One Tile Suffices

VOLKER WILHELM THÜREY
Bremen, Germany *

December 1, 2023

MSC-2020: 51P99 Keywords: Tiling; plane

Abstract

We have found for all \(k \) larger than two a possibility to tile the plane completely with \(k \)-gons. We use infinite many copies of a single tile. The proofs are not by written words, but by pictures. Amongst others, we use the well-known tiling with hexagons. We show for \(k \) larger than 4 new ways to cover the plane.

We think that it is useful to repeat the definition of a simple polygon.

A simple polygon with \(k \) vertices consists of \(k \) different points of the plane \((x_1, y_1), (x_2, y_2), \ldots, (x_{k-1}, y_{k-1}), (x_k, y_k)\), called vertices, and the straight lines between \((x_i, y_i)\) and \((x_{i+1}, y_{i+1})\) for \(1 \leq i \leq k-1\), called edges. Also the straight line between \((x_k, y_k)\) and \((x_1, y_1)\) belongs to the polygon. We demand that it is homeomorphic to a circle, and that there are no three consecutive collinear points \((x_i, y_i), (x_{i+1}, y_{i+1}), (x_{i+2}, y_{i+2})\) for \(1 \leq i \leq k-2\). Also the three points \((x_k, y_k), (x_1, y_1), (x_2, y_2)\) and \((x_{k-1}, y_{k-1}), (x_k, y_k), (x_1, y_1)\) are not collinear.

We call this just described simple polygon a \(k \)-gon.

Theorem 1. Let \(k \) be a natural number larger than 2. Than there exists a tiling of the plane \(\mathbb{R}^2 \) by \(k \)-gons. We need infinite copies of only a single tile.

Proof. This theorem is well-known. Please see [1], p. 11.

There is another proof. For \(k = 3 \) and \(k = 4 \) and \(k = 6 \) the theorem is trivial. For \(k = 5 \) please see Figure 1. We take a regular 6-gon and cut it into identical halves. See also the tiling in the case \(k = 6 \).

Now let \(k \) be a natural number larger than 6.

49 (0)421 591777, volker@thuerey.de
• Possibility 1: $k \equiv 0 \mod 4$.
The numbers k are $8, 12, 16, \ldots$
See Figure 2. As an example, we show one tile for the case $k = 12$. The measures for the
big square are 4×4, while the two small squares have measures of 2×2.

• Possibility 2: $k \equiv 1 \mod 4$.
The sequence of the numbers of k is $9, 13, 17, \ldots$
See Figure 3. There we show one tile for the case $k = 13$.
The big square has sidelengths of 4, while the small square has sidelengths of 2. The two
horizontal edges on the left have lengths 4 and 2, respectively. They have a distance of 1.
The two sloped edges both have a length of $\sqrt{2}$.

• Possibility 3: $k \equiv 2 \mod 4$.
The sequence of the numbers of k is $10, 14, 18, \ldots$
See Figure 4. We show a 14-gon. The square has a sidelength of 4, the rectangle has mea-
sures of 2×4. The triangle on the left has sidelengths $4, 2, \sqrt{20}$. The triangle on the
right has sidelengths 4 and $\sqrt{32}$.

• Possibility 4: $k \equiv 3 \mod 4$.
The sequence of the numbers of k is $7, 11, 15, \ldots$
See Figure 5. Here we show a 15-gon.
The square also has a sidelength of 4, both rectangles have measures of 2×4. □

Figure 1:
$k = 5$ and $k = 6$

Figure 2:
$k = 12$
One Tile Suffices

Figure 3:
k = 13

Figure 4:
k = 14

Figure 5:
k = 15

References

Acknowledgement: We thank Dr. Ralf Donau for a careful reading of the paper