivector, it is just a number. We have converted

a vector to a number just multiplying it by itself.

If now, we multiply (geometric product) two perpendicular vectors (the angle between
them is a right angle):

eiej=ei'€j+€l’/\e]’=0+€l’/\e]’=el’/\€j

So, you can see that the result is a pure bivector. It does not include vectors or scalars, just
a bivector.

If we reverse the angle, we have:
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ejei=ej'ei+ej/\ei=0+€j/\ei=€j/\ei=—ei/\€j=—ei€j

So, when two vectors are perpendicular, not only the exterior product, but also the geomet-
ric product is anticommutative.

From the equations above we can obtain the following equations.
1
e; ej = E(eiej + ejei)

1
e; N e]' = E (eie]' - e]'ei)

The demonstration comes directly from the definition of the geometric product. If we sum
a geometric product by its reverse, we put the definition of geometric product, we take into
account that the scalar product is commutative and the exterior product anticommutative:

eiej+ejei=ei'ej+ei/\ej+ej'ei+ej/\ei=ei'ej+ei/\€j+€i'ej—ei/\€j
=2(ei v ¢))

1
e; ej = E(eiej + ejei)
If instead of summing, we subtract:

eiej—ejei=ei‘€j+€i/\€j—ej'ei—ej/\€i=€i'ej+ei/\€j—€i'ej+ei/\€j
:2(ei/\ej)

1
ei N e]' = E (eiej - e]-el-)

We will see in next chapters that when we apply the exterior product instead of the geo-
metric product of two vectors, this means that we want only the result that appears in the
plane they form (in the bivector they form). And we “remove” from the result the scalars
(that will appear with the scalar product of the vectors) and also, we remove the possible
result in vectors (in more complicated products that we will see in next chapters).

Another point to comment is that the exterior product of bivectors (instead of vectors) is
defined in the opposite way (summing instead of subtracting). | am not going to enter into
details, you can check it in [3].

1
(eiej) A(ereg) = 3 (eiejeres + eresejei)

The same way, the scalar product of bivectors is also defined as the opposite of vectors.
See [3].

1
(eiej) - (epeg) = E(eiejeres - eresejei)

Also, to remark that the geometric product is always associative and distributive as you can
see in [3]. But in general, is not commutative or anticommutative as commented (it depends
on the specific product) We will see more examples in the following chapters.

To conclude this chapter about geometric algebra, we will define the trivector. When two
vectors are exterior multiplied, they form a bivector as seen above. The same way, when
three vectors are exterior multiplied, they create an oriented volume, called the trivector:
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You can see again, that when we reverse the vectors, we get the same volume (module of
the trivector) but with different orientation (sign):

e,-/\ej/\ek=—ek/\ej/\el-

We will check more thing regarding reversion and change of signs in the next chapter.

3. Geometric Algebra Cls. Different types of bases

3.1 Orthonormal basis

In an orthonormal basis, the norm of the basis vectors is equal to one. And the basis vectors
are perpendicular to each other.

So, from the properties commented in chapter 2, we can get obtain the following equations
(for orthonormal basis):

(e)>=ee;=¢-e=1
eej=¢e; Nej=—ejNe; = —eje; (wheni#j)
ereg=¢e-e=0 (wheni#j)

Making the equations explicit for three dimensions:
(e1)* =eje; =1

(32)2 =ee, =1
(93)2 =ezez3 =1

€16; = —€364
€63 = —€3€;
€361 = —€16

We can define the inverse of a vector and name it ', as the vector that fulfills (Einstein
summation is not implied here):
(e)7le;=ele; =1 =ei(e) ' = eie
To calculate e' we can post multiply by e;:
(e)) teje; = eleje;=1-¢;
e'(e)? = e
el-1=g¢
el=¢ =(e)7"

So, in orthonormal metric the inverse of a basis vector is itself. It is important to remark
here that in Geometric Algebra there are no covectors (or 1-forms). There are only scalars,
bivectors, trivectors... We will see that the concept of covector in Geometric Algebra is
just a vector that is the inverse of another vector.

i

In traditional algebra you cannot define the inverse of a vector, so it is used a different type
of element. In Geometric Algebra, the covectors are also vectors. And in fact, the product
of inverse vectors by vectors outputs scalars as it would be expected by the product of a
covector by a vector.
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3.2. Geometric Algebra Cl3,0. Orthogonal but not orthonormal basis

In an orthogonal basis, the vectors are perpendicular to each other. But in general, the norm
of the vectors is not one. In Geometric Algebra Cls o, the norm of the basis vectors is always
positive and different from zero.

The 3 in the name Clso, makes reference to that there are 3 basis vectors with positive
norm. The 0 in the name Clso, makes reference to that there are no basis vectors with neg-
ative norm. And the absence of a third number makes reference to that there are no basis
vectors with zero norm.

From the properties commented in chapter 2, we can obtain the following equations (for
orthogonal, not orthonormal basis):

(e)? =ee;=¢ e = llell* =gy
eej=e Nej=—eNe; = —eje; (wheni # j)
e;reg=e-e=0 (wheni=j)

Making the equations explicit for three dimensions:

(31)2 =66 = ||e1||2 =011
(92)2 =66, = ||ez||2 =022

(e3)* = eze; = |les|I* = 933
€16; = =66
€363 = —€3€;
€361 = —€,161

Where the g;; makes reference to the metric tensor components. See paper [2]. Take into
account that when you multiply two colinear vectors (and a vector is colinear with itself),
its geometric product is equal to the scalar product. And this is exactly the definition of g;;
(the scalar product of e; with itself).

The definition of the inverse of a vector, and naming it €', is the vector that fulfills (not
Einstein summation is implied here):
_ (e)7le;=ele; =1 =¢ei(e) ' = eie
To calculate e' we can post multiply by e;:
(e)) teje; = eleje;=1-¢;
ei(ez)z =€
ellle;ll? = e
e, elgii; €
it _ -1
il Py e

i

So, in orthogonal metric the inverse of a basis vector is itself divided by its norm squared
(by gi;). Everything commented regarding covectors in 3.1 applies also here.

One important consequence of this, is that if the basis vectors are orthogonal (as in this
chapter), all the basis vectors and all the inverse of the basis vectors are also orthogonal
among them (when i#j). this is:

. ei 1

el.e.z—-e.z—e.-e. =—e.e.+e.g. =0

/ Yii / .gii( ' ]) Zgiig H ! L)
. . e; e]'
el-e)=—.—= e -e)=—(ee +ee)=0
i 9jj Zgii.gjj( t-¢) Zgiigjj( i€+ eei)
In the last equation (but when i=j) we get:
ei~ei=(ei)2=i~i=L(e~e')=—(e-e')= 1= !

9i 9i Y9ubi = 9ibii (9i)? (9i)?

These last properties apply also to chapter 3.1 (orthonormal basis) but in that case
the elements gii or gj are always 1.
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3.3. Geometric Algebra Clso. Non-Orthogonal (and therefore not or-
thonormal) basis

In a non-orthogonal basis, the vectors are not perpendicular from each other. And in gen-
eral, the norm of the vectors is not one. As commented in 3.2, in Geometric Algebra Cls,
the norm of the basis vectors is always positive and different from zero.

From the properties commented in chapter 2 and also in [2], we can get obtain the following
equations (for orthogonal, not orthonormal basis):

(e)? = eie; = lle;ll* = gi
el'ej = ZgU - ejei = Zg]l - ejei
€€ =66 =Jij = Yji
eiej' =ei-e]-+ei/\ej =gi]-+el-/\ej
Making the equations explicit for three dimensions:

(31)2 =66 = ”31”2 =011
(32)2 = €6, = ”32”2 =022
(33)2 = €363 = ”‘33”2 =033

e1e; = 201 — €61 = 29,1 — €36

€263 = 20,3 — €36, = 203; — €3€;

e3ey = 2gs1 —e1e3 = 2¢g;3 — €163
Where the g;; makes reference again to the metric tensor components (the scalar products
of the basis vectors). See paper [2] for more information. You can obtain the above equa-

tions from the definition of scalar product in geometric algebra as commented in chapter
2.

1
e; - ej = gU = E(eiej + ejei)
Multiplying by 2:
2g’-] = eiej + ejei
Rearranging terms (and knowing that the metric tensor is symmetric):
eiej = ng - ejei = Zgﬂ - ejei

Now, we will define again the inverse of the basis vectors and name them e'. To obtain the
inverse of the basis vectors is this case, you have to get the inverse of the metric tensor, so

you are able to define a vector €' that fulfills for every i and every j the following (Einstein
summation does not apply):

(e)7te;=ele; =1 =r¢e;(e) " = e;et
i

1 . .
e ~ej=ei~e1=§(eief+efei)=0 fori+#j

In general, this is written as:

Where 6} is the Kronecker Delta, that is equal to 1 when i=j and 0 when i#j.

If we multiply two inverse vectors between them, in non-orthogonal metric, we do not
obtain zero as a general case. See below:
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et-el = E(e‘e’ +elet) =g"Y =gt
So:
ele) =2g —elet
And:
elei = (e)2 =l el = gil
In this paper, we will work mainly with orthogonal (or orthonormal basis), so do not worry
about these above points. For more info regarding how to invert the metric you have a lot

of literature [58][59][60][61][62][64].

What we will do in general, is to make all the calculations with orthogonal metrics and then
try to generalize to the case of non-orthogonal metric applying the above relations.

3.4. Geometric Algebra Clsz,0. Sum of geometric products of basis vectors

We will calculate the following sum. Take into account that the product inside the sum is
geometric (not scalar) and that we have not imposed anything regarding the basis (it can

be not orthogonal).
3 3
S = Z Z el'ej
i=1 j=1

If we operate, we get:
S =ee; +ee, +ee;+
+eye; + eze, +eye; +
+eze; +eze, +ezez3 =
e;eq +eze, +ezez +
+(e e, teyey) +
+(e,estese;) +
+(ese;teje3) =
ej e te-e;,+e;-ez+
+2(e; - ey) +
+2(e, - e3) +
+2(e; - e1)
As the scalar product is always symmetric (independently if the basis is orthogonal or not)
we can convert the elements that are multiplied by 2, in the sum of two scalar products
reversed (with the same result).

S=el'€1+62'62+€3'€3+

10
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So:

3 3 3
i=1 1=1 i=1 j= 1 i=1 j=1

As commented, this holds, independently of the type of metric. And in fact, it holds even
for more than three dimensions, but I have preferred to do it explicitly for three dimensions
to avoid any doubt and avoid getting lost in the subindices.

Now, consider a symmetric tensor (or a symmetric matrix if you want) that have the com-
ponents a":

aij — aji

And now want to perform the sum (don’t worry, I will explain the reason of all this later):

3 3
i=14=dj=1

Making the same calculation as above (and only if all is symmetric) we will obtain a similar

result:
3 3 . 3 3 B 3 3 .
IR IRLTE WO NEICROE NP WS
i=1 j=1 i=1 j=1 i=1 j=1

Or using the Einstein notation to simplify:
aVee; =a(e; - ¢) =ag;;  onlyif a¥ = aJt
Similarly, we can obtain:
ajje'e) = a;j(e'-e)) = a;;97  onlyif a; = a;
But if:
i

alele; = al(e' - ¢) = als} = al only if a/

I
[

Jo b — AJ(p . o — AJ S0 — i e J_
aleje! = ai(e; - e') = a6} = aj onlyifa; = a

Where the last move of above equations is a property of the Kronecker Delta that you can
check in [59][60][61][62].

3.5. Geometric Algebra Clz,0. Expanding the basis

One of the properties of the Geometric Algebra is that the number of elements that conform
the algebra of a certain realm are more than the number of dimensions of that realm. In

11
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three dimensions we have three basis vectors as commented, but we have 8 different ele-
ments that conform that algebra, that are:

e The scalars

e The three vectors

e The three bivectors

e  One trivector

We will call these elements with these names:

ey, — scalars
€1
€2
€3
€4 = €363
€5 = €361
€c = €163
€7 = €16€3

Regarding eo | will comment later. In Geometric Algebra probably you would expect eo=1.
And this is the natural move, but | will come back to this later, as commented.

The elements ey, €5, €6 are bivectors whose square is negative, as we will see now. And ey
is the trivector whose square is also negative, as we will see.

In general, we will work with orthogonal (not necessarily orthonormal) basis. About the
non-orthogonal case, we will talk explicitly in certain points of the paper. If nothing is said,
along the paper we will work with orthogonal metric that fulfills the following, already
commented, relations:

(ei)z =ee; =€ 6 = ||€i||2 = Gii
eiej =€ A ej = —ej A e; = —ejei
eireg=¢e-¢=0 (wheni#j)

This is, in 3 dimensions:

(e1)* = ese; = llegll* = 911
(e2)* = eye; = |lesI* = 922
(e3)* = eze3 = |lesl|” = gs3

€16 = —€26

€263 = —€3€;

€361 = —€161

The last three equations are key in orthogonal metric and are the ones that will make work-
ing with bivectors or the trivector much easier. Because they permit us to swap the order
of the vectors in any geometric product, just adding a minus sign for each swap. These
means that the result will be the same if we make an even number of swaps. And will be
the negative of the original if we make an odd number of swaps.

