$\pi-e$, $\pi+e$, πe and $rac{\pi}{e}$ all are irrational numbers

Amine Oufaska

July 8, 2024

Abstract

It is proved that $\pi-e$, $\pi+e$, πe and $\frac{\pi}{e}$ all are irrational numbers . The proof is essentially elementary, it is an argument by contradiction.

Notation and reminder

 π : known as Archimedes constant , is the ratio of a circle's circumference to its diameter and $3 < \pi < 4$.

 $e = \sum_{m=0}^{+\infty} \frac{1}{m!}$: known as Euler's number and 2 < e < 3.

 $\mathbb{N}^* := \{1,2,3,4,...\}$ the natural numbers.

 $\mathbb{Z}:=\{...,-4,-3,-2,-1,0,1,2,3,4,...\}$ the integers and $\mathbb{Z}^*:=\mathbb{Z}\setminus\{0\}$.

 $\mathbb{Q} := \{ \frac{p}{q} : (p,q) \in \mathbb{Z} \times \mathbb{Z}^* \text{ and } p \wedge q = 1 \} \text{ the set of rational numbers.}$

 \mathbb{R} : the set of real numbers.

 $\mathbb{R} \setminus \mathbb{Q} := \{x \in \mathbb{R} : x \notin \mathbb{Q} \}$ the set of irrational numbers.

 $p \land q := \max\{d \in \mathbb{N}^* : d/p \text{ and } d/q\}$ the greatest common divisor of p and q.

 \forall : the universal quantifier and \exists : the existential quantifier.

Introduction

Irrational numbers are the type of real numbers that cannot be expressed in the rational form $\frac{p}{q}$, where p, q are integers and $q \neq 0$. In simple words, all the real numbers that are not rational numbers are irrational. In this paper we show that $\sqrt{3}-\sqrt{2}$ and $\sqrt{3}+\sqrt{2}$, e and π , $\pi-e$, $\pi+e$, πe and $\frac{\pi}{e}$ all are irrational numbers. It is an argument by contradiction.

 $\pi-e$, $\pi+e$, πe and $\frac{\pi}{e}$ all are irrational numbers

Theorem 1. $\sqrt{6} \in \mathbb{R} \setminus \mathbb{Q}$. In other words, $\sqrt{6}$ is an irrational number.

Proof. An argument by contradiction. Suppose that $\sqrt{6} \in \mathbb{Q}$, and as $\sqrt{6} > 0$ then $\exists \ p \ , q \in \mathbb{N}^*$ such that $\sqrt{6} = \frac{p}{q}$ and $p \land q = 1$, then $\left(\sqrt{6}\right)^2 = \left(\frac{p}{q}\right)^2$, then $6 = \frac{p^2}{q^2}$ and $6q^2 = p^2 \Rightarrow p^2$ is even and $p \in \mathbb{N}^* \Rightarrow p$ is even or p = 2k: $k \in \mathbb{N}^* \Rightarrow 6q^2 = (2k)^2 = 4k^2 \Rightarrow 3q^2 = 2k^2$ and $3 \land 2 = 1 \Rightarrow 2$ divides q^2 and $q \in \mathbb{N}^* \Rightarrow q$ is even or q = 2k': $q \in \mathbb{N}^*$, hence $q \in \mathbb{N}^*$ and we get a contradiction because $q \in \mathbb{N}^*$.

Main Theorem 1. $\sqrt{3} - \sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$ and $\sqrt{3} + \sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$. In other words, $\sqrt{3} - \sqrt{2}$ and $\sqrt{3} + \sqrt{2}$ both are irrational numbers.

Proof. An argument by contradiction. First, suppose that $\sqrt{3}-\sqrt{2}\in\mathbb{Q}$, then $\exists \, r\in\mathbb{Q}$ such that $\sqrt{3}-\sqrt{2}=r$ implies that $\left(\sqrt{3}-\sqrt{2}\right)^2=r^2\in\mathbb{Q}$ $\Rightarrow 5-2\sqrt{6}=r^2\in\mathbb{Q} \Rightarrow \sqrt{6}=\frac{5-r^2}{2}\in\mathbb{Q}$, and we get a contradiction . Second, suppose that $\sqrt{3}+\sqrt{2}\in\mathbb{Q}$, then $\exists \, r\in\mathbb{Q}$ such that $\sqrt{3}+\sqrt{2}=r$ implies that $(\sqrt{3}+\sqrt{2})^2=r^2\in\mathbb{Q} \Rightarrow 5+2\sqrt{6}=r^2\in\mathbb{Q}$ $\Rightarrow \sqrt{6}=\frac{r^2-5}{2}\in\mathbb{Q}$, and we get a contradiction.

