\[\pi - e, \pi + e, \pi e \text{ and } \frac{\pi}{e} \text{ all are irrational numbers} \]

Amine Oufaska

July 8, 2024

Abstract

It is proved that \(\pi - e, \pi + e, \pi e \) and \(\frac{\pi}{e} \) all are irrational numbers. The proof is essentially elementary, it is an argument by contradiction.

Notation and reminder

\(\pi \): known as Archimedes constant, is the ratio of a circle’s circumference to its diameter and \(3 < \pi < 4 \).

\(e = \sum_{m=0}^{\infty} \frac{1}{m!} \): known as Euler’s number and \(2 < e < 3 \).

\(\mathbb{N}^* := \{1, 2, 3, 4, \ldots\} \) the natural numbers.

\(\mathbb{Z} := \{\ldots, -4, -3, -2, -1, 0, 1, 2, 3, \ldots\} \) the integers and \(\mathbb{Z}^* := \mathbb{Z} \setminus \{0\} \).

\(\mathbb{Q} := \left\{ \frac{p}{q} : (p, q) \in \mathbb{Z} \times \mathbb{Z}^* \text{ and } p \wedge q = 1 \right\} \) the set of rational numbers.

\(\mathbb{R} \): the set of real numbers.

\(\mathbb{R} \setminus \mathbb{Q} := \{x \in \mathbb{R} : x \notin \mathbb{Q}\} \) the set of irrational numbers.

\(p \wedge q := \max\{d \in \mathbb{N}^* : d/p \text{ and } d/q\} \) the greatest common divisor of \(p \) and \(q \).

\(\forall \): the universal quantifier and \(\exists \): the existential quantifier.

Introduction

Irrational numbers are the type of real numbers that cannot be expressed in the rational form \(\frac{p}{q} \), where \(p, q \) are integers and \(q \neq 0 \). In simple words, all the real numbers that are not rational numbers are irrational. In this paper we show that \(\sqrt{3} - \sqrt{2} \) and \(\sqrt{3} + \sqrt{2}, e \) and \(\pi, \pi - e, \pi + e, \pi e \) and \(\frac{\pi}{e} \) all are irrational numbers. It is an argument by contradiction.
\[\pi - e, \pi + e, \pi e \text{ and } \frac{\pi}{e} \text{ all are irrational numbers} \]

Theorem 1. \(\sqrt{6} \in \mathbb{R} \setminus \mathbb{Q} \). In other words, \(\sqrt{6} \) is an irrational number.

Proof. An argument by contradiction. Suppose that \(\sqrt{6} \in \mathbb{Q} \), and as \(\sqrt{6} > 0 \) then \(\exists p, q \in \mathbb{N}^* \) such that \(\sqrt{6} = \frac{p}{q} \) and \(p \wedge q = 1 \), then \((\sqrt{6})^2 = \left(\frac{p}{q}\right)^2 \), then \(6 = \frac{p^2}{q^2} \) and \(6q^2 = p^2 \Rightarrow p^2 \) is even and \(p \in \mathbb{N}^* \Rightarrow p \) is even or \(p = 2k \): \(k \in \mathbb{N}^* \Rightarrow 6q^2 = (2k)^2 = 4k^2 \Rightarrow 3q^2 = 2k^2 \) and \(3 \wedge 2 = 1 \Rightarrow 2 \) divides \(q^2 \) and \(2 \) is prime \(\Rightarrow 2 \) divides \(q \) and \(q \in \mathbb{N}^* \Rightarrow q \) is even or \(q = 2k' \): \(k' \in \mathbb{N}^* \), hence \(p \wedge q \geq 2 \), and we get a contradiction because \(p \wedge q = 1 \).

Main Theorem 1. \(\sqrt{3} - \sqrt{2} \in \mathbb{R} \setminus \mathbb{Q} \) and \(\sqrt{3} + \sqrt{2} \in \mathbb{R} \setminus \mathbb{Q} \).

In other words, \(\sqrt{3} - \sqrt{2} \) and \(\sqrt{3} + \sqrt{2} \) both are irrational numbers.