An example. We have the following trivectors and we want to sum them:
7e,e,e;3 + 2e,e1€3

We swap e, and e; in the second element and we add a minus sign. This is the same as
using one of the equations above.

7616263 - 2616263 = 5616263

12
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But, take into account that when a basis vector is squared, it is converted to a number, so it
does not count as a vector anymore. It is just a number that can be moved in the product
not changing signs. For example:
7e,e,eze, + 2eje3
We swap ez and the last e, in the first element, adding a minus sign.
_761626283 + 26361
Now, we perform the square of ey, getting its norm and converting it into a number.

—T7ei(e;)?es; + 2eze; = —Telle;||?e; + 2ese; = —Te gpre5 + 2e5€;

Now, g2 is just a number, so | can move to the beginning of the element (not changing the
sign), we are moving a number, a scalar, not a vector:

—7e19z283 + 2e3e; = —7gyze1e5 + 2eze;

And now, we exchange e; and es in the first element and yes now, we have to add a minus
sign (multiply by -1).

—7g220165 + 2e3e; = 7gy,e3e1 + 2eze = (795, + 2)ezeq
If instead, we swap the e and es in the second element we get:
—7ga2e13 + 2e3e; = —7gyreie3 — 2e1e3 = (=79 — 2)eje3 = —(7ga, + 2)eqe;
This is the negative as the first result, but take into account that the vectors that multiply
are reversed, so in fact, it is the same result. I could swap them and change the sign again

and both results will be the same.

Another way to see it is using the nomenclature we have defined in the beginning of the
chapter:

(7922 + 2)eze; = (7922 + 2)es

But in the second case, we have to reverse to be able to use that nomenclature. Swapping
the vectors and adding a minus sign (changing the sign):

—(792, + 2)eje5 = _(_(7922 + 2))3331 = (7922 + 2)eze; = (792, + 2)es
For more info regarding this type of operations you can check [1][2][3][4]1[5][6].
As commented, all these swapping’s with changing of sign can only be applied in orthog-
onal bases. In non-orthogonal bases you should apply the equations in the beginning of

chapter. 3.3.

Knowing this rule, | would just show the squares of the bivectors and the trivector to check
that they are in fact negative:

2 _ 2 _ _ _ _ _
(e4)” = (eze3)” = eyeze,e3 = —e€3€38; = —€,033€; = —G33€2€2 = —g33922
2 _ 2 _ _ _ _ _
(es)” = (ese;)” = ezejeze; = —ezeje,e3 = —e€3gi1€3 = —g11€3€3 = —g11933
2 _ 2 _ _ _ _ _
(962) = (31922) = €1€281€6) = —€1€26261 = —€102261 = —Y2261€1 = —F22911
(e7)? = (e1e263)* = e, e,e5€,€,65 = +e,€,656501€, = g33€1€,81€;, = —J33€1€1€,€; = —J33911922

Remind that the gj; are just numbers, so you can move them as you want along the product.
| keep the order obtained in the operations to facilitate the understanding, but you can swap
them as you want not changing the sign or the result.

13
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Just to close the chapter, | will comment that an entity that is composed by the sum of
scalars, vectors, bivectors etc... is called a multivector. As an example:

A =3+2€1—361+7e3€1

This entity A is called a multivector. We will see that in Geometric Algebra any object can
be defined by a multivector expression.

The most important comment of this section is the following. In Geometric Algebra, once
you have defined the number of dimensions (in this case 3) and the consequent degrees of
freedom (or different basis vectors and their combinations, in this case 8, from eg to e7), it
does not matter how many operations (sums, geometric products, even exponentials etc...)
you do, the number of basis vectors and their combinations are always the same (8 in this
case). You can multiply the times you want any multivector by another one, you will only
finish with 8 coefficients that multiply 8 basis vectors from e to e; (considering also basis
vectors their product combinations). Nothing else. This is key in Geometric Algebra and
its power.

If you are familiarized with matrices, tensors or tensors products, you know that in those

cases the number of elements could grow to infinite (the number of dimensions also). In
Geometric Algebra, there is a limit. And this KEY as we will see.

3.6. Geometric Algebra Cl3 0. Comments about eo and e7
Before, | have commented that the natural move is that:

6'0 = 1
And in general, this is what | would have written in any of my previous papers. But in this
case, as we will see later, it is possible that we need a “degree of freedom more” or the
possibility that e is a scalar function that depends on certain parameters that we will see

later.

So, instead of defining e equal to 1, we will define it as a scalar (this is important, it is a
scalar or a function whose output is a scalar, not vectors, not bivectors etc...):

€0 = /Y00
So:
(e0)® = lleoll* = goo
As commented goo, is a scalar or a function that outputs a scalar (positive-definite). The
problem is the conceptual meaning of eq and goo. Normally goo would mean the scalar prod-
uct of vectors. In this case, it is not that. It is a function that appear only at certain operations

that we will see later.

Regarding the possible values of goo are (we will comment later):

Joo =1
Joo = llesl*llexl1llesll?
1
Yoo =
lleq lI%llex 1121l es]]?

Joo = independent scalar function (positive definite)
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As commented, we will keep this nomenclature of goo as in the end it is discovered that it
is equal to 1 or to whatever other result we will substitute in the equations. If we put directly
that it is equal to 1, it will be more difficult to modify the equations.

Anyhow, for the shake of simplicity, for orthonormal or orthogonal metrics, we will con-
sider eo=1 as it most probably is, except in exceptional situations. For non-orthogonal met-
ric, we will keep it indicated as eo.
Regarding e; the important property as commented is this:

(e7)% = (e1e263)* = ere,e3e1€,63 = —g33911922
This means, its square is negative, and it is a “neutral” vector. Meaning “neutral” that it

does not have any “preferred” direction or orientation. The bivectors es, es, es have also
negative square but with “preferred” directions.

(34)2 = (3233)2 = €2€36263 = —(U33022
(35)2 = (3331)2 = €3€61€361 = —0¢11933
(e6)? = (e1€2)” = ejeze16; = —g22011

But e7 has a negative square and does not point anywhere specific. It applies to the volume
in general (not a surface or a line). If you have read the papers [4][5][6] probably you have
already seen the possibility that the time vector can be associated with e7 (the trivector).
The reason is that the square of ez is negative and that taking this consideration is com-
pletely coherent with Dirac Equation, Maxwell equations and Gell-Mann matrices

[51[6][26][63].

When we come to general relativity, the thing gets more complicated. We will see that
depending on the context, the scalars e (as considered in APS[43]) or the trivector e; can
represent time depending on the context. We will see later, but first we need to understand
the spinor in Geometric Algebra to understand the different possible contexts.

What we will keep from previous papers [4][5][6][26][63]is that as the square of €7 is neg-
ative and does not have any preferred direction. So when the imaginary unit i is used in
traditional algebra, we will substitute it in Geometric Algebra by the trivector e;. The rea-
son is that in Geometric Algebra there are already elements as e; (appearing in a natural
way) whose square is negative.

And the imaginary unit i is used in traditional algebra as an “unknown or generic” element
whose square is negative. In Geometric Algebra, what you have to do is, depending on the
context, to use the corresponding already existing element in the Algebra (of all the ones

whose square is negative) instead of using i. As commented, we will used e for the reasons
commented above.

4. The reverse of a multivector and the reverse product

If we have multivector, the reverse of it can be defined as a multivector with the same
coefficients but where all the products of basis vectors are reversed. An example:

A =34 2e, —3e; +7eze; + 2e,e5 — S5e,e565
Its reverse will be:
AT = 3 + 261 - 361 + 76163 + 26263 - 5636261

This, in orthogonal metric (not in general) can be converted using chapter 3.2 equations
into:

AT = 3 + 281 - 381 - 76361 - 26263 + 5613233 = A*
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Being A" the conjugate multivector. This means, in orthogonal metric the reverse of a mul-
tivector is the same as a conjugate of the multivector. The conjugate means changing the
sign of the elements whose square is negative (this means: bivectors and trivector) and
keeping the same sign for scalars and vectors (whose square is positive)

In a non-orthogonal metric, you should use equations in chapter 3.3 instead of those in
chapter 3.2, so in a general case, reverse and conjugate will not be the same.

Anyhow, as commented, in this paper we will focus on orthogonal basis, so here reverse
and conjugate will be the same in most cases (but this is not true for a general case).

Calculating the reverse for the different basis vectors, we have:

ey =€
ef =e,
el =e,
el = e,

eI = (3233)-r = €36,

e.;r = (ese)) = eye5

92 = (e162)" = eze;
e; = (e16263)T = eze5¢,

One important property is that a product of basis vectors multiplied by its reverse is always
positive definite (also in non-orthogonal metrics):

eoe(;r = epey = lleoll* = goo
elef =eje; = |leg* = 911
eze;r = eze; = |le;ll* = g
333; = eze; = |lesll* = g3

9491 = eye3(ee3)" = eye5e58, = €,933€, = g33€2€, = 33922 = Gaa

ese; = ezei(eze))T = ezeeie5 = e3g1163 = g11€3€3 = 911933 = Jss

eeeg = eje;(e1e)" = eje,e.6; = €195061 = gpr€1€1 = G22911 = e

373; = eje,e5(ee.65)" = eje 6505000, = 9356162281 = §359,,€181 = 9539,,9,, = 977

Where | have defined the g; as the result of these products also for basis vectors with i>3.
And also, as commented it is defined a goo as the square for eg to have one degree of free-
dom more (even that very probably defining it as 1, should be ok, meaning just a that pre-
normalization has been de-facto done).

As you can guess, the reverse product is just defined as multivector by the reverse of other
(or the same) multivector following the rules commented above.

An important thing to comment, is that the reverse should not be mixed up with the inverse.

The inverse of a product of basis vectors is defined as the inverse of each basis vector in
reverse order. This is, for example:

("37)_1 = (313293)_1 = (33)_1(92)_1(31)_1 = e3e?e! = ¢’

Where in the last steps above, | have used the definition of the superscripts as defined in
chapters 3.1, 3.2 and 3.3, as the inverse of the basis vectors. We can check that this hold:

e,e’ = eje,ezede?el =ee,-1-e2el=e -1-el=1

So, in fact, it corresponds to the inverse of e;. The same applies, to the rest of vectors:

(31)_1 =e!
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()"t =¢e?
(e)™t=¢e?
(ed)™ = (e2e3)7" = (e3) 7' (ex) ' =e’e? =e*
(es)™ = (ese) ™' = (e) H(e5) t =e'e® =e®
(ee)™t = (e12) ™t = (€)M (e)) L = e%e! = €°
(e))™! = (ereze3) ™" = (e3) 7 (ex) M (e)) ! = eee = ¢’

So, you can see that the inverse, also reverses the order, but besides that, it inverses the
basis vectors (converts the subscripts in superscripts and vice-versa).

5. Spinor in Geometric Algebra Clsz0

A spinor in matrix notation has this form:

wlr + l/)11'1'
1/) — 1p27’ + lpzii
1p37’ + lp3ii
¢4r + l/)41'1.

As you can see, it has eight parameters:

Yir Y1i Yor Yo Yar Y3 Yur and Py,

In Geometric Algebra, the spinor has this form:
Y =Pre, = POeo +Ple; + e, +Pie; +1Pte, + Yies +Ples +17e,

Where the e; are the elements (scalars, vectors, bivectors and trivector) as defined in chapter
3.5.

The ' are the coefficients of the spinor or wavefunction. You can see that they are also
eight as in the matrix notation. You can find a relation between both in [5] [31]and [63].
There you can find that that relation is coherent with Dirac Equation and Strong Force
Interaction (Gell-Mann matrices).

For this paper we will just stick to that these 8 coefficients are sufficient to define a spinor
or wavefunction. And calculating them is what we need to define the state of a particle or
a related filed.

6. Probability density and probability current

As we saw in [63] we can calculate probability density and probability current multiplying
the reverse of the wavefunction by itself, this way:

Wiy = (W0e) +w'ef +yle] +piel +yte] +yiel + el +u7e])We +yle;
+iple; +ipies +ihle, + e +Yle +Y7e;)

Where all the vectors, bivectors and the trivector and their reverses, are as defined in chap-

ter 4 and previous ones.
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Only in the case of orthogonal metric (not in the general case), this can be simplified as
(the reverse is the same as the conjugate):

1!11'1!) =YY = (¢°eo + ¢161 + 1/’292 + 1/)393 - 1,04‘34 - Ebses - 1/)636 - lp7e7)(¢oeo
+le; +PPe, +Ples +Pte, +Ptes + Poes +P7e;)

As you can see in Annex A2, the result of this multiplication is for the orthogonal case is:

Yy =p+j
Being:

p =%+ WH2911 + W)?go + W*)2g33 + @)% 922933 + ¥°)? 933911 + WO)*g11922
+ (W7)? 911922933

J= 2@ — p*POgay + PPPPgss + Y7 gan933)e;
+ 2(+p % + Y1 POgi — v P3gaz + Y gszgi1)e;
+2(+Y°P3 —PMPP gy + PPt gay + YOYT g11g22)es

Being p the probability and j the fermionic current.