Theorem 2. $\forall n \in \mathbb{N}^*$ we have $\sin(n) \neq 0$. Several proofs are possible.

Proof. Indeed, $\forall n \in \mathbb{N}^*$ we have $\cos(n) \in \mathbb{R} \setminus \mathbb{Q}$ see [1, Theorem 2.5], then $|\cos(n)| \neq 1$ and $\cos^2(n) + \sin^2(n) = 1 \Rightarrow \sin(n) \neq 0$.

Main Theorem 2. $e \in \mathbb{R} \setminus \mathbb{Q}$ and $\pi \in \mathbb{R} \setminus \mathbb{Q}$. In other words, e and π both are irrational numbers.

Proof. An argument by contradiction . First, Suppose that $e \in \mathbb{Q}$, and as 2 < e < 3 then $\exists \ p \ , q \in \mathbb{N}^*$ such that $e = \frac{p}{q}$ and q > 1 and $p \land q = 1$, then $q! \ e = q! \frac{p}{q} = (q-1)! \ p \Rightarrow q! \ e \in \mathbb{N}^*$.

We also have $q! \sum_{m=0}^{q} \frac{1}{m!} = \sum_{m=0}^{q} \frac{q!}{m!} = q! + q! + \frac{q!}{2!} + \dots + 1 \Rightarrow q! \sum_{m=0}^{q} \frac{1}{m!} \in \mathbb{N}^*$, and $e = \sum_{m=0}^{+\infty} \frac{1}{m!} > \sum_{m=0}^{q} \frac{1}{m!} \Rightarrow q! e > q! \sum_{m=0}^{q} \frac{1}{m!}$ and $q! \left(e - \sum_{m=0}^{q} \frac{1}{m!} \right) \in \mathbb{N}^*$.

 $|x| := \max\{-x, x : x \in \mathbb{R}\}$ the absolute value of x.

 $]0,1[:= \{x \in \mathbb{R} : 0 < x < 1\}$ the open interval with endpoints 0 and 1.

Amine Oufaska

Now,
$$q!\left(e-\sum_{m=0}^{q}\frac{1}{m!}\right)=q!\left(\sum_{m=0}^{+\infty}\frac{1}{m!}-\sum_{m=0}^{q}\frac{1}{m!}\right)=q!\sum_{m=q+1}^{+\infty}\frac{1}{m!}=\sum_{m=q+1}^{+\infty}\frac{q!}{m!}$$
, and $0<\sum_{m=q+1}^{+\infty}\frac{q!}{m!}=\frac{1}{(q+1)}+\frac{1}{(q+1)(q+2)}+\frac{1}{(q+1)(q+2)(q+3)}+\cdots$
$$<\frac{1}{(q+1)}+\frac{1}{(q+1)(q+1)}+\frac{1}{(q+1)(q+1)(q+1)}+\cdots=\sum_{i=1}^{+\infty}\frac{1}{(q+1)^i}=\frac{1}{q}<1\text{ , we get }$$

a contradiction because we have found an integer on]0,1[.

Second, suppose that $\pi \in \mathbb{Q}$, and as $3 < \pi < 4$ then $\exists p, q \in \mathbb{N}^*$ such that $\pi = \frac{p}{q}$ and $p \land q = 1 \Rightarrow p = q\pi$ and $\sin(p) = \sin(q\pi) = 0$, we get a contradiction according to [**Theorem 2**].

Properties. The sine function satisfies the following properties :

The sine function (or $\sin(\theta)$) is defined, continuous, odd and 2π -periodic on $\mathbb R$.

 $\forall \theta \in \mathbb{R}$ we have $\sin(2k\pi + \theta) = \sin(\theta)$ and $\sin(2k\pi - \theta) = -\sin(\theta) : k \in \mathbb{Z}$.

