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We propose the existence of a topological object i.e. a Newtonian knot of a weak field with a small
positive cosmological constant and very slow motion compared to the velocity of light (Newtonian limit) in
(2+1)-dimensional empty space-time. The Ricci curvature tensor consists of a set of curvature components,
complex scalar potentials, where their properties could be described by the non-trivial Hopf maps. The very
slow motion is shown by the space components only of the Abelian Ricci curvature tensor. The Abelian
Chern-Simons action is interpreted as such a knot.
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I. INTRODUCTION

It is widely believed that topological objects are im-
possible to exist in linear theories. Topological theories
are inherently non-linear1. How, then, could a topolog-
ical object, like a gravitational knot, exist in the linear
(Abelian) theory? We will work in (2+1)-dimensional
space-time gravity theory instead of (3+1)-dimensional
space-time throughout this article for a reason that will
be clear later.

In analogy to the linearized Ricci curvature tensor
in (3+1)-dimensional space-time, we assume that the
Abelian Ricci curvature tensor as the weak-field limit
with a small positive cosmological constant of the grav-
ity theory is also valid in (2+1)-dimensional space-time.
The existence of a topological structure in Maxwell’s lin-
ear theory of vacuum space is similar to the existence
of a topological structure in Abelian gravity theory in
(2+1)-dimensional empty space-time.

In analogy to Maxwell’s linear theory of vacuum space
where the field strength could consist of a set of subset
fields1,2, we propose that the Ricci curvature tensor (the
set of the solutions of Einstein field equations) in (3+1)-
dimensional empty space-time could consist of a set of
curvature components, complex scalar potentials. We as-
sume that it is also valid in the case of (2+1)-dimensional
empty space-time. Both, a set of subset fields and a set of
curvature components satisfy the non-trivial Hopf maps.
It means that the properties of a set of subset fields and
a set of curvature components could be described by the
non-trivial Hopf maps.

A set of curvature components is locally equal to the
linearized Ricci curvature tensor, i.e. the linearized Ricci
curvature tensor can be obtained by patching together
a set of curvature components (except in a zero-measure
set) but globally different. The difference between a set of
curvature components and the linearized Ricci curvature
tensor in an empty space-time is global, instead of local,
since a set of curvature components obeys the topological

quantum condition, but the linearized Ricci curvature
tensor does not.

The linearized Ricci curvature tensor satisfies the lin-
ear Ricci theory, but a set of curvature components satis-
fies the non-linear Ricci theory. Both, the linearized Ricci
curvature tensor and a set of curvature components, sat-
isfy the linear Ricci theory in the case of a weak-field
limit. It means that, in the case of a weak-field limit, the
non-linear Ricci theory reduces to the linear Ricci theory.

Maxwell’s theory of electromagnetism and Einstein’s
theory of gravitation (general relativity) are identical
where the gauge potential and the field strength ten-
sor in Maxwell’s theory (in general, a non-Abelian gauge
theory, such as Yang-Mills theory) are identical to the
connection (Christoffel symbols) and the curvature in
general relativity, respectively3. Both theories are the
gauge theories, where Maxwell’s theory is an Abelian
U(1) gauge theory of internal space and general relativity
is the gauge theory of translation of (3+1)-dimensional
(external) space-time4.

The vierbein formalism of general relativity makes gen-
eral relativity similar to a gauge theory5. Nevertheless,
in the case of (3+1)-dimensional space-time, general rel-
ativity and a gauge theory are definitely not equivalent.
But, in (2+1)-dimensional space-time, general relativity
and a gauge theory are precisely equivalent5.

Roughly speaking, general relativity in (2+1)-
dimensional space-time is the simpler model than general
relativity in (3+1)-dimensional space-time that shares
the important conceptual features of general relativity
while avoiding some of the computational difficulties6.
As a generally covariant theory of space-time geometry,
(2+1)-dimensional gravity has the same conceptual foun-
dation as realistic (3+1)-dimensional general relativity.
With a few exceptions, (2+1)-dimensional solutions are
physically quite different from those in 3+1 dimensions.
The 2+1 dimensional model is not very helpful for under-
standing the dynamics of realistic quantum gravity. But
for the analysis of conceptual problems - the nature of



time, the construction of states and observable, the role
of topology and topology change - the model has proven
highly instructive6.