But we can say that even in the general case where the basis is not orthogonal or even if
the product above is defined another way, the result will have for sure have this form:

¢T1/) = j#eu

In Annexes Al, A2, A3 and A4, you can find that in whatever metric you are or however
this product is defined (in A4 it is shown an example using the inverse product instead of
the reverse product), the result will always have this form:

iy = jte,

Where p and v go from 0 to 7 in the most general case. This means, independently of the
metric, independently if the product is correctly defined or are some elements pending (see
Annexes Al, A2, A3 and A4 for details), what it is true is that the result, will have the form
above.

Even if we calculate wrongly the coefficients of j*, we can continue with our study as these
coefficients will represent a general case. In case they change the value, we will change the
operations done, but the study following will be perfectly correct as the meaning of the
coefficients j* is general. This is the power of geometric algebra. We know the form of the
results even if we have calculated them wrong. We know that the result will have 8 com-
ponents j# (very important, scalar coefficients or functions that output a scalar) multiply-
ing 8 basis vectors (considering their product combinations also, this means, considering
them from e, to e7).

Last comment to make are the measuring units of this j*e, . For the j° component the units
are density of probability in 3D space, this means probability/cubic length. Probability does
not have units, so it is L2,

The components j to j3 are called the probability current and its units are density of prob-
ability multiplied by velocity. As probability does not have units, the density has L3 and
the speed has LT, the total units are L2T"%. To make these units coherent with j°, we have
to multiply j° by c (the speed of light) or the opposite, to divide the components of j* to j?
by it.

As commented, for orthonormal or orthogonal bases, j* only has components from 0 to 3.
For the general case, it would have components from 0 to 7 and the measuring units should
be harmonized with the units that have the components from 0 to 3. But we will not care
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about that now, we will just consider that we can find a coherent following expression with
coherent units:

Pl = jhe,

Just to finalize, | will comment that to be consequent with certain papers in the literature
[57], sometimes | will use the following nomenclature, but you can check that the concept
is the same, just changing the name of j to V, and the dummy index form p to p:

1!)1-‘()0 :j#eu = Vpep

7. Definition of Covariant Operator in Geometric Algebra

We will define the following operator:

ety
u
Where V), is the covariant derivative. This means, if it is applied to a scalar function, it
will be just the partial derivative with respect to p of it. If f is a scalar function:

Where the partial derivative is taken with respect to the coordinate variable that corre-
sponds to the vector e,. This means, that de® would mean derivative with respect to the
coordinate variable associated to e; (typically X in cartesian coordinates, or r in polar coor-
dinates or called e! in the general case). It is important to recall that in this paper, the coef-
ficients that multiply the vectors are scalars (not “covectors”), so the rule above, apply to
them (to the coefficients). It does not apply to the vectors as you can see below.

If the function includes vectors, apart from the partial derivative of the coefficients that
multiply these vectors, we will have to apply the covariant derivative to the vectors.

The covariant derivative of the basis vectors (you can check this in different literature of
General Relativity or Riemann geometries [58]-[62]) are the Christoffel symbols.

So, applying the product rule of derivation we get:
eHVH(fVeV) = e#(vufv)ev + e“fv(vuev)

And it is important that we are keeping the same order of the vectors. Remember they are
nor commutative in the general case.

Now, for the scalar coefficients f* we can use the same equation shown before (partial
derivative equation). For the other term (the covariant derivative of a basis vector) we will
use the Christoffel symbols as they are defined [58]-[62].

u v u v ufv u afv uevra
etV (fVe,) =e (Vuf )ev+e f (Vue,,) =e aeuev+e f'Tex
As the partial derivative of the coefficients of f and the Christoffel symbols are just scalars

(yes, in this context, Christoffel symbols are just scalars that multiply vectors) we can move
the vectors as follows:

e”Vu(fvev) = et

v v
y)
e, +etf'Tl e, = ete
der ™" frTiwer Y get

+ e“e,lf”l",fv

Another thing to comment is that we can calculate also the covariant derivative of the in-
verse of a vector this way[58-52]:

Vﬁ(eu(ea)_l) = Vﬁ(eue“) = VB(‘S/?) =0
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Vﬁ(eﬂ)e“ +e,Vz(e®) = Félﬂele“ +e,Vp(e®) =0
e,Vp(e®) = —Félﬂele“
e,Vp(e®) = —F;#Sf

e, Vg(e®) = —Ig,
ete,Vp(e®) = —Ig, et
Vﬁ(e“) = —F[;"#e“

So, this above, and the already commented classical definition covariant derivative of basis
vector:

Vp(ey) = l"é‘ae#

They are the equations we will need in following chapters. Also, to comment something
that we will need in some steps. The geometric product is not commutative in general. But
sometimes we will have to commute the vectors. To do so, we have to consider one of these
three scenarios:

e The metric is orthogonal. So, the geometric product is the same as scalar product,
and therefore commutative.

e Weareinasituation as in chapter 3.4. This is, the symmetry of the sums in certain
situations, “convert” the geometric products in scalar products. So, the same as
commented above applies.

e The other option is directly that we are forced to change the definition of the op-
erators, using scalar products instead of geometric products. As an example, in
certain situations, we can say, instead of using the operator:

ety
We could decide to use:
et . VH

Loosing generality (all the non-commutative elements will be lost), rigor and

probably some solutions, but as a way to move forward.

Just to finish we will define the reverse (the reverse not the inverse) of the covariant oper-
ator to a function f as:

"
(e"0uf)" = fUlet = (fr)e" = (Vuf)e"
This means, when we see the reverse operator, we have to take into account these things:

e The operator applies to the function on the left of it (not on the right as it is usual).
e The vector that accompanies it, it is located on the right of the operator, not on the
left as defined from the non-reverse operator.

Probably you are asking why the vector that accompanies the function is not reversed as
well. In general, | would say that the logic thing would be to reverse it, creating sometimes
changes on signs (or even real changes in result in non-orthogonal metric). In this paper |
will keep it as not reversed to facilitate the things and the message, but it could be that in
the future, the definition, changes to reversed.

Also, you can ask why the f is not reversed as well. The answer is that to keep the sym-
metry, it should be reversed. But to simplify the nomenclature, we will keep f not reversed,
and just indicate it directly in the expression if this is the case.

Another thing we could think about is that if the operator is reversed, we should add a
minus sign to the derivative as we are deriving in the opposite direction to the one repre-
sented by the variable. This is true in fact. But as we will always make double derivatives
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(in the left and in the right, see later), in the end, this will only lead to a change of sign in
the final results, not affecting the implicit meaning. Anyhow, this is something that proba-
bly has to be taken into account in the future (and also if it is needed or not to reverse the
vectors that accompany the derivative/del operator).

The last comment is that in Geometric Algebra everything is done keeping symmetries.
When a double operator has to be applied (like a Laplacian) it is not generally done as a
double operator on the left. Instead, it is done like a simple operator in the left and another
simple operator on the right (that is applying to the elements on the left).

The reason for this is that in geometric algebra the order of the vectors matters. As it is not
the same pre-multiplying than post-multiplying. Because the products are not in general
commutative or anticommutative, it depends on the product itself (the number of vectors
and its grade). So, the only way to keep the symmetries is to keep the balance of operators
on the left and in the right as much as possible.

When this happens, we will have the convention that we will start applying the reverse del
operator (the one in the right, and afterwards the non-reverse del operator, the one in the
left). This is just by convention. Taking into account that normally we work with commu-
tators in our calculations, a change of this will only lead to a change of signs in the final
results.

Apart from this, this will let us also facilitate the factorization of the equations that will be
key to simplify them in following chapters.

8. Ricci tensor in Geometric Algebra

As we can see in different papers [58]-[62], the Ricci Tensor can be considered as the
Laplacian of the basis vectors. Taking into account what we have commented about the
covariant derivative in the previous chapter, we can calculate the Laplacian as a covariant
derivative on the left and another covariant derivative on the right to keep the symmetry.
And to be in the most general case as possible, instead of applying to the basis vectors, |
will apply to a complete field that includes coefficients and vectors:
VPe,
If you want to apply only to basis vectors just consider:

VP =1 foreveryp
And:

ve=0
M
Where the comma represents partial derivative with respect to e*.
Ok, so let’s apply the operator defined in chapter 7 to VPe, to the left and the reverse of it,
to the right. We will start operating the one of the right (the reverse operator). This is just
by convention as commented in chapter 7. If we do the opposite, we will obtain a different

result. But we will see that it does not even really matters, as we will perform the reverse
operation later.

e”VquepV:Ee"
etv, ((VpepVI)e")

e”VH(VVVPep)eV

etv, ((VVVpep)eV)
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Very important to remark the coefficients V? are just scalars. Their covariant derivative is
just the partial derivative.

And for the vectors, we will apply the equations shown in chapter seven:

Vs(eq) = Tg e,
Vp(e®) = —Fgue"

And to remark that in this context, the Christoffel symbols are just scalar coefficients, that
multiply vectors. So, the covariant derivative of the Christoffel symbol itself is the partial
derivative. The covariant of the vectors that accompany them will be done naturally fol-
lowing the derivative product rule.

We start calculating, the expression inside the brackets:
V,VPe, =V/e, +VPILe,

I change the name of the dummy coefficients for convenience and to follow [57]:
V,VPe, =Vye, + VI, e,

Now I just post-multiply by the vector that appeared in the original equation at the begin-
ning of the paper:

(V,VPe,)e¥ =Vie,e¥ + VTl e e”

Now, | proceed with the covariant derivative that was in the left (that applies to all the
expression above, including the two vectors):

Vu (WVPe,)e”) = Vu(Viee” +VoThe ev) =
p p p
Vvﬂepev +V; Fg“eae" -V epF;an +

orP v orP v opP ri v orP vV LA —
+Vileepe” + VoL ee” + Vo T ee” — VoL e 6" =

I change again the name of dummy variables to follow [57] nomenclature:
Voepe’ + Vij#epe" —Vie,Ihe’ +
+ViTh ee¥ +VoT), e,e” + VOTLTY e,e” —VOIy e, I e”

vo,u=p VoS Au w

VoepeY + V,fl“fuepev —-ViThee +

ALy
orP v orP v ori P v _yorP ri v
+Vilsepe” + VoL, jepe” + VO I3 epe” — VoI Tiee

Now, we pre-multiply by the vector as it was stated in original equation in the beginning
of the chapter:

u p tov —
etV VPe,V, e’ =
etv, ((Vvaep)e"> =
V_fue”epe" + V,fl“fue”epe” - V‘fl"jve”epe" +

orP LUy, pV L VOTP LUy, pV 1L 1VOTATP LU vV _yorP 1rd U, oV
+V L sete,e’ + VoL, efe,e’ +V Fw,l"we eye VenLneteye

Now, we calculate the result with the operations reversed. This is, the operator on the left
with respect to v and the reverse operator in the right with respect to p:

eVVVVpepVZe” =

e'v, ((VHVpep)e”> =
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P v u ATP L,V u_yPri ,v u
Vie'eet + VT eveet = VI, e"eer +
orP v u arP v u ori 7P L,V u_yorP ri ,v u
+V)Lse’e,et + VoI, eveet + VOl T, eveye Ve ueveye

Noe, let’s calculate the subtraction of one to another (let’s say the commutator of this op-
eration):
e”VquepVT,e" - eVVVVpepVZe" =
P u v ATP Lu v _yPTA L1 v
Vouetee’ + V5 I‘A#e epe ViLivetee” +
p p AP p A
+ViTsetee” + VoI, etee” + VLT ete,e” — VoI T etee? —
_yyP ,v U _ yATP ,v u Pri ,v u
Vie'eet =Vl eveet + VI, eve e +
P P A P p A —
—ViTie'e,et =Vl eve,et — VoL T, eve et + VoI, Ty eveel =
To be able to perform, this operation we have to be able to “move” vectors inside the prod-
ucts. This can only be done if we are in one of three cases commented in chapter 7. This
is: orthogonal metric, summation of symmetric elements (chapter 3.4) or changing the ge-

ometric product by the scalar product in the definition of the covariant operator.