 $\forall \theta \in \mathbb{R} \text{ we have } \sin(\theta) = 0 \Leftrightarrow \theta \in \{k\pi : k \in \mathbb{Z}\}.$

Let $\{\theta_n : n \in \mathbb{N}^*\} \subset \mathbb{R}$ we have $\lim_{n \to +\infty} \sin(\theta_n) = 0 \Leftrightarrow \lim_{n \to +\infty} \theta_n \in \{k\pi : k \in \mathbb{Z}\}.$

Lemma. We have $\lim_{n\to+\infty} \sum_{m=n+1}^{+\infty} \frac{n!}{m!} = 0$.

Proof.
$$\forall n \in \mathbb{N}^*, \ \sum_{m=n+1}^{+\infty} \frac{n!}{m!} = \frac{1}{n+1} + \frac{1}{(n+1)(n+2)} + \frac{1}{(n+1)(n+2)(n+3)} + \cdots$$

$$< \frac{1}{n+1} + \frac{1}{(n+1)(n+1)} + \frac{1}{(n+1)(n+1)(n+1)} + \cdots$$

$$= \sum_{i=1}^{+\infty} \frac{1}{(n+1)^i} = \frac{1}{n} ,$$

then
$$0 < \sum_{m=n+1}^{+\infty} \frac{n!}{m!} < \frac{1}{n}$$
 and $\lim_{n \to +\infty} \frac{1}{n} = 0 \Rightarrow \lim_{n \to +\infty} \sum_{m=n+1}^{+\infty} \frac{n!}{m!} = 0$.

Two other proofs that e is an irrational number are available at [2, **Théorème 15.2**] by Dimitris Koukoulopoulos (This proof was found by Fourier in 1815) and at [3] by Jonathan Sondow, and tow other proofs that π is an irrational number are available at [4] by Ivan Niven and at [5] by Miklós Laczkovich (This proof was found by Lambert in 1761).

 $\pi-e$, $\pi+e$, πe and $\frac{\pi}{e}$ all are irrational numbers

$$\text{Theorem 3. We have } \begin{cases} \lim_{n \to +\infty} \sin\left(n! \ (\pi-e) + \sum_{m=0}^n \frac{n!}{m!}\right) = 0 \\ \lim_{n \to +\infty} \sin\left(n! \ (\pi+e) - \sum_{m=0}^n \frac{n!}{m!}\right) = 0 \\ \lim_{n \to +\infty} \sin\left(n! \ \pi e - \pi . \sum_{m=0}^n \frac{n!}{m!}\right) = 0 \\ \lim_{n \to +\infty} \sin\left(n! \ p e - p . \sum_{m=0}^n \frac{n!}{m!}\right) = 0 \end{cases}$$

Proof. First,

$$\lim_{n \to +\infty} \sin \left(n! \, (\pi - e) + \sum_{m=0}^{n} \frac{n!}{m!} \right) = \lim_{n \to +\infty} \sin \left(n! \, \pi - n! \, e + \sum_{m=0}^{n} \frac{n!}{m!} \right)$$

$$= \lim_{n \to +\infty} \sin \left(n! \, \pi - \sum_{m=0}^{+\infty} \frac{n!}{m!} + \sum_{m=0}^{n} \frac{n!}{m!} \right)$$

$$= \lim_{n \to +\infty} \sin \left(n! \, \pi - \sum_{m=n+1}^{+\infty} \frac{n!}{m!} \right)$$

$$= \lim_{n \to +\infty} -\sin \left(\sum_{m=n+1}^{+\infty} \frac{n!}{m!} \right) = -\sin(0) = 0.$$

Second,

$$\lim_{n \to +\infty} \sin\left(n! \left(\pi + e\right) - \sum_{m=0}^{n} \frac{n!}{m!}\right) = \lim_{n \to +\infty} \sin\left(n! \pi + n! e - \sum_{m=0}^{n} \frac{n!}{m!}\right)$$

$$= \lim_{n \to +\infty} \sin\left(n! \pi + \sum_{m=0}^{+\infty} \frac{n!}{m!} - \sum_{m=0}^{n} \frac{n!}{m!}\right)$$

$$= \lim_{n \to +\infty} \sin\left(n! \pi + \sum_{m=n+1}^{+\infty} \frac{n!}{m!}\right)$$

$$= \lim_{n \to +\infty} \sin\left(\sum_{m=n+1}^{+\infty} \frac{n!}{m!}\right) = \sin(0) = 0.$$