Proof. An argument by contradiction. First, suppose that \(\sqrt{3} - \sqrt{2} \in \mathbb{Q} \), then \(\exists r \in \mathbb{Q} \) such that \(\sqrt{3} - \sqrt{2} = r \) implies that \((\sqrt{3} - \sqrt{2})^2 = r^2 \in \mathbb{Q} \Rightarrow 5 - 2\sqrt{6} = r^2 \in \mathbb{Q} \Rightarrow \sqrt{6} = \frac{5 - r^2}{2} \in \mathbb{Q} \), and we get a contradiction.

Second, suppose that \(\sqrt{3} + \sqrt{2} \in \mathbb{Q} \), then \(\exists r \in \mathbb{Q} \) such that \(\sqrt{3} + \sqrt{2} = r \) implies that \((\sqrt{3} + \sqrt{2})^2 = r^2 \in \mathbb{Q} \Rightarrow 5 + 2\sqrt{6} = r^2 \in \mathbb{Q} \Rightarrow \sqrt{6} = \frac{r^2 - 5}{2} \in \mathbb{Q} \), and we get a contradiction.

Theorem 2. \(\forall n \in \mathbb{N}^* \) we have \(\sin(n) \neq 0 \). Several proofs are possible.

Proof. Indeed, \(\forall n \in \mathbb{N}^* \) we have \(\cos(n) \in \mathbb{R} \setminus \mathbb{Q} \) see [1, Theorem 2.5], then \(|\cos(n)| \neq 1 \) and \(\cos^2(n) + \sin^2(n) = 1 \Rightarrow \sin(n) \neq 0 \).

Main Theorem 2. \(e \in \mathbb{R} \setminus \mathbb{Q} \) and \(\pi \in \mathbb{R} \setminus \mathbb{Q} \).

In other words, \(e \) and \(\pi \) both are irrational numbers.

Proof. An argument by contradiction. First, Suppose that \(e \in \mathbb{Q} \), and as \(2 < e < 3 \) then \(\exists p, q \in \mathbb{N}^* \) such that \(e = \frac{p}{q} \) and \(q > 1 \) and \(p \wedge q = 1 \),

then \(q! e = q! \frac{p}{q} = (q-1)! p \Rightarrow q! e \in \mathbb{N}^* \).

We also have \(q! \sum_{m=0}^{q} \frac{1}{m!} = \sum_{m=0}^{q} \frac{q!}{m!} = q! + q! \frac{1}{2!} + \cdots + 1 \Rightarrow q! \sum_{m=0}^{q} \frac{1}{m!} \in \mathbb{N}^* \), and \(e = \sum_{m=0}^{+\infty} \frac{1}{m!} > \sum_{m=0}^{q} \frac{1}{m!} \Rightarrow q! e > q! \sum_{m=0}^{q} \frac{1}{m!} \) and \(q! e > q! \left(e - \sum_{m=0}^{q} \frac{1}{m!} \right) \in \mathbb{N}^* \).

\[|x| := \max\{-x, x : x \in \mathbb{R}\} \text{ the absolute value of } x. \]

\[]0,1[:= \{x \in \mathbb{R} : 0 < x < 1 \} \text{ the open interval with endpoints } 0 \text{ and } 1. \]
Now, \(q! \left(e - \sum_{m=0}^{q} \frac{1}{m!} \right) = q! \left(\sum_{m=0}^{\infty} \frac{1}{m!} - \sum_{m=0}^{q} \frac{1}{m!} \right) = q! \sum_{m=q+1}^{\infty} \frac{1}{m!} = \sum_{m=q+1}^{\infty} \frac{q!}{m!} \),
and \(0 < \sum_{m=q+1}^{\infty} \frac{q!}{m!} = \frac{1}{(q+1)} + \frac{1}{(q+1)(q+2)} + \frac{1}{(q+1)(q+2)(q+3)} + \cdots \)
< \frac{1}{(q+1)} + \frac{1}{(q+1)(q+1)} + \frac{1}{(q+1)(q+1)(q+1)} + \cdots = \sum_{i=1}^{\infty} \frac{1}{(q+1)^i} = \frac{1}{q} \), we get
a contradiction because we have found an integer on \(]0,1[\).