So, we will consider that we are in one of these three cases and let’s move the position of
the vectors inside the products at our convenience:

e“V#V"ePV];e" - e"V,,VpepVZe” =
Vyuetese? + VIT) etese’ —VIiTL ete,e” +
VT ete e’ + VO, etese’ + VITL,T) efeje’ —VoIL T ete e’ —
_yP Lu vV _yATP Lu v PrA Lu v
Vetee” =Vl etee” + V)T, efe,e” +
_pyorP ,u V_1oTP LU, oV _YOTATP oy, LV orP 1l Lu v —
VyTisetee’ = VoI, etee” = VoI 17 ete,e” + VO I, efe,e” =
We see that the only elements left (the ones that do not cancel) are the ones in bold. See
[57] for more info.
Vyuete,e? + VT, etese” —Villete,e” +
+V T ete e’ + VoI, ete e’ + VOT) T, eteye” —VIIf T etese’ —
_yP Lu vV _ AP Lu v Pri Lu v
Vietee” —Vily etee’ + V)T, efe,e” +
_yoTrP ,u V _yorTP Lplhp pV _ VOTA TP pllp pV orP rid Lu v
ViTisetee’ = VoI, efe,e” — VoI I, efe,e” + VO I, efe e’ =

This is:

vo,u uo,v oty

= V(0 = b + ToTf, — TATY, Jeteye”
As Ve and the Christoffel symbols are just scalars in this context | can move it freely inside
the product.

= V(0 + Tl — T, — TATY, Jeteye”

— P p P ra pra o v —
= (N0 = T + TL Ty — T )V oete e =
— pP o v
= Ry Vel e e

Where Rf,’,w is the Riemann tensor, as commented in [57].

Now, if we consider that we are within one of the three cases commented in chapter 7, we
can consider that this product is scalar and therefore:

Hp — ph. = s
ele,=e ep—(Sp

So:
R?

oLl v — pP oSH, v _ pH
oV ete,e’ =Ry, Vo6,e" =R

o,V
UwV e

Now checking [57] we can see that the last element is the Ricci tensor.
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RY,Ve” =R,V

So summing up we can say that (in the last step, | have just used the property that dummy
indices can be renamed as convenience):

eV, VPe,Vie" — eV, VPe,Viet = R, Ve’ = R, VFe"

If we want to isolate the Ricci tensor, we could do:

(RovV7e")e,V, = RpVoeve,V, = Ry V7 - 1V, = Ry, VOV, = Ry,
(eFV,VPe,Vie¥ —e'V,VPe,Viet)e,V, = (R, V7e")e,Vy = Ry,
Ry, = (e#V,VPe,VieY —e'V,VPe,Viet)e,V,
If we want to calculate the Ricci scalar[57]-[62], we can do:

R = g°R,, = g"V(e“VﬂVpepVQ:eV — eVVVVpepVZe“)eVVU
= (e”V#VpepV,te" — e"V,,VpepVZe")gm’evVg

Another way to obtain it (but not isolating it):

(ekV,VPe,Vie¥ — €'V, VPe,Viet) = R, V7e”
g°tg? (e”VquepVT,e" — eVVVVpepV;e”) = g°*g"°R, Ve
g°tg? (e”VquepV];e" - e"VvV"epVZe“) = RAMyoev
9209°*9"° (e”VquepV];e" - e"VvV"epVZe“) = g,gRMVe¥
9209°g"° (e”V#VpepV:r,e" - eVVvaepVZe”) = RV%"
g”V(e“V#V"epV,tev - e"VvaepVZe”) = RV%"

9. Klein-Gordon equation of a field

We consider the definition of stress-energy tensor of a scalar field [65]-[67]. We will not
use natural units. It is better to use real units with factors so we can control that the meas-
uring units of the variables are coherent:

G/w = T/w = thau(:bavd) - hzguvgaﬁaa(:baﬁd) - guvmzcz(pz

We divide by 2m:

2

2 1n ap 1 2 02
Tuv = Eaud)avd) - Ezguvg aad)aﬁd) - Eguvmc ¢

2
It is important to check that the measuring units are coherent. % units are Energy-L2. But

there are always two derivatives with respect two spatial coordinates that creates a L2, So,
the units of the first two elements are energy. The last element mc? is energy also. So, in
principle ok. But the stress energy tensor should have units that are Energy-L. Do not
worry, we will solve this later, as the field that only appears in the right-hand side elements
will have L units, leaving everything ok.

The first, thing we will do is to apply the operator we defined in chapter 7. But as there are
some vectors missing to be able to do that, we will just multiply and divide by them, leaving
everything ok.
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? v lhz af a B 1 2 42
Ty =Eeﬂe”6,l¢av¢e ev—zagwg eqe 6a¢6ﬁ¢e ep —Egm,mc o)

h2 u v 1 h2 ap a B 1 2 42
Ty = Ee#(e 0,90, e )ev - E;gwg ea(e 0.0 e )e/g - ngmc [0)
And here’s the drill. Instead of applying this to a scalar filed as it was original conceived
by the equation, we will apply it to a vector field. We have the tools commented in chapters
7 and 8 to make all the operation so we can do it. We will apply to a general field that is:
VPe
p
And the double derivatives, will be left and reverse right derivatives (keeping the symme-
tries as always in geometric algebra), instead of two left derivatives.

h? 1h2 1
T = Ee#(e“V#VpepVie")ev - EEgwg"‘ﬁea(e“VQV”epV;eﬁ)eﬁ - ngmczV”ep

I add the following elements to the equation. | can do it, because its sum is zero:

h? 1h?
—Ee#(e"VVV"epVZe“)ev + EEgwg"‘ﬁea(eBVBVpepVZe“)eﬁ
h? v T ol 1h? af B Tt a
+Zeﬂ(e v,VPe,V,e )ev—zzgwg eq(ePVpVPe,Vie®)eg

Once added, we have:

h? 1h? 1
Ty = Eeﬂ(e”V#VpepVie")ev - EEguvgaﬁea(e“VanepV;eﬁ)eﬁ - ngmcszep
h? 1h?
- Eeu(eVVvaepVZe”)ev + Eagwg“ﬁea (eBVﬁV”ePV;e“)eﬁ
h? 1h2
+ Eeﬂ(e"vapepVZe“)ev - Eagwg“‘gea (ePVgVPe,Vie)es
Reordering:
h? h? _
T = Eeﬂ(e”V#VpepVT,e")ev - Ee#(eVVVV”ePV#e”)eV
1n? ap a T8
— 55 9wd ea(e V,VPe,Vpe )el;
1h? ap B ta 1 2
+ Ezg#vg ea(e VpVPe,Vae )e,; - ngmc VPe,

h? 1 A2
+ Eeﬂ(eVVVVPePVZe")eV - E;gwg“ﬁea (ePVgVPe,Vie)es

Factorizing as possible:

hz
(P Ee#(e”VquepVT,e" - e"V,,VpepVZe”)e,,
1h? t t
- Ezguvgaﬁea(eavavpepvﬁeﬁ - eBVﬁVpepVae“)e[;
1 2 h? v +
- ng,mc VPe, + poo eu(e Vvaeque”)ev
1n?

- EEg#vg“ﬁea(eﬁVﬁVpepVZe“)eﬁ

Applying the relation to the Ricci tensor commented in 8:
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h? 1h2 o2
T ——e#(RMV e )ev ———gwg ea(RMV )eﬁ ——gwmc 2yep €,

h? 1 h?
+Eeﬂ(e V,VPe, Vet )ev—zagwg Peq (efVgVPe,Vie e

Now, again we will suppose that the vectors can be moved inside the product, following
one of the three possible cases commented in 7 (orthogonal metric, sum over symmetric
elements or defining from the beginning that the products are scalar instead of geometric,
losing solutions and rigor).

h? 1h2
Ty = Eeﬂev(RMV” et) — ——gw,g Feyep(RaV7e™) — —gm,mc 2VPe,
h? 1h?
+ Eeﬂev(eVVvaepVZe”) - Eagwgaﬁeaeﬁ (eBVﬁV"ePV;e“)

If the products are scalars (following the three cases in chapter 7) the geometric product of
two vectors is the metric (or delta if they are inverse).

h? 1 k2 1
T#V = Eg;w(R(MVUeA) - Eag,uvgaﬁgaﬁ(RalVa—el) - Eguvmczvpep
h? 1A%
+ G (eVVvaepVZe”) - Ezgwg“ﬁgaﬁ (eﬁVBVpepVZe“)

Operating:

h? o2 1h2 s 1 ,
T :EQW(RJAV e )‘E%qu(leV e )—Eg,wmc VPe,
K2 Y s 1 A2 8 oo
+Eguv(e VvaepVMe“) —Eagw(e V,;Vpepvae )

Changing the dummy variables names:

h? s 1h? oA 1 2
THV :_g#V(R saV’e )___QMV(RJAV e )_Eg,uvmc Vpep
h? B P toa 1h? B p ta
+— G (P VpVPepVae®) = 5— gy (P VsV e, Vo)
Operating:

1A o 2 1 2 1h? B ta
Tow = 57 9 (RoaV 7€%) = 3 guume?VP ey + 520 gy (P VsV e, Ve

1h2 3 1h2 8 Y g
Ty = g,w(RMV e )——gwmc |44 e, ng(e VBVpepVae )

Now | multiply by ese° to simplify the operations and get to the Ricci scalar. | could obtain
the same result multiplying by g*°gs.:

1 - 1h2 t pa
Ty = gw(R(,,lV ete,e’) — —gm,mc 2VPe, + ——gw(e VgVPe,Vye®)
Here, | can move the vectors inside the product con5|der|ng the 3 cases of cahpater 7 (this
is not even necessary if | use g*°gs, instead of e.e°:

1 A2 pu 1.0 1 2 1h? B Tt oa
Tav = 50 9uv (RoaV 7 ese’e”) = 5 gme?VPe, 450 gy (P VgV Pe, Vae)

1h? o Ao 1 2 1h? B ta
Ty = EE‘QW(RMV esg ) — Egm,mc Vpep + E;gw(e VBVpepVae )
Now, | just change nomenclature of dummy indices:
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1h* p P 1 2y7p 1h* B Pe viea
T/.Lv zzﬁguv(g Rp/lv eP) _Eguvmc 14 € +EEgHV(e vﬁV er“e )

The following move, | am not sure if it can be done or not. If it cannot be done. Just sub-
stitute R by g’lpRM in the following equations.

1 A2 1 2 1h? B t,a
Ty = EEQW(RVP%) ~ 5 9wme VPe, + EEQW(Q VpVPe,Vee)

1 h? 2 1h? B ta

Here, it comes another drill. We have seen that the solution to:
Wi = jte,
And just changing nomenclature, we can consider that it has the form:
YTy = jie, =VPe,

So why not applying the above equations to ¥y when appears VPe,? This is to apply
the equation to collapsed waveform of a particle. This is to its probability and fermionic
current. As you know the units of Ty is L. This is because the probability does not
have units, but T represents the density of probability. This is probability divided by
volume (L3). So here, we solve the issue of the measuring units. They are Energy-L3 in all
the elements.

1 2 1h2
Tv =5 v (;R - ch) Y+ 5 g (P Y Tee”)

1 (h? 2 + 1h? I taut e
Ty =3 ER—mc e, P ¢ev+55e,l(e VpypThVe )ev

Oner thing we could do to simplify even more, considering we can move the vectors freely
inside the products and that they are scalar multiplied (3 cases of chapter 7) is:

1 hz 2 + 1h2 B T T a
T =E ER —mc® |e,e ) ¢+§Ee"e‘/(e VppThVge )

1(h? 5 + 1 h? 8 it a
Tuv = E ER —mc guvlp Y+ EZguv(e Vﬁl/) YVqe )
Now, we can define a multivector (not even tensor):

wv 1(h 2| Juv t 1h? w B tyut o
T=g Tuvzz ER_mC g guvl/) ¢+§Eg guv(e Vﬁw AN )

w 1/ 2\t 1h? B toot a
T=g T‘“’=§ ;R—mc 1/)1/1+EE(6 Ve ll)Vae)

Which result is not a scalar. It is a multivector with elements in the eight vectors (scalars,
3 vectors, 3 bivectors and trivector).

Above, the stress-energy tensor is treated as independent of the particle, or the field we are
considering. Below, we will see three examples of using this equation, taking into account
possible relations between the particle and this tensor.

9. 1 Considering that the stress energy tensor is zero

If we consider that the stress energy tensor is zero (vacuum solution), we can calculate as
follows:
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h? 1h?
Tuv = 2< R —mc )g,uvlp l,b + __g;w(eﬁvﬁlp-rlpvf a)

h2 1h2
0= 2( R —mc )eul,b ¢ev+§—eﬂ(eﬁvﬁzphpv* e%e,

——<—R mc )euyb Ye, = —h—eu(eﬁvﬁt,[ﬁt,bVJr “Ve,

< R —mc )euyb Ye, = —eu((eﬁvﬁ1,lﬂL1,bVJr “Ve,
)eﬂlpﬂpev = —e#(eBVBIIJTIIJVT “Ve,

(——R + mc

2

h h?
Ee#(eﬁvﬁxpﬂpvge“)ev = (mcz - ER> e, P Tpe,
m h?
e#(eﬁvﬁzp*lpvze“)ev =7z (mcz - ER> e e,
m h?
ePVgytyvie® = ] (mcz - ER) Phy

2

ePVg(V,(YTP)e®) ——(mc —h—R>¢*¢

We can see that equation obtained, takes into account to calculate wavefunction not only
the energy of the particle but also curvature conditions of the space-time in its position
(scalar curvature R).