Third,

$$\lim_{n \to +\infty} \sin\left(n! \, \pi e - \pi \cdot \sum_{m=0}^{n} \frac{n!}{m!}\right) = \lim_{n \to +\infty} \sin\left(\pi \cdot \sum_{m=0}^{+\infty} \frac{n!}{m!} - \pi \cdot \sum_{m=0}^{n} \frac{n!}{m!}\right)$$
$$= \lim_{n \to +\infty} \sin\left(\pi \cdot \sum_{m=n+1}^{+\infty} \frac{n!}{m!}\right) = \sin(0) = 0.$$

Fourth, let $p \in \mathbb{N}^*$ we have

$$\lim_{n \to +\infty} \sin\left(n! \, pe - p. \, \sum_{m=0}^{n} \frac{n!}{m!}\right) = \lim_{n \to +\infty} \sin\left(p. \, \sum_{m=0}^{+\infty} \frac{n!}{m!} - p. \, \sum_{m=0}^{n} \frac{n!}{m!}\right)$$

$$= \lim_{n \to +\infty} \sin\left(p. \, \sum_{m=n+1}^{+\infty} \frac{n!}{m!}\right) = \sin(0) = 0.$$

Amine Oufaska

Main Theorem 3. $\pi - e \in \mathbb{R} \setminus \mathbb{Q}$ and $\pi + e \in \mathbb{R} \setminus \mathbb{Q}$ and $\pi e \in \mathbb{R} \setminus \mathbb{Q}$ and $\frac{\pi}{e} \in \mathbb{R} \setminus \mathbb{Q}$. In other words, $\pi - e$, $\pi + e$, πe and $\frac{\pi}{e}$ all are irrational numbers.

Before starting the proof, we recall that

 $\forall n \in \mathbb{N}^* \text{ we have } n! (\pi - e) + \sum_{m=0}^n \frac{n!}{m!} > 0 \text{ and } n! (\pi + e) - \sum_{m=0}^n \frac{n!}{m!} > 0$, and according to [Main Theorem 2] we have $\{k\pi : k \in \mathbb{Z}\} \subset \mathbb{R} \setminus \mathbb{Q} \cup \{0\}$.

Proof. An argument by contradiction . First, suppose that $\pi - e \in \mathbb{Q}$, and as $\pi - e > 0$, then $\exists p, q \in \mathbb{N}^*$ such that $\pi - e = \frac{p}{q}$ and $p \land q = 1$,

then $\lim_{n\to+\infty} \sin\left(n! (\pi-e) + \sum_{m=0}^{n} \frac{n!}{m!}\right) = \lim_{n\to+\infty} \sin\left(n! \frac{p}{q} + \sum_{m=0}^{n} \frac{n!}{m!}\right)$.

We put $a_n = n! \frac{p}{q} + \sum_{m=0}^n \frac{n!}{m!} : n \in \mathbb{N}^*$, and it is clear that a_n is strictly increasing and $\{a_n:n\geq q\}\subset \mathbb{N}^*$, then $\lim_{n\to +\infty}a_n\notin \{k\pi:k\in \mathbb{Z}\}$,

this implies that $\lim_{n \to +\infty} \sin(a_n) \neq 0$, and we get a contradiction according to [Theorem 3].

Second, suppose that $\pi + e \in \mathbb{Q}$, and as $\pi + e > 0$, then $\exists p, q \in \mathbb{N}^*$ such that $\pi + e = \frac{p}{a}$ and $p \wedge q = 1$,

then $\lim_{n\to +\infty} \sin\left(n! \left(\pi+e\right) - \sum_{m=0}^n \frac{n!}{m!}\right) = \lim_{n\to +\infty} \sin\left(n! \frac{p}{q} - \sum_{m=0}^n \frac{n!}{m!}\right)$. We put $a_n = n! \frac{p}{q} - \sum_{m=0}^n \frac{n!}{m!} : n \in \mathbb{N}^*$, and it is clear that a_n is strictly

increasing and $\{a_n: n \geq q\} \subset \mathbb{N}^*$, then $\lim_{n \to +\infty} a_n \notin \{k\pi: k \in \mathbb{Z}\}$,

this implies that $\lim_{n \to +\infty} \sin(a_n) \neq 0$, and we get a contradiction according to [Theorem 3].