Second, suppose that \(\pi \in \mathbb{Q} \), and as \(3 < \pi < 4 \) then \(\exists p, q \in \mathbb{N}^* \) such that \(\pi = \frac{p}{q} \) and \(p \land q = 1 \Rightarrow p = q \pi \) and \(\sin(p) = \sin(q \pi) = 0 \), we get a contradiction according to [Theorem 2].

Properties. The sine function satisfies the following properties:

The sine function (or \(\sin(\theta) \)) is defined, continuous, odd and \(2\pi \)-periodic on \(\mathbb{R} \).

\[\forall \theta \in \mathbb{R} \text{ we have } \sin(2k\pi + \theta) = \sin(\theta) \text{ and } \sin(2k\pi - \theta) = -\sin(\theta) : k \in \mathbb{Z}. \]

\[\forall \theta \in \mathbb{R} \text{ we have } \sin(\theta) = 0 \iff \theta \in \{ k\pi : k \in \mathbb{Z} \}. \]

Let \(\{ \theta_n : n \in \mathbb{N}^* \} \subset \mathbb{R} \) we have \(\lim_{n \to +\infty} \sin(\theta_n) = 0 \iff \lim_{n \to +\infty} \theta_n \in \{ k\pi : k \in \mathbb{Z} \}. \)

Lemma. We have \(\lim_{n \to +\infty} \sum_{m=n+1}^{\infty} \frac{n!}{m!} = 0. \)

Proof. \(\forall n \in \mathbb{N}^*, \sum_{m=n+1}^{\infty} \frac{n!}{m!} = \frac{1}{n+1} + \frac{1}{(n+1)(n+2)} + \frac{1}{(n+1)(n+2)(n+3)} + \cdots \)
< \frac{1}{n+1} + \frac{1}{(n+1)(n+1)} + \frac{1}{(n+1)(n+1)(n+1)} + \cdots
= \sum_{i=1}^{\infty} \frac{1}{(n+1)^i} = \frac{1}{n}, \)
then \(0 < \sum_{m=n+1}^{\infty} \frac{n!}{m!} < \frac{1}{n} \) and \(\lim_{n \to +\infty} \frac{1}{n} = 0 \Rightarrow \lim_{n \to +\infty} \sum_{m=n+1}^{\infty} \frac{n!}{m!} = 0. \)

Two other proofs that \(e \) is an irrational number are available at [2, Théorème 15.2] by Dimitris Koukoulopoulos (This proof was found by Fourier in 1815) and at [3] by Jonathan Sondow, and two other proofs that \(\pi \) is an irrational number are available at [4] by Ivan Niven and at [5] by Miklós Laczkovich (This proof was found by Lambert in 1761).
\[\pi - e, \pi + e, \pi e \text{ and } \frac{\pi}{e} \text{ all are irrational numbers} \]

Theorem 3. We have

\[
\begin{align*}
\lim_{n \to +\infty} \sin \left(n! (\pi - e) + \sum_{m=0}^{n} \frac{n!}{m!} \right) &= 0 \\
\lim_{n \to +\infty} \sin \left(n! (\pi + e) - \sum_{m=0}^{n} \frac{n!}{m!} \right) &= 0 \\
\lim_{n \to +\infty} \sin \left(n! \pi e - \pi \sum_{m=0}^{n} \frac{n!}{m!} \right) &= 0 \\
\lim_{n \to +\infty} \sin \left(n! pe - p \sum_{m=0}^{n} \frac{n!}{m!} \right) &= 0.
\end{align*}
\]

Proof. First,

\[
\begin{align*}
\lim_{n \to +\infty} \sin \left(n! (\pi - e) + \sum_{m=0}^{n} \frac{n!}{m!} \right) &= \lim_{n \to +\infty} \sin \left(n! \pi - n! e + \sum_{m=0}^{n} \frac{n!}{m!} \right) \\
&= \lim_{n \to +\infty} \sin \left(n! \pi - \sum_{m=0}^{+\infty} \frac{n!}{m!} + \sum_{m=0}^{n} \frac{n!}{m!} \right) \\
&= \lim_{n \to +\infty} \sin \left(n! \pi - \sum_{m=n+1}^{+\infty} \frac{n!}{m!} \right) \\
&= \lim_{n \to +\infty} -\sin \left(\sum_{m=n+1}^{+\infty} \frac{n!}{m!} \right) = -\sin(0) = 0.
\end{align*}
\]