This is, it is like the energy to be taken into account is not mc? alone but also, we have to
subtract an element depending on the Ricci scalar R. In fact, operating the factor:

m h? m?c?
e\ k)= R

Multiplying by A2c? (multiplying by constants do not change the meaning of the equa-
tion, it just escalates its values):
2¢* — Rh?c?

Taking the square root to get Energy units:

hac2
m2c* — Rh2¢c2 = mc? |1 — ——
" mZc

We can see that the classical energy of amass at rest mc? is reduced by a factor depending
on the Ricci scalar. We will get back to this later.

Coming back to the previous equation. If we perform the multiplication to the bracket, we
can see that the equation is in fact a Klein-Gordon equation [65][67] with an extra element

2 2
that depends on the Ricci scalar R. We can check easily that the units of —— and R are
L2, so everything is coherent,

ePVs(V,(YTPle®) = — < me —h—R>¢*w
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m2c?

eF T (Vo (P 1)e) =( 7 —R)w

m?c?

W — Rty

PV (Vo (PTp)e®) =
Coming back to the equation:
B toreey = M ez t
ePVp (Vo (YTP)e )—ﬁ mc _ER Yy

We can see is that the equation (as expected for a Klein-Gordon equation) can be factored
(a la Dirac way) this way:

m h?
B tyvie® = — 2 __ Ryt
ePVpypTPVze W (mc )ll) Y

t o |m h? m h?
ePVgytyvye® = Jﬁ (mcz - ER) zphpjﬁ (mc2 — R
h

In the end, the equations in alpha and beta are the same, just reversing sometimes or chang-
ing signs. We could simplify even more:

\vj ll,‘r =\/E<mcz—h—2R)e 1/)'I'
B K2 m B

Or performing the multiplication to the bracket:

m2c2
Vo = T R e,

P |mie’ t
Vﬁlll = h2 —Reﬁ'l/)

Which we can see is just the Dirac equation [5][13][31][71] with that extra-term that sub-
‘rn.ZC2
h2

tract the Ricci scalar to the element.
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One important thing is that in Geometric Algebra we do not work with imaginary numbers
(only bivectors or trivector that make its function, you can check [1][[3][4][5][6] for more

2,2
information). So, the element inside [mh—; — R must be positive to keep the coherence.

So:

This means, there is a limit to the value of the Ricci scalar curvature depending on the
mass. It is important to remark that the limit is in the absolute value of the mass, not to the
mass density in volume, so the possibility of arriving to singularities is highly reduced.

If we represent the Dirac equation in standard matrix-tensor notation (not Geometric Alge-
bra) as defined as [71][72] (here the imaginary numbers are allowed):

—ihy*9,p + mcp =0
ihy#o, = mcy
) mc
iy 9 =

m2c?
iyto, = ?Lb

Using the equation obtained in this chapter, it should read:

m2c?
l]/‘uaull) = 7 - Rl/}

So, it will be the same but including this Ricci scalar that is subtracted from the element
2.2
= Both of them have L2 units.

In Annex A5, | show, how following a similar process we can get a modification of the
Einstein equation, with this result:

8nG h? 1
C_4T#V 1 _WR = R!w —Eg#vR +Aguv

One important conclusion of these equations is that the higher the energy of the mass (in
Dirac equation) or the higher the stress-energy tensor (in Einstein equation), the Ricci sca-
lar increases due to gravitational effects. As the Ricci scalar is being subtracted to the en-
ergy of the system (to the particle energy or the stress-energy tensor), the system will arrive
to a balance avoiding singularities. This is summed up in the following equation that im-
pose a limit to the Ricci scalar depending on the mass (not the mass density), reducing
highly the possibilities of arriving to singularities:

m?c?
K<
Other important conclusion is that in the Dirac equation, as we have now the mass and the
Ricci scalar (that depends on the mass), probably finding eigenvalues of equilibrium could
lead to the discovery of the discrete values of the masses of the different particles.
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And it would explain why there are families of three different masses per type of particle.
They would correspond to the eigenvalues depending on the three possible values of the
indices (1,2,3) corresponding to the three dimensions (their three corresponding eigen vec-
tors in the 3 spatial dimensions of Cls ).

9. 2 Considering that the stress energy of the particle is the one of a
point particle (this option if probably wrong)

If we follow [68][69], we can consider the stress energy tensor, just relates to the energy
and momentum of the particle. Being coherent with the units, one option could be the en-
ergy density of the particle defined by its waveform collapse (squared by its reversed). The
units are coherent Energy-L-3 and for the cross elements Force-L2 (pressure) that has the
same units as Energy-L=. So, a definition would be:

T, = mcle,pte,
But we have to take into account that in this context the element mc? is reduced by the
element containing the Ricci scalar (that appeared in chapter 9), so we should use instead:

hZ
T, = (mc2 - ER> e, Yipe,

I remind you that:

iy = yrefpre, = (Yoel +ylef +y2e] +y3el +yte] +ydel +ylel +y7el)(WOe,
+le +PPe; +ples + e, +1Ptes +Yles +7e;) =
W0 +Yle; +Y2e; + Ppes +htese, +1PPejes +PCeses + Y7 ese ) WO + YPle + YZe,
+3e; +Ptese; + Pieze; +Pleie, +1P7ejeses)
So, this is in fact a complicate operation, not a trivial one, with one scalar as result. It has
result in all 8 vectors (scalars, 3 vectors, 3 bivectors and the trivector).

You can see in Annexes Al, A2, A3, A4 different examples of the calculation. For exam-
ple, the most simple on (orthonormal metric) Al, gives:

Yy =p+j (29.1)
With:

| p=W"D%+ @Y%+ WH*+ @3>+ @WH2+ @)+ @)*+ )2
And:

J =200 —*Y° + P3P +p*PThes + 2092 + YiYC — PPt +PSyYT)e,
+2°%° — S + PPYPt + YoYT)es

So considering the definition of the Stress Energy tensor, as commented above:
T, = mcle,pie,

And introducing the equation found in the end of chapter 9:

1 (h? 5 t 1h2 P foot
Tuv =E ER_mC guvlp ¢+Ezguv(e V/?l/) Yvze )

) h? ; 1(h? ) + 1h? s fot
mc _ER ey 1/)ev=§ ER—mc e, lpev+zaeﬂ(e Ve YV e )ev
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5 h? + 1 (h? . + 1h? 8 fot a
mc _ER e Y wev—z ER—mc e Y 1/)31;:55@#(@ Ve Ve )ev

) h? ; 1 ) h? + 1h2 8 fot a
mc _ER ey 1/)ev+§ mc _ER ey wevzzzeﬂ(e Ve YV e )ev

3 5 h? + 1h? P frot a
5 mc _ER ey wevzzﬁeﬂ(e Ve Ve )ev

h? h?
3 (mc2 - ER> e pipe, = Eeu(eﬁvﬁlpfszZe“)ev

3m 2 h? t B Tyt e
Yl mc _ER ey wevzeu(e Ve TYVye )ev

B tput o - 3m 2 th t
e (ePVpyptyVie®)e, =<z |\met—— e, piye,
3m h?
ta _
eﬁVBl,le,bVae = ?<mc2 —ER> l,[JTl,[J
By, (Vv t a _3m 2 th t
eFVp( a(rptp)e)—? me® ——R YT

3m?c?

ePVp(V.(YTp)e®) = % Y1y —3RyYTyY

We can see that we obtain an equation like the Klein-Gordon equation obtained in 9.1 but
with a factor of 3. So, this result seems to be erroneous. Anyhow, we will continue operat-
ing.

If this was ok, the “Dirac” factorization would be:

3m h?
T —
eﬁvlgl/}Tlpvaea = F(mcz — ER) I,ZJTI,[J

In the end the equations in alpha and beta are the same, just reversing sometimes or chang-
ing signs. We could simplify even more:
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3m2c?
Vall) = T — 3R l/Jea

+ 3m2c2 +

But as commented this assumption of considering the stress-energy tensor of a particle as
considered in this chapter seems mistaken, and therefore its results. In fact, in the Klein-
Gordon equation and in the Dirac equations a non-expected factor by 3 appears. So, this
assumption and its consequent results seems wrong.

9. 3 Introducing the Einstein Tensor in the Equation

Coming from the equation we got in the end of chapter 9:

1 [ h? 2 + 1h? B ot ,a
Tuv=§ ER—mc e, 1,bev+zzeﬂ(e VT PVze )ev

And taking the Einstein General Relativity equation [58]-[62]:

8nG 1
C_4Tuv = R,uv - EguvR + Aguv

Operating this equation:

C4

1
Tuv = %(Ruv - EguvR + Ag,uv)

ct 1 c* c*

T =— R —=—g R+A——
w =g " T 2 8ag I T A g I

C4- 4 C4-

C
T. =— R —— g R+A——
W = 8 " T Tong IR T Agrg 9w

And now, we introduce in the equation in the end of chapter 9:

1 h? 2\t 1h? B tot ,a
Ty = 58 | =R = me? | 9h + 5 — g0 (P VpypTy¥le)

C4—

1 1 h? 5 + 1n? 8 foot a
%(Ruv - EguvR + Aguv) = Eguv ER —mc® |PTyYP +§Eguv(6 VBI,U YVqe )

1h2 el (1 Nt 1
5 9 (Vg UVEe) + 3 g | —R = |9 — = (Ruy = 5 GuR + Mgy ) = 0

1R 5 e, (R N, <t 1
5= (Vs (Te0)e®)) + 3 0u (=R = mc? |9 — = (Ruy = 3 9u0R + Agy) = 0

This equation above seems (and it is) very complicated but it can be solvable.
The unknow variables are:

o POYLYPPYiYtytycy’
® 11 922 933923931912 and it could be also gy, if it is not 1 directly
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So, in total 14 (or 15) unknown variables. The equation above, only because it is a multi-
vector equation, is converted into 8 equations (one per type of vector (3), bivectors (3),
scalar and trivector). So not even counting that it is also a tensor equation also (probably
the equations obtained as a tensor equation are linearly dependent to the ones of the multi-
vector), we will have 8 equations.

The rest of the equations we will get from the continuity equation [68]:

elVlT =0
With T defined as (end of chapter 9):

v 1 (> 2 ).t 1h? By ptaut o
T=g lezz ER—mc 1!) lp+§%(e Vﬁl/) l/)Vae )

Or in tensor form:

eAV,lTW =0
Being T,,

1 (h? 5 ; 1h2 8 foot o«
T =3 ER—mc ey l,be,,+§%e#(e Ve YV e )ev

Or in the classical form of the divergence:

v,T* =0
Being:

1 h? 1 h?
T4 = gMgP'T,, = Eg’”‘gp" (ER - mc2> e e, + Eg’l"gp"Eeu(eﬁvﬁlpTwVZe“)ev

L(n 2| o2 Lh? A t
=5y R—me? e Ylyper tooe (ePVpytyvye®)e?

These are another 8 equations. So, in total, we have 16 equations to solve 14 or 15 variables,
so it should be ok. The system is over dimensioned. This means, we can take some of the
unknowns as parameters, or even normalize the system as convenience (making those free
parameters whatever value we want to make a normalization).

Coming back to this equation:

2

L S D\t
Ezg’“’(e VhTPvge )+Eguv ER—T"C YTy —

c 1
g (R = 390K + D) =0

Putting it more symmetric (considering we are in one of the three cases of chapter 7):

4

1 K2 s foot a 1 (n? 5 + c 1
Ezeu(e Vﬁtp YV,e )ev+5 ER—mc ey lpev—%(Rm,—EeﬂRev+euAgw,) =0

This equation, for sure can be factorized a la Dirac way somehow. But the quadratic equa-
tion solution has to be used, complicating the things. | will come back with this in next
revisions of the paper.

The main difference between above equations and original Einstein Field equations is the
number of dimensions considered. In Einstein equations, it is considered space-time (four
dimensions) and the state of the bodies are defined by 4-vectors (position, momentum...).

In above equations, there are considered the 8 dimensions: the three spatial dimensions
(vectors), the three planes (bivectors), the scalars and the trivector (which they turn in the
representation of the time and/or volume depending on the context).
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The same way, the state of the particles is not represented by 4-vectors but by the 8 param-
eters of the wave equation (that includes its state in the 8 dimensions).

9.4 The gravitational bivectors create magnetic-like effects that explain
the speed of rotation of the galaxies without the need of dark matter

As commented in point 9.3, the equations in chapters 9.1 to 9.3 consider the 8 dimensions:
the three spatial dimensions (vectors), the three planes (bivectors), the scalars and the
trivector. We will focus on this chapter in the effect of the bivectors. These bivectors are
not considered in the standard Einstein field equations, that only consider the three spatial
dimensions and the time -so they do not consider the planes or bivectors-.