In (2+1)-dimensional space-time of general theory
relativity, the dynamics is topology7. The (2+1)-
dimensional general relativity could be interpreted as a
Chern-Simons three form5 where Chern-Simons theory
is topological gauge theory in (2+1)-dimensional space-
time7. The Chern-Simons action precisely coincides with
the (2+1)-dimensional space-time of the Einstein-Hilbert
action5,8. The Chern-Simons theory was discovered in
the context of anomalies and used as a rather exotic
toy model for gauge systems in (2+1)-dimensional space-
time9.

The Einstein-Hilbert action in (2+1)-dimensional
space-time, without a cosmological constant, is equiva-
lent to a gauge theory with gauge group ISO(2,1) and a
pure Chern-Simons action5. If we include a cosmologi-
cal constant in (2+1) general relativity, then Minkowski
(flat) space-time is replaced by space-time with a con-
stant curvature: de Sitter or anti-de Sitter depending
on the sign of a cosmological constant, and gauge group
ISO(2,1) is replaced by SO(3,1) or SO(2,2)5.

If the relation between general relativity and Chern-
Simons gauge theory is valid at the quantum level, then
there is a close relationship between general relativity and
knot theory, at least in (2+1)-dimensional space-time,
since Chern-Simons gauge theory in (2+1)-dimensional
space-time is intimately connected with knot theory5.
We consider the quantum level here to be related to
topology.

The formulation of a gravitational knot for a non-
Abelian Chern-Simons action in (2+1)-dimensional
empty space-time has been done5,7,8,10,11. In this arti-
cle, we propose that there exists an Abelian gravitational
knot of the weak field in (2+1)-dimensional empty space-
time with a small positive cosmological constant written
using the Clebsch variables. This Abelian gravitational
knot is formulated by an Abelian Chern-Simons action.
To the best of our knowledge1,5,7–17, the formulation of
such knot has not been done yet.

This article is organized as follows. In Sect. II, we dis-
cuss in brief gravity theory in (3+1)-dimensional space-
time. In Sect. III, gravity theory in (2+1)-dimensional
space-time. In Sect. IV, we try to identify the relation
between the Einstein-Hilbert and the Chern-Simons ac-
tions in (2+1)-dimensional space-time. In Sect. V, the
relation between a set of subset fields and the non-trivial
Hopf maps S3 → S2 is discussed. In Sect. VI, we discuss
the relations between the Hopf maps, the Hopf invari-
ant, the Hopf index, and the Chern-Simons action. In
Sect. VII, the concept of small metric perturbations is
described and we interpret these small metric perturba-
tions as the scalar potentials. The related vector poten-
tial is written using the Clebsch scalar variables. In Sect.
VIII, we propose that in analogous to a set of subset
fields, we have a set of curvature components. In Sect.
IX, we show that as the consequences of the Hopf maps

for the set of curvature components: we could construct
the non-linear and linear Ricci theories. In Sect. X, we
treat the vector potential as the gauge potential and this
gauge potential could be related to the gauge fields (the
vierbein and the spin connection). In Sect. XI, the gravi-
tational knot is formulated as the Abelian Chern-Simons
action. We give a discussion and conclusion in Sect. XII.

II. (3+1) GRAVITY

The Einstein field equation in (3+1)-dimensional
space-time can be written as

Gµν + Λgµν = −8πG Tµν (1)

where

Gµν ≡ Rµν −
1

2
gµν R (2)

Gµν is Einstein tensor, Rµν is Ricci curvature tensor,
Rµν = Rαµαν , Rαµαν is Riemann curvature tensor, gµν
is metric tensor, R is Ricci scalar curvature, Λ is a cos-
mological constant, G is the gravitational coupling con-
stant - the generalization to other dimensions of New-
ton’s constant10, Tµν is the energy-momentum tensor of
matter.

A. Tµν = 0, Λ = 0

What we mean with an empty space-time is a vacuum
space-time, Rµν = 0, where there is no matter source
present, Tµν = 0, and there exists no physical fields ex-
cept the gravitational field. The gravitational field does
not disturb the emptyness, but other fields do18.

In the absence of matter and without cosmological con-
stant, the Einstein field equation read11

Gµν ≡ Rµν −
1

2
gµν R = 0 (3)

In general, the vanishing of Gµν , hence of Rµν and R,
does not imply that the Riemann curvature tensor is zero,
i.e. the space-time need not be flat11. Einstein made the
assumption that in (3+1)-dimensional empty space-time,
it constitutes his law of gravitation18. However, in (2+1)-
dimensional space-time the situation is different.