Second,

\[
\begin{align*}
\lim_{n \to +\infty} \sin \left(n! (\pi + e) - \sum_{m=0}^{n} \frac{n!}{m!} \right) &= \lim_{n \to +\infty} \sin \left(n! \pi + n! e - \sum_{m=0}^{n} \frac{n!}{m!} \right) \\
&= \lim_{n \to +\infty} \sin \left(n! \pi + \sum_{m=0}^{+\infty} \frac{n!}{m!} - \sum_{m=0}^{n} \frac{n!}{m!} \right) \\
&= \lim_{n \to +\infty} \sin \left(n! \pi + \sum_{m=n+1}^{+\infty} \frac{n!}{m!} \right) \\
&= \lim_{n \to +\infty} \sin \left(\sum_{m=n+1}^{+\infty} \frac{n!}{m!} \right) = \sin(0) = 0.
\end{align*}
\]

Third,

\[
\begin{align*}
\lim_{n \to +\infty} \sin \left(n! \pi e - \pi \sum_{m=0}^{n} \frac{n!}{m!} \right) &= \lim_{n \to +\infty} \sin \left(\pi \sum_{m=0}^{+\infty} \frac{n!}{m!} - \pi \sum_{m=0}^{n} \frac{n!}{m!} \right) \\
&= \lim_{n \to +\infty} \sin \left(\pi \sum_{m=n+1}^{+\infty} \frac{n!}{m!} \right) = \sin(0) = 0.
\end{align*}
\]

Fourth, let \(p \in \mathbb{N}^* \) we have

\[
\begin{align*}
\lim_{n \to +\infty} \sin \left(n! pe - p \sum_{m=0}^{n} \frac{n!}{m!} \right) &= \lim_{n \to +\infty} \sin \left(p \sum_{m=0}^{+\infty} \frac{n!}{m!} - p \sum_{m=0}^{n} \frac{n!}{m!} \right) \\
&= \lim_{n \to +\infty} \sin \left(p \sum_{m=n+1}^{+\infty} \frac{n!}{m!} \right) = \sin(0) = 0.
\end{align*}
\]
Main Theorem 3. \(\pi - e \in \mathbb{R} \setminus \mathbb{Q} \) and \(\pi + e \in \mathbb{R} \setminus \mathbb{Q} \) and \(\pi e \in \mathbb{R} \setminus \mathbb{Q} \) and \(\frac{\pi}{e} \in \mathbb{R} \setminus \mathbb{Q} \). In other words, \(\pi - e, \pi + e, \pi e \) and \(\frac{\pi}{e} \) all are irrational numbers.

Before starting the proof, we recall that \(\forall n \in \mathbb{N}^* \) we have \(n! (\pi - e) + \sum_{m=0}^{n} \frac{n!}{m!} > 0 \) and \(n! (\pi + e) - \sum_{m=0}^{n} \frac{n!}{m!} > 0 \), and according to [Main Theorem 2] we have \(\{k \pi : k \in \mathbb{Z}\} \subset \mathbb{R} \setminus \mathbb{Q} \cup \{0\} \).

Proof. An argument by contradiction. First, suppose that \(\pi - e \in \mathbb{Q} \), and as \(\pi - e > 0 \), then \(\exists p, q \in \mathbb{N}^* \) such that \(\pi - e = \frac{p}{q} \) and \(p \wedge q = 1 \),

then \(\lim_{n \to +\infty} \sin \left(n! (\pi - e) + \sum_{m=0}^{n} \frac{n!}{m!} \right) = \lim_{n \to +\infty} \sin \left(n! \frac{p}{q} + \sum_{m=0}^{n} \frac{n!}{m!} \right) \).

We put \(a_n = n! \frac{p}{q} + \sum_{m=0}^{n} \frac{n!}{m!} : n \in \mathbb{N}^* \), and it is clear that \(a_n \) is strictly increasing and \(\{a_n : n \geq q\} \subset \mathbb{N}^* \), then \(\lim_{n \to +\infty} a_n \notin \{k \pi : k \in \mathbb{Z}\} \),

this implies that \(\lim_{n \to +\infty} \sin(a_n) \neq 0 \), and we get a contradiction according to [Theorem 3].