In Annex A6, you can find an explanation of what would mean that the gravitational fields
are also defined by bivectors. The bivectors create a “magnetic-like” effect in whatever
field they are acting on.

This means, consider two moving particles interacting one to each other. The main inter-
action/force (represented by vectors) normally appears in the direction of the line of sight
of the two particles.

But if there are also bivectors acting, it will appear also another interaction whose direction
will depend both on the line of sight and on the line of direction of the speed of the particles
(in general, on the plane they form and the angle between them).

This effect is called magnetic-like because historically the first interaction that was discov-
ered to have this effect was the magnetism. But it is the effect of whatever interaction that
is provoked by bivectors instead of vectors. As commented, gravitation in this paper is also
defined by bivectors that should create a magnetic-like effect.

The curious thing is that it has been studied if this effect happens in gravitation [73][74]
and it seems that it really happens.

In the reference [73] they study the speed of rotation of the following galaxies:

NGC 1560
NGC 3198
NGC 3115

Leading to the conclusion that the speed of rotation of these galaxies can be perfectly ex-
plained by magnetic-like effects without the need of exotic dark-matter.

The important difference of paper [73] compared to the present paper is the following. In
paper [73] and, in general, for all the defenders of gravitomagnetism, the gravitomagnetism
has to be added as an ad-hoc addition to gravitational theory to match certain effects. As in
[73] where it is added to the equations to match the rotation of galaxies.

But in the present paper, the gravitomagnetism effects appear directly in the equations of
gravitation because of the existence of gravitational bivectors, not needing to add the grav-
itomagnetism ad-hoc. It is just inherent in the equations of chapters 9.1 to 9.3 just because
the bivectors are directly part of them.

Anyhow, all the conclusions commented in [73] regarding the accurate matching of meas-
ured rotation of speed compared to calculated one using gravitomagnetism for the above-
mentioned galaxies would apply also for the present paper. Leading to the non-necessity
of dark matter to explain the speed of rotation of the galaxies.
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See Annex A6 and [73][74] for more information.

9. 5 The Energy-momentum relation create a negative energy whose
value is exactly the one expected for the Dark Energy

In Annexa A7 and A7.1 we make a study regrading dark energy. | will make here a sum-
mary. Please, check it for details.

The most identifiable effect of the dark energy is the existence of the cosmological constant
A [84]. Which value [84] is in the order of:

A = 1.1056E — 52m™2
It is to be remarked that although being an effect of energy, the dimensions are Length.

In the paper [80] we get to the following energy-momentum relation coming from the equa-
tions (chapters 7 to 9) of the present paper:

E? =m?c* + p2c? — Rh%c?

You can check that there is a new term that reduces the energy of each particle depending
on the Ricci scalar (the space-time curvature in the place where the particle is lying). This
term has the units of energy squared as it has to be coherent with the rest of the equation.

If we want this term to have units of Length-2, we have to make the following escalation. |
call it escalation, because we are not modifying at all the equation. We are just dividing by
constants, not adding new variables. The equation is the same. In fact, as if some authors
do, I used all the constants equal to 1, the following operation would not even be necessary:

E?  m2c* p?c? Rh2c?

h2c2 " h2c? + h2cz  h2c2

E2 m2C2 pZ

e w T R

The equation above has the same meaning as the original but in another units. Here the
energy squared has the units Length2. So, the last term (-R) represents the square of the
reduction of the energy (a negative energy) that apply to every particle in the units Length
2

What we do in Annexa A7 and A7.1 is to calculate the value of this -R considering different
possible metrics of the universe (Interior Schwarzschild metric and exterior Schwarzschild
metric via the Kretschmann scalar. As commented this R represents a reduction of energy
(a negative energy) in the units Length2.

We get to the following results:

RintSchw = 1.603E — 52m'2
Rintschwi/s = 0.5345E — 52m™2

Rexeschw = \/I? = 1.852F — 52m™?2
While the cosmological constant [84] is in the order of:

A = 1.1056E — 52m™*?
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You can see that the value of R is (even considering different metrics) is in the order of A.
This means, this equation obtained applying geometric algebra to Klein-Gordon equation
and Einstein Field equations and in [80]:

E?  m2c* p?%c? Rh%*c?

h2c2 " h2c?2  h2c2  h2c?

EZ mZCZ pZ

WZ - m TR
Has led (not added ad-hoc, it has appeared directly in the equations) to an element (-R) that

reduces the energy of the particles in the exact same value as expected to be considered a
candidate for the Dark Energy.

R

10 Influence of Ricci scalar in the energy of a particle
We have seen in 9.1 the following equation:

5 RhA?
Eparticle =mc* [1— W
But what is the influence of the second element? Let’s check the influence in a proton at
the surface of Earth

We know:

Myroton = 1.6726E — 27kg
h = 1.05457E — 34/ - s
¢ = 299792458m/s

To calculate the Ricci scalar R is more complicated. If we use the Schwarzschild metric
would be zero. What we can do is to calculate the Kretschmann scalar [70] considering
Schwarzschild metric in the surface of Earth (related to the Ricci scalar curvature) and take
its square root (its dimensions are L™ and the Ricci scalar is L. As commented, this is just
a reference:

11Nm?

kg
Mearen = 5,9722E24 kg
T = Toaren = 6,371E6m

G = 6,6743E —

48G?*M? |48 -(6,6743E — 11)%(5,9722E24)?
VKretschmann scalar =

ctr6 299792458%(6371E3)5
= 1.18821E — 22m™2

Coming back here, now considering a proton:

| Rw2
Eparticle =mc* [1— W
= 1.6726F — 27
2997924582 |1 (1.05457E — 34)* 1.18821F — 22
1.6726E — 27 '

= 1.503257E — 10v1 — 7.9E — 64
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We can see that the square root factor effect is several orders of magnitude lower than the
original energy. Even if we consider R=1 (an example), we would be in a similar situation;

RRh2

— 2
Eparticle =mc* |1-— m2c2

(1.05457E — 34)2
1.6726E — 27

= 1.6726E — 27 - 2997924582\]1

= 1.503257E — 10V1 — 6.651E — 42

We can see that that the square root factor effect is neglectable in general. And only in very
big gravitational fields (with R very high), the second element could start having an effect.

Anyhow, this last point is important. As commented in chapter 9.1, the higher the mass,
the Ricci scalar increases due to gravitational effects. As the Ricci scalar is being subtracted

to the energy depending on the mass, the system will arrive to a balance avoiding singular-
ities.

11. Conclusions

In this paper we have used Geometric Algebra to be able to embed the Klein-Gordon equa-
tion for a particle in a non-Euclidean field (vacuum solution in a gravitational field) getting

the following equation:
ePVs(V, (Y TP)e®) = —( mc? — h—R> Yy

2

ePyg(V, (lpﬂp)e“)— w*w Ryt

Which is similar to the Klein-Gordon equation but with an extra term involving the Ricci
scalar R.

Where Ty is the wavefunction collapsed (multiplied by its reverse), this way:

P = WO + Ple; +Y2e, +Pie; —Pte, —Pies —Pleg — 11’797)(11’090 +le
+Pe; +Ples + Ptey +Ydes + e +e;) =p+j

Being p and j the probability density and the fermionic current respectively.

The equation above can be factored to be simplified into:

m 5 h?
Vb = 7z mc? — —R Ye,
m?c?
Vop = e R e,

Which again, is similar to the Dirac equation but with an extra term involving the Ricci
scalar R.
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Meaning that the energy of a particle is somehow decreased by a factor that depends on the
Ricci scalar (the curvature of the space where it lies in):

Rh?

m2c2

E

— 2
particle — mc 1-

This reduction is in general negligible, being several orders of magnitude below the normal
energy. Anyhow, as the mass increases, the Ricci scalar increases also due to gravitational
effects. As the Ricci scalar is being subtracted to the energy depending on the mass, the
system will arrive to a balance before becoming a singularity.

This is summed up in the following equation that impose a limit to the Ricci scalar depend-
ing on the mass (not the mass density), highly reducing the possibilities of arriving to sin-
gularities:

m?c?

R<—

Even considering the Dirac equation in standard tensor notation:
. mc
iykop = ¥

m2c?
iyta, = 74}

We could adapt it, just adding that element to the equation:

m?2c?
iy“(?#l/) = ? — Rl/)

In a similar way we obtain a variation of the Einstein equation with this form:
8rnG h? 1
C—4T#v 1 _WR = Ruv _E‘g‘”’R +Ag‘uv

Following other path, we found another equation:
4

1 h? 1 h? c 1
S (PTp(Va(W1)e®)) + 5 910 (;R - mc2>¢*w ~ 5 (Ruv = 39uR + Dg) = 0

This equation (that are in fact 8 embedded equations) have 14 or 15 unknown variables: 8
coefficients of the wavefunction ° toy” and 6 metric elements g;; (i,j from 1 to 3) with a
possible added gg0.

The rest of the equations (8 equations more) come from the continuity equation:

V,T* =0
Being:

1 (h? 142
_ _ +
T = gMgP'T,, = > (ER - mc2> etptper + o et (ePVpyptyv,e®)er
So, the equation is in fact, solvable.

Also, we have commented how the magnetic-like effects of the gravitation appearing from
the equations can explain the speed of rotation of the galaxies (studied NGC 1560, NGC
3198 and NGC 3115) without the need of Dark Matter.

The last point studied is how the obtained equation:
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E? = m?2c* + p2c? — Rh%c?

E2 m2C2 p2

nzez- pz Tz R

Has an element (-R, representing the Ricci scalar curvature) that here is acting reducing the
energy of the particles. It represents a reduction of the Energy but in units Length in the
latter equation. This value of R is calculated (considering different metrics for the universe)
to find that corresponds almost exactly with the expected value of the cosmological con-
stant (the effects created by the Dark Energy):

Rintschw = 1.603E — 52m~—2
Rintschwi/z = 0.5345E — 52m™2

Rexesenw — VK = 1.852E — 52m™2
While the cosmological constant is in the order of:
A= 1.1056F — 52m™2

So, making this -R a perfect candidate for the Dark Energy. But not as an added element
to match the observations, on the contrary, an element that appears directly in the equations
resulting that match the observations.
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A1l. Annex A1l. Bra-Ket product in Euclidean metric

The bra-ket product of a reversed spinor (in orthogonal metrics is the same as reverse) can
be calculated as:

Yl = yref e, = (Yool +ylef + el + el +ef + el +yoel +y7el)Wle, + Ple, +y2e,
o oy L TWe Vet Yle bt yle) =vy =
= e +Ple; +PPe, +Pie; —Pre, — Ples —YPles — T, ) (YOey +Ple; +PPe, +1hie; +ihte,
+pies +hles +PTe,) =
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= @W° +le; + e, +1hPe; —Plees —Pieze; —Poeie, — ese,e) (W0 + ey + e, +1hPey
+tee; +hiese, +Ptee, +1he e e;) =
WO +Y°Ple; + POhle, + Y Ypies +POPteses + YPOPtese, + Y YCere, + Y Y esez05 +
YPe + (W) +lYPe e, — Plpiese, + i te e e; — i tes + P e, + Pl e e +
Y2YOe, —P2plese, + (W22 + pPiPie,e; + YPhte; + Y2pieseye; — pPPte; + Y2 eze; +
V3 POe; + i Plese; — PPPiee; + (W3) — piYte, +PPte + Y3 Y0e e e + Y Y ere,
—Y*YOee; — PrPle ese; + Ptple; —Prple, + (W) +PtyPteie, — Yrpese; +PtyPTe; —
—P5Yeze; — piPles — P Preie,es + PSYie; — PiPtese, + (Y5 + Y Yte e + YPTe, —
—PSPlese, + oihle, — poihPe, — Yo e e e + o te e, — PSPSe es + (YO + YSyTe; —
— 7P e es — YT e o5 — W eze; — Y PRee, + YT te + T Pe, + Y0 + (Y7)?

Please, take into account that for simplification | have considered directly e, = 1. If in the
end, it has another value, it has just to be considered in the operations.