Third, suppose that $\pi e \in \mathbb{Q}$, and as $\pi e > 0$, then $\exists p, q \in \mathbb{N}^*$ such that $\pi e = \frac{p}{q}$ and $p \wedge q = 1$,

then
$$\lim_{n\to +\infty} \sin\left(n!\,\pi e - \pi.\sum_{m=0}^n \frac{n!}{m!}\right) = \lim_{n\to +\infty} \sin\left(n!\,\frac{p}{q} - \pi.\sum_{m=0}^n \frac{n!}{m!}\right)$$

$$= \lim_{n\to +\infty} (-1)^{n+1}.\sin\left(n!\,\frac{p}{q}\right) \qquad .$$
 We put $a_n=n!\,\frac{p}{q}:n\in\mathbb{N}^*$, and it is clear that a_n is strictly increasing

and $\{a_n:n\geq q\}\subset \mathbb{N}^*$, then $\lim_{n\to +\infty}a_n\notin \{k\pi:k\in \mathbb{Z}\}$, this implies that $\lim_{n\to +\infty}\sin(a_n)\neq 0$ and $\lim_{n\to +\infty}(-1)^{n+1}.\sin(a_n)\neq 0$, and we get a contradiction according to [Theorem 3].

 $\pi - e$, $\pi + e$, πe and $\frac{\pi}{e}$ all are irrational numbers

Fourth, suppose that $\frac{\pi}{e} \in \mathbb{Q}$, and as $\frac{\pi}{e} > 0$, then $\exists p, q \in \mathbb{N}^*$ such that $\frac{\pi}{e} = \frac{p}{a}$ and $p \wedge q = 1$ implies that $pe = q\pi$,

then
$$\lim_{n \to +\infty} \sin\left(n! \, pe - p. \sum_{m=0}^{n} \frac{n!}{m!}\right) = \lim_{n \to +\infty} \sin\left(n! \, q\pi - p. \sum_{m=0}^{n} \frac{n!}{m!}\right)$$

$$= \lim_{n \to +\infty} -\sin\left(p. \sum_{m=0}^{n} \frac{n!}{m!}\right)$$

We put $a_n=p$. $\sum_{m=0}^n \frac{n!}{m!}$: $n\in\mathbb{N}^*$, and it is clear that a_n is strictly increasing

and $\{a_n:n\in\mathbb{N}^*\}\subset\mathbb{N}^*$, then $\lim_{n\to+\infty}a_n\notin\{k\pi:k\in\mathbb{Z}\}$, this implies that $\lim_{n\to+\infty}\sin(a_n)\neq 0$ and $\lim_{n\to+\infty}-\sin(a_n)\neq 0$, and we get a contradiction according to [**Theorem 3**].

Finally, we conclude that $\pi - e$, $\pi + e$, πe and $\frac{\pi}{e}$ all are irrational numbers.

Acknowledgments

The author is grateful to the referees for carefully reading the manuscript and making useful suggestions.

References

- Ivan Niven. Irrational Numbers. University of Oregon, July 1956. [1]
- [2] Dimitris Koukoulopoulos. *Introduction à la théorie des nombres*. Université de Montréal, 10 Octobre 2022.
- [3] Jonathan Sondow. A Geometric Proof that e is Irrational and a New Measure of its Irrationality. arXiv: 0704.1282 [math. HO].
- [4] Ivan Niven. A simple proof that π is irrational. Bulletin of the American Mathematical Society, Vol. 53 (6), p. 509, 1947.
- [5] M. Laczkovich. *On Lambert's Proof of the Irrationality of* π . American Mathematical Monthly, Vol. 104, No. 5 (May, 1997), pp. 439-443.
- [6] Margaret L. Lial, John Hornsby, David I. Schneider, Callie J. Daniels. *Trigonometry*, 11th edition.

E-mail address: ao.oufaska@gmail.com