Second, suppose that \(\pi + e \in \mathbb{Q} \), and as \(\pi + e > 0 \), then \(\exists p, q \in \mathbb{N}^* \) such that \(\pi + e = \frac{p}{q} \) and \(p \wedge q = 1 \),

then \(\lim_{n \to +\infty} \sin \left(n! (\pi + e) - \sum_{m=0}^{n} \frac{n!}{m!} \right) = \lim_{n \to +\infty} \sin \left(n! \frac{p}{q} - \sum_{m=0}^{n} \frac{n!}{m!} \right) \).

We put \(a_n = n! \frac{p}{q} - \sum_{m=0}^{n} \frac{n!}{m!} : n \in \mathbb{N}^* \), and it is clear that \(a_n \) is strictly increasing and \(\{a_n : n \geq q\} \subset \mathbb{N}^* \), then \(\lim_{n \to +\infty} a_n \notin \{k \pi : k \in \mathbb{Z}\} \),

this implies that \(\lim_{n \to +\infty} \sin(a_n) \neq 0 \), and we get a contradiction according to [Theorem 3].

Third, suppose that \(\pi e \in \mathbb{Q} \), and as \(\pi e > 0 \), then \(\exists p, q \in \mathbb{N}^* \) such that \(\pi e = \frac{p}{q} \) and \(p \wedge q = 1 \),

then \(\lim_{n \to +\infty} \sin \left(n! \pi e - \pi \cdot \sum_{m=0}^{n} \frac{n!}{m!} \right) = \lim_{n \to +\infty} \sin \left(n! \frac{p}{q} - \pi \cdot \sum_{m=0}^{n} \frac{n!}{m!} \right) = \lim_{n \to +\infty} (-1)^{n+1} \sin \left(n! \frac{p}{q} \right) \).

We put \(a_n = n! \frac{p}{q} : n \in \mathbb{N}^* \), and it is clear that \(a_n \) is strictly increasing and \(\{a_n : n \geq q\} \subset \mathbb{N}^* \), then \(\lim_{n \to +\infty} a_n \notin \{k \pi : k \in \mathbb{Z}\} \),

this implies that \(\lim_{n \to +\infty} \sin(a_n) \neq 0 \) and \(\lim_{n \to +\infty} (-1)^{n+1} \sin(a_n) \neq 0 \), and we get a contradiction according to [Theorem 3].
\[
\pi - e, \pi + e, \pi e \text{ and } \frac{\pi}{e} \text{ all are irrational numbers}
\]

Fourth, suppose that \(\frac{\pi}{e} \in \mathbb{Q} \), and as \(\frac{\pi}{e} > 0 \), then \(\exists p, q \in \mathbb{N}^* \) such that \(\frac{\pi}{e} = \frac{p}{q} \) and \(pq = 1 \) implies that \(pe = q\pi \).

Then \(\lim_{n \to +\infty} \sin \left(n!pe - p \cdot \sum_{m=0}^{n} \frac{n!}{m!} \right) = \lim_{n \to +\infty} \sin \left(n!q\pi - p \cdot \sum_{m=0}^{n} \frac{n!}{m!} \right) = \lim_{n \to +\infty} -\sin \left(p \cdot \sum_{m=0}^{n} \frac{n!}{m!} \right) \).

We put \(a_n = p \cdot \sum_{m=0}^{n} \frac{n!}{m!} : n \in \mathbb{N}^* \), and it is clear that \(a_n \) is strictly increasing and \(\{a_n : n \in \mathbb{N}^*\} \subset \mathbb{N}^* \), then \(\lim_{n \to +\infty} a_n \notin \{k\pi : k \in \mathbb{Z}\} \),

this implies that \(\lim_{n \to +\infty} \sin(a_n) \neq 0 \) and \(\lim_{n \to +\infty} -\sin(a_n) \neq 0 \), and we get a contradiction according to [Theorem 3].

Finally, we conclude that \(\pi - e, \pi + e, \pi e \) and \(\frac{\pi}{e} \) all are irrational numbers.

Acknowledgments

The author is grateful to the referees for carefully reading the manuscript and making useful suggestions.

References

E-mail address: ao.oufaska@gmail.com