Continuing with the operation. If we separate from the result above only the scalars, we
have:

@2+ @2+ @D + @) + @D + @) + @) + @7)?
We will call this sum p (probability density):
p =%+ @D+ @D+ @2+ @+ W+ W)+ @)?
If we separate the components that multiply by e; we get:

POPT+PIP° — PP + 3 + T + PR — YoY? + YTyt
= 2190 — PYE + PP +YtyT)
In e, we get:
.¢’0.¢’2 + .¢,1¢6 + .¢’21/}0 _ 1/}31/)4- _ 1/}41/)3 + l/)51/}7 + l/)61/)1 + 1/)71/)5
= 2(°%* + Pp® — PPt +PSyY7)
In e; we get:
l'[)01'[)3 _ 1/)11/)5 + l'[)21)04 + ¢3.¢)0 + 1,041/)2 _ 1/151,01 + l/)61,07 + ¢7¢6
= 2°%° —PY° + PPt + YY)
In eyes:
2= ¢0¢4 + l/)1'¢’7 + .¢’21/}3 _ l/)31/}2 _ 1/}41/)0 + 1/}51/)6 _ l/)61/)5 _ l/)71/)1 =0
In ese;:
YOS — P 3 + PPy, + P3P — Y — YO + POt — YT = 0
In e e,:
12 1/)01/)6 + l,l)ll,bz _ 1/121,01 + 1/131,07 + 1/141,05 _ ¢5¢4— _ I!J6l,b0 _ lp7¢3 =0
In e eyes:
o 17)01/)7 + Pt +P2P° + PPYe — Yt — PP —OPd —yTY® =0
If we call vector j (fermionic current) the sum in e;, e, and e;, we get:
J =200 — 2yl + 3 +ptPT)e + 2% + iyt — P3Pt +PPyYT)e,
+ 2% — P S + PPP* + PCiPT)e;
So, in total we have:
Y=y P=p+] (291)
With:
| p =@+ @Y+ @D+ @+ @2+ @) + @) + @7)°
And:
J=2@"° — 2yl + 3 + prPT)e + 2% + it — P3Pt + PPyYPT)e,
+ 2% — Y1 Y° + PPt + PP )es
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Anyhow, in general we can always say that whatever the final result is, the product will
have the following shape:

Pl = jhe,

Where j# are just scalar coefficients (or functions that output a scalar) and the e, are the
basis vectors as they have been defined throughout the paper.

A2. Annex A2. Bra-Ket product in non-Euclidean metric (Orthogo-
nal but not orthonormal)

We apply the following relations, when performing the multiplication:
(e0)* = lleoll* = goo
(e)? = llell* = g11

(ez)z = ||e2||2 =022
(e3)* = llesll* = g3

€0€; = €€
€63 = —€36,
€36 = —e,€3
€16; = —€6

For simplification we will consider directly e, = 1. If in the end, it has another value, it
just will have to be considered in the operations.

Py =yrelpe, = (Yoel +yplel +y2el +ylel +yrel +yiel + Yl +yel)Wey + Yle; + Y2,
+Yles +ihley +Pies + e +PTe;) =
@ +ley +pPe, +Ples +Plese, +Poeres +Poese; + P esee) W0+ Pley + Ple, + Ples + Pteses +Pese, +Peie, +Teieze;) =
YO YOPles e, +YPes + PP ees + YT eser +YOYCere, + Y0 erese +
Y'ye; + Illlzllelllz +lplee, — Plpieses + YiYterees — P PollesllPes + YiyCllellPe, + Y lleslPees +
2Yle, — P Plese, + ¢22||ez”2 +p2Pie,e; + PpPYtlleyllPes + YiPtese,e; — lpz¢6¢xy'—’1'—’ze3 + 937 les % e e,
—p*Yee; —Prpleieses + YrPlleslPes — YrpillesliPe, + l/’42“92“2”‘33“2 +yp*pilleslere, — Yiylllesli®ese; + Y7 llezll?llesll?e; —
—pYPlese; — PiYllleslle; — Yiyesezes + PoPillesliPe, — Yoyt lesllPese, + l/’52”93“2“‘5‘1“Z +y*yPcllesliPeses + Yoy lleslPllesll%e, —
—poyYere, +Ytlleille, — PoY?llesllPe; — Yopierese; + Yot lPeser — YOYOlle e 5 + lpézllelllzllezllz + 9oy llell’lle.ll?es —
—p7Peieze; — YT llesllPeres — PP llesllPese; — WP lleslPere, + YT e P lesliPer + TPC llesllleslPe, + Y7l lles I llezllPes
+ 97 lledlPlle: 1 llesll?

If we separate from the result above only the scalars, we have:
p =)+ )01+ 0)2g22 + ()2 33 + ()2 922933 + (0)*g33911 + 0)911922 + (W)* 911922933

We will call above sum p (probability density).

Now, if we separate by e, :

PP+ — P2 YClley |1 + YPyslles I + Y Y7 llealPllesll? + Y2 llesll* — oy?lle,|I1?
+ 7Y e | lles]I?

20" = P2 YP°lleall* + 39t llesll® + 7 lle, I lles]|®)
YO+ PP — PP gy, + P3PS gy + P17 graGss + PP gas — Yo Gs, + PP G20053
200 — Y2 gy, + P3P gz + P17 gr2933)
By e, :
FPOU? + P 8llenl® + PPp° — PiPtiles | — Wi llesll* + 3y lleslI*lleql* + wouptlles I
+7PClleq |I*lles I
2(+9°P2 + P pClle I — w3p*llesll® + o7 llesll? ey 1)

FPOY? + P PO gyy + P20 — PPt gss — WP gss + PSP gz 911 + YO gy + Y5 g110ss
2+ + P pogyy — Y PP gas + W Y7 ga3011)
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By e; :

+POU° —prpSlles|? + P2Ytlle,|I? + 290 + ryPllesll” — Yoy tllesll? + oy Il lle, I
+P7PCllelPlle.|I?

2(+9°93 —PrpBlle I + p2p*lle.ll? + o7 lle; lI*lle,l1*)
+POY3 — S gys + WPt gp + P3P0 + PP gy — YIY g1y + YUY 911 G20 + PP G11 922

2+ — PP gy + Y Prga, + oY g11952)
In e,e; plane:

HPOPT P lleg 12+ PP — PR — Y0+ YSyCilenll? — poySlledl? — Tyt llen = 0

In e;e; plane:

PP =P PR lle | + PPt — yrgCllell? — Y + yepillell? — ygRlle I = 0
In e;e, plane:

HPOPE P — PRt 7 lles P+ prpSlles It — pptlles i — oy — ypRllesll2 = 0
In e,e,e; plane:

PO+ PP PR+ YT — Y — Y — Y — TP = 0

So, in this case, we can sum up the result as:

Yy =p+j
Being:

p =%+ @WH2%g11 + WGz + W*)?2g33 + ®*)? 922933 + ¥°)2g33911 + W°)*g11922
+ (W7)* 911922933

J =20 —p*POg,, + W3PS g33 + Y7 ga0933)e
+ 2(+ 2% + P10 g1 — Y P3ga3 + Y gszgi1)e;
+ 2(+ Y3 — P15 g1, + PPt gan + oY g11922)es

Anyhow, in general we can always say that whatever the final result is, the product will
have the following shape:

Py = jte,

Where j# are just scalar coefficients (or functions that output a scalar) and the e, are the
basis vectors as they have been defined throughout the paper.

A3. Annex A3. Bra-Ket product between the reverse of a spinor
and a spinor in non-Euclidean metric (Non orthogonal and non or-
thonormal). Deberia llevar una capa forrada de armifo

We should do the following operation again:

Yhy = prefpre, = (Yool +ylef + el +yiel + el +yiel +ydel +y7el)Wle, + Yle; + e,
+1pde; + hte, +Pies + Poes +p7e;) =
(lpn +le, + 1/’292 + 1/)383 +1tese, + wseleS + 1Pﬁﬁ'th + ¢7e39281)(¢n +le, + 'PZEz + l/J383 +ptese; + l/J5€3€1 + l/JGﬁ’lez + e e,e5) =

But using the following rules commented in chapter 3.3.

(e)? = eie; = llegll* = g;
eiej = ZgU - ejei = 29]1 - e]'ei
€€ =6€i€ =Jgij = Yji
eiej =ei'e]’+€i/\e]’ =g”~+eiAej
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(31)2 =66 = ”‘31”2 =011
(32)2 = €6, = ”32”2 =22
(33)2 = €363 = ”33”2 =033

e18; = 2gq1; — €361 = 20y — €26
€83 = 20,3 — €38, = 23, — €3€;
ese; = 2gs1 — €183 = 2¢y3 — €,€3

I am not going to do it (you have a start of these calculations in[63]), but anyhow, you can
understand that the result, whatever it is, will have this form:

IIJTIP = jﬂeu

Where j# are just scalar coefficients (or functions that output a scalar) and the e, are the
basis vectors as they have been defined throughout the paper.

A4.Annex A4. Bra-Ket product between the inverse of a spinor and
a spinor in non-Euclidean metric (Orthogonal but not orthonor-
mal).

If instead of multiplying by the reverse, we multiply by the inverse (in orthogonal but not
orthonormal metric), we should use the following rules from previous chapters:

(eo)z ||eo|| = Joo

(31)2 = ”91”2 =911
(ez)z ||ez||2 =922

(93) = ||e3|| = 033
€0€; = €€
€63 = —€36;
€361 = —eq€3
€16, = —€364

N1 i b &
() == = Talr
ejei _ ejei
(ee)” e lPlediz 938

Where all the above relation we have seen in previous chapters.
Operating:

€

lle.lI?

€€ €163 €26y €3€261 )

(2] €3
+y? +? +y* +° +y° +y7
llesll? llezlI*lles 1> llesl*lle, ] [EARIEATS llelI%llez11lles]I*

lle-1I*

W +le +pe, + Pes +Pteses + Pese; +Poere, + 1 esee;)

e (R

€1€,€3

R P R o e A P A o e A P i A P o e A o e

e, e, eye; e, e, eje;
0. ‘le +( ‘l)Z_ 2. ‘le _+ 3 ’l_e_ 4. ‘le e 5. ’l_+ 6,01 "¢ 7. 1—+
LR R TP e TP e T P B P R P e PN ER A PR T PR
Yoo, + PP T, (P2 — YRR T+ PR — pPRe ey o — R — T
el e el Teal Teal TealF e

€

e e, e, e e e
0. 3e — 1 3e _+ 2 3_9 +( 3)2_ 4. 3_+ 5.,3 "% 6./,3
Ve = e o W e O Y G W o — W e e = e
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e ||z€z€3+lll¢ez Pipte, + (W) — oY ”e E e, + oyt 3”E”2+llﬂlf ”e et

+PoPtees + Pyt

€

W Y e Ty

e
! IIe IIZ IIE II2

e.
YW ese —PiPRes + Y e e +YRe + Y
2

+¢°¢6e1ez+w1¢6efw2w6e1+w3w6e1e2”fﬁ U e + U ”2+<¢6>2 Ve 3”2

TleslZ
0,7 1,7 2,7 3,7 4,7 5,7 6,7 7\2
+"P ereres + Y eges + PP eser + PP ey + ' e + PP ey + Y s + ()

The scalar part is the same as the one multiplying by the reverse in a Euclidean orthonormal
metric:

p=WD%+ WD+ WH*+ @2+ WM+ @)+ @) + (W7)?

This could be a hint, that probably this is the real operation that has to be done in general,
instead of the reverse. The issue is that in orthonormal metric, the inverse and the reverse
are the same operation. But this is not true in general, in non-orthonormal metrics.

If continuing with the operation, for example, we separate by e; we can see that the result
is not as compact and in orthonormal or orthogonal solutions.

1061 ul_&ze1 5361 7461 3 — 1)24/,6 417
A PR AR PR A A A
Even we can see that the result in the planes is not zero. Example e,e;:

€263 €263

VN T VY e~V e e T s YW et VW e e U e,

Or e;e,es , also different from zero:

€1€,€3

€1 2]
—P7° —Phple —PSplee -y’ + Pt s e + YRPe e
lleslI*llezlI*lles 1> l||€z|| ||€3||2 ! 2||€ ||2 ||€1||2 ||€2||2 lle, I 727 Hleol2 ™

+ 3o 9192“e B +P°Y7e e,e;

Anyhow, in general we can always say that whatever the final result is, the product will
have the following shape:

Yy = jhe,

Where j# are just scalar coefficients (or functions that output a scalar) and the e, are the
basis vectors as they have been defined throughout the paper.

In case that we perform this operation (multiplying by the inverse) in an orthonormal met-
ric, we will get the same result as in Annex Al (as the inverse is the same as the reverse in
this case).

In case, that we perform this operation in a non-orthogonal (and therefore non-orthogonal
case), we will have to follow the rules in chapter 3.3.

Anyhow, the result will always have this form:
Y = jhe,
A5. Annex A5. Other considerations regarding chapter 9

In chapter 9.1 we have made a madification in the standard tensor/matrix notation in the
Dirac equation based on the results of this paper. From here:

mc
a[,tlzb = Tlp
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To here:

m?2c?
ly"a#l/) = 7 - Rl,b

Why not making similar changes in other equations? For example, as we have reduced the
factor that involves the mass in above equation, why not making the same in the stress
energy tensor for example?

If we divide this factor:

m-=c
h?
By:
m?c?
hZ
We get a per unit factor of:
hZ
LR

This is the factor to use in equations that are quadratic in 1 (like the ones involving Stress-
Energy tensor or Ricci tensor. And the following the one that are liear with ¢ , like the
Dirac equation above.

hz
m2c?
So, for example the Einstein equation with this modifier should read something like:

R

h? c* 1
Tur (1= 2 R) = s (R = 39wk + )

Going, even further, we have used in chapter 8, a step where we converted the Ricci tensor
in Ricci scalar in a not very rigorous way. We can see that there is no problem with that as
we could put it directly in the equation this way:

h? c* 1
Tur (1= Sz Bov ) = g (R = 508 + )

Going even further, to assure that the divergence of the stress energy tensor keeps being
zero, we could add the subtraction by the half of the Ricci scalar, this way:

h? 1 c* 1
Tur (1= 72 (R = 390R) | = 1 (R = 39 + )
Or even include the cosmological constant:

C4

1
= (R = 29 + g

Of all these possibilities, the most possible (or the one most coherent with the paper) is the
one already commented:

h? 1
Tir (1= 2z (R = 39 + A
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h? c* 1
Tur (1= 2 R) = g (R = 39wk + 0
Or in the typical form:

8nG h? 1
C_4le 1 _WR = R[,Lv —EgHVR +Aguv

The same way, if consider that instead of the Ricci scalar we should use the Ricci tensor,
the Klein-Gordon equation should read:

m h?
eﬂ(eﬂvﬂzp*tpvge“)ev =4 (mC2 - ERMV) eﬂz,bfl,bev

With all the different variations as commented above regarding the stress-energy tensor.

We cannot take a “Dirac equation” from here as we cannot take the “square root” (or fac-
torization in two factors) of R,,,.

A6. Annex A6. Considerations about the gravitational bivector
(gravitomagnetism-like)

You can find in [76] a simplification of how magnetic effects work.

Consider two charged particles moving in parallel in the direction of the x axis. They are
separated a distance r in the direction of the y axis. This means, they are moving in parallel
in the xy plane with a separation of r. And the speed is in the direction of x and their
separation is the axis y (both lines are perpendicular).

Considering standard algebra, the magnetic field will be in the z direction:
Bxtxt=8xy=2
B« Z
And the force will be (we can obviate the signs; we just need the direction axes):
FxdXB=2xzxj

So, we can check that the magnetic interaction when the line of sight and the speed of the
particles is perpendicular, it is acting in the line of sight.

Now, let’s do the same calculation of the direction of the magnetic interaction, but using
geometric algebra:

B < U1 = eqe,
F < DB = (e;)(e1e;) = ejeje, = (e)%e; = e,

The juxtaposition between vectors, means geometric product. And we are considering an
orthonormal basis where e; corresponds to X, e> to y and ez to z.

You can see that the direction of the force obtained is the same (y or ey).

The issue with signs (in the first equation the result should be -y) comes because a minus
sign should be added when converting the traditional cross product to the geometric or
wedge product (see [1][3] for further explanations) that I have not included for simplifica-
tion.

The message of above equations can be summed up as:
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F x (e)(ere;) = e

When we have a field defined by a bivector, in this case the bivector eie,, the interaction
depends on a vector defined by the affected particle (in this case speed, in the direction of
e1). But the effect of the bivector will not be in the direction of that vector but in the one
defined between the product of the bivector and the vector (in this example the result is e;
that in fact is perpendicular to the speed vector e;).

As commented, the gravitation/tensor equations defined in chapter 7, 8 and 9 will go from
indices 0 to 7. This means, they include, not only the 3 vectors (representing the 3 spatial
directions), but also the 3 bivectors (representing the 3 planes) and the scalars and the
trivector (representing time and/or volume depending on context).

The issue is that if gravitation includes also bivectors, magnetic-like effects would be ex-
pected as explained before.

The thing is that in fact these effects seem to exist [73][74], as we will see now. And they
have been already studied. But with one main difference. Normally, these effects were
considered historically as an ad-hoc addition to gravitation to explain certain phenomena
(as speed of rotation of galaxies) [73]. But in this paper, they are not an ad-hoc added
interaction, they come directly from the equations, where these bivectors (and consequently
their magnetic-like effects) are included.

But, in the present paper, the magnetic-like effects do not appear as specific solutions to
the equations for certain situations. On the contrary, they are directly included in the grav-
itational equations themselves (even without solving them), just because the existence of
the bivectors in the gravitational equations in the first place.

If we consider the classical gravity [78] and Coulomb force [79], we have:

S mym
F=-6—32¢
r
o 1
P 61162121ﬁ
4mey T

Now, if try to make an “equivalence” of the constants in boih equations, we arrive to:

Also, if we consider the equation that relates the permittivity and the permeability in vac-
uum, we have:

So following the “equivalence” commented before, we have:

1 4G
g = —
Ho _ 1 2 c?
4G

You can find that these relations are correct in [73] and [74].
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In the reference [73] they study the speed of rotation of the following galaxies:

NGC 1560
NGC 3198
NGC 3115

Leading to the conclusion that the speed of rotation of these galaxies can be perfectly ex-
plained by magnetic-like effects without the need of exotic dark-matter.

The important difference of paper [73] compared to the present paper is the following. In
paper [73] and, in general, for all the defenders of gravitomagnetism, the gravitomagnetism
has to be added as an ad-hoc addition to gravitational theory to match certain effects. As in
[73] where it is added to the equations to match the rotation of galaxies.

But in the present paper, the gravitomagnetism effects appear directly in the equations of
gravitation because of the existence of gravitational bivectors, not needing to add the grav-
itomagnetism ad-hoc. It is just inherent in the equations of chapters 9.1 to 9.3 just because
the bivectors are directly part of them.

Anyhow, all the conclusions commented in [73] regarding the accurate matching of meas-
ured rotation of speed compared to calculated one using gravitomagnetism for the above-
mentioned galaxies would apply also for the present paper. Leading to the non-necessity
of dark matter to explain the speed of rotation of the galaxies.

It is also to be noted that there are other authors [75] that consider that the magnetic-like
effects could appear just because of the dragging-effect [77] or the non-linear effects of
general relativity, when solving Einstein Field equations for certain cases [75]. | just
wanted to add this, so you can work with all the information.

A7. Annex A7. Considerations about Dark Energy

The most identifiable effect of the dark energy is the existence of the cosmological constant
A [84]. Which value [84] is in the order of:

A = 1.1056E — 52m™2
It is to be remarked that although being an effect of energy, the dimensions are Length2.

In the paper [80] we get to the following energy-momentum relation coming from the equa-
tions (chapters 7 to 9) of the present paper:

E? =m?c* + p%c? — Rh%c?

You can check that there is a new term that reduces the energy of each particle depending
on the Ricci scalar (the space-time curvature in the place where the particle is lying). This
term has the units of energy squared as it has to be coherent with the rest of the equation.

If we want this term to have units of Length?, we have to make the following escalation. |
call it escalation, because we are not modifying at all the equation. We are just dividing by
constants, not adding new variables. The equation is the same. In fact, as if some authors
do, I used all the constants equal to 1, the following operation would not even be necessary:

EZ m2c4 pZCZ RhZCZ

h2c2 K22 + h2c2 K2c2

E2 m2C2 p2

Rz w T R
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The equation above has the same meaning as the original but in another units. Here the
energy squared has the units Length2. So, the last term (-R) represents the square of the

reduction of the energy (a negative energy) that apply to every particle in the units Length
2

S0, let’s calculate this value and check if it corresponds to the value of the cosmological
constant A. This means, let’s check if this term can be the origin of the “dark energy”.

To calculate the Ricci scalar, we have to decide which metric to apply to the universe. The
most appropriate for an isotropic universe would be the interior Schwarzschild metric [85].

According to some authors the Ricci scalar of the interior Schwarzschild metric is:

_1(876)

R
3 2

(0 +3p+-)

Being p the Energy density (in kg/m®) and p the pressure. The three points represent some
other elements that normally are considered small compared to the previous ones.

In other references [83] -probably depending on different assumptions or definitions-, the
Ricci scalar of the interior Schwarzschild metric does not include the 1/3 factor [83].

8nG

c2

R=——(p+3p+-)

As it is just a factor, and what we want is to calculate an order of magnitude, let’s use the
latter equation that does not include it. Anyhow, as the relation between both equations is
pretty straight forward, it can be added if it is discovered that the one with 1/3 is the correct
one.

For simplification, let’s consider that the pressure is zero -or very low compared to energy
density- and the points elements can be neglectable. This leads to:

8nG
R = 2p
C
So, to solve the equation, we need to know the value of the energy density p.

The value of p (considering that corresponds to the critical density) is calculated using the
Hubble constant [81][82][84]. Its value is:

67.66’%" 67.66 <"

- S —2192F — 18571
1Mpc _ 3.086E19km 9 8s

Using the equation [82], we can calculate the density as:

3H2 3(2.192E — 18s571)2 kg
= = = 8.598F — 27—
8nG 8m(6.67F — 11m3kg=—1s72) m3

p

And now, we can introduce it in:
R = 8nGp

c?

8m(6.67E — 11m3kg~1s72) (8.598E —-27 %)

R = = 1.603E — 52m™?

(299792458?)2
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That you can see that is very near (or at least of the same magnitude) as the cosmological
constant A:

A = 1.1056E — 52m™2
So, this R representing an energy to be subtracted to the particles according to:
E? =m?2c* + p?c? — Rh%c?

EZ mZCZ pZ

wWZ - m TR
Is a perfect candidate for this dark energy.

—R

R = 1.603E — 52m™2
A =1.1056E — 52m™2

Not much more to say here, the numbers speak by themselves. An equation that has come
from the equations of this paper (from chapters 7 to 9), has led to an appearance of a re-
duction of energy of the particles (a negative energy) that is a perfect candidate to corre-
spond to the dark energy.

A7.1 Annex A7.1 Other calculations for R that lead to similar re-
sults

In A.7 we have calculated:
R = 1.603E —52m™2

Using the equation of R that does not include the 1/3 factor. Just for info, if we had used
the equation for R that includes the 1/3 factor, we would have gotten:

1
R= §(1.603E —52m~2) = 0.5345F — 52m™2
A = 1.1056E — 52m™2

That is also in the order of A although not so precise. But the idea that the concept that
this negative R in the following equation could be the candidate for the dark energy keeps
being the same:

E? = m?2c* + p%c? — Rh%c?

EZ mZCZ p2
= +=-R
h2c? h2 h2
Another thing we could do is to use another metric, to see if we obtain a similar result or
not. Instead of using the interior Schwarzschild metric, let’s use the exterior Schwarzschild
metric.

In the exterior Schwarzschild metric, the value of the Ricci scalar is zero. But we can use
the Kretschmann scalar instead [86].

48G*M?
RS
The Kretschmann scalar is a quadratic element. Its units are Length™. The Ricci scalar is a

square element (Length). So, to convert the Kretschmann scalar to an equivalent Ricci
scalar, we have to take the square root:
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V48GM
R—VK="—

cer
Now, considering spherical symmetry (as in fact it is the Schwarzschild metric) we can
make some operations to obtain the equation as dependent of p (the energy density in
kg/md).

V@B M i/_GMGﬂ) VaB(in)6 m  Va8(Sm)Gm
T2 3 (ﬁn) c? tors c? v

3 3

\/— 4
il
So,
2738 (*
R=\/4_8£27T)Gp

Now, we apply the value of p we have calculated in Annex A7:

vwow _won(ix)_¥(n)0 w i ()

2 3 2 3 (4 - 2 4 - 2
c? r c r(gn) c ERTS c

p

29 020(6.672E kg
= kg 8598E—27——1852E 52m2

(299792458 s)z

So, we have:
R = 1.852E —52m™2
A = 1.1056E — 52m~—2

That again is in the order of A, even having an assumption of a different metric.

In fact, the Ricci scalar in the exterior and the interior Schwarzschild metric are in fact very
similar (see Annex A7):
Roxeschw = 1.852E — 52m™2
Rineschw = 1.603E — 52m™2
Rintschwi/z = 0.5345E — 52m™2
A = 1.1056E — 52m™2

One point to be commented also is the possibility that these equations are “circular”. In
Annex A7 it is calculated the critical density. This density is defined as the density needed
to have a near flat space and is calculated using the scape velocity equation. It could be the
Ricci scalar curvature was another representation of this “escape velocity” so we are incur-
ring in some kind of circular reference. This is to be studied.

One last comment is regarding the pressure in the equation of the Ricci scalar for the inte-
rior Schwarzschild metric:

R =

A study should be done of how it affects when it cannot be considered zero and this could
be related to the non-exact equality (although yes in the order of magnitude) between A
and R in the previous calculations.
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Also, we could consider the not at rest particle case with a linear moment different from
zero in the following equation:
E? =m?c* + p%c? — Rh%c?
E2 m202 p2

e w T R

But the negative element -R will be the same whether the linear momentum (p) is zero or
not in this equation. But it could affect indirectly if the linear momenta of the different
particles are affecting the pressure value in the equation of R (via the square of momenta)
and so really affecting the final value of R.
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