B. Tµν = 0, Λ 6= 0

In this article, we will not discuss the gravity the-
ory with a non-zero cosmological constant in (3+1)-
dimensional empty space-time.
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C. Weak-field limit of (3+1) gravity

In the case of a weak-field limit, the linearization (as-
sume that we ignore the non-linear terms of connection19)
of the Ricci curvature tensor yields20

Rµν = ∂αΓαµν − ∂νΓαµα (4)

This equation of the linearized Ricci curvature tensor is
identical to the equation of an Abelian field strength ten-
sor in Maxwell’s theory as written below

Fµν = ∂µAν − ∂νAµ (5)

By comparing eqs.(4),(5), we see that the curvature (the
Ricci tensor), Rµν , is identical to the field strength ten-
sor, Fµν , and the connection (Christoffel symbols), Γαµα,
is identical to the gauge potential, Aµ. The identical
form of eqs.(4),(5) shows the beautiful relationship be-
tween mathematics and physics.

III. (2+1) GRAVITY

In (2+1)-dimensional space-time manifold, M ,
Einstein-Hilbert action for gravity coupled to matter
can be written as6,21

IEH =
1

16πG

∫
M

d2+1x
√
−g (R− 2Λ) + Imatter (6)

Equation of motion for the action (6) are6,21

Rµν −
1

2
gµν R+ Λgµν = −8πG Tµν (7)

We see that the equation of motion (7) is the same as (1).
Eq. (7) are generally covariant, i.e. they are invariant
under the action of the group of diffeomorphisms of the
space-time, which can be viewed as a gauge group6.

In (2+1)-dimensional space-time, the relation between
Einstein tensor and Riemann curvature tensor can be
written as11

Gµν = −1

4
εµαβ ενγδ R

γδ
αβ (8)

Eq.(8) may be inverted as10

Rαµβν = εαµγ εβνδ G
δ
γ (9)

A. Tµν = 0, Λ = 0

Equation (9) without a cosmological constant implies
that if the Einstein tensor vanishes (as a consequence
of the absence of matter) then the Riemann curvature
tensor vanishes. In turn, the vanishing Riemann tensor
implies that the Ricci tensor and Ricci scalar are equal
to zero. So, the solution of eq.(9) is flat space-time. The
theory is trivial11. The theory does not possess any prop-
agating degrees of freedom11.

B. Tµν = 0, Λ 6= 0

In the case of empty space-time and a non-zero cosmo-
logical constant, eq.(1) can be replaced by

Gµν + Λgµν = 0 (10)

and by substituting eq.(10) into eq.(9), we obtain11

Rαµβν = −Λ(gαβ gµν − gαν gβµ) (11)

which shows that without sources, all spaces that solve
(10) are of constant curvature: a closed R1 × S2 de
Sitter space for Λ > 0 or a hyperbolic anti-de Sitter
space for Λ < 011. We consider that the constant curva-
ture indicates that the geometry of space-time is locally
homogeneous5 and isotropic in the sense that curvature
is the same or uniform everywhere.

Eq.(10) implies that the Ricci curvature tensor can be
written as

Rµν =
1

2
gµν R− Λgµν (12)

It means that the Ricci curvature tensor is not simply
proportional to the metric tensor gµν scaled by a con-
stant R, but also has an additional term involving the
cosmological constant, Λ.

IV. COULD (2+1) EINSTEIN-HILBERT ACTION BE
INTERPRETED AS (2+1) CHERN-SIMONS ACTION?

A. The Einstein-Hilbert action without a cosmological
constant

For a (2+1)-dimensional space-time manifold, the
Einstein-Hilbert action without a cosmological constant
would be5

IEH =
1

2

∫
M

εµνρ εabc
{
eaµ
(
∂νω

bc
ρ − ∂ρωbcν + [ων , ωρ]

bc
)}

d2+1x (13)

where eaµ is a vierbein, ωbcρ is a spin connection, εµνρ,
εabc are the Levi-Civita symbols in the space-time and
internal space, respectively. If eaµ and ωbcρ are interpreted
as gauge fields, it might conceivably be interpreted as a
Chern-Simons three form5.

From eq.(13), we could define the Ricci curvature ten-
sor as

R bc
νρ = ∂νω

bc
ρ − ∂ρω bc

ν + [ων , ωρ]
bc (14)

Eq.(14) is a non-linear equation. The nonlinearity is
shown by the commutation relation in the third term of
the right-hand side (14). This term [ων , ωρ]

bc represents
the self-interaction of the spin connection. The non-zero
value of this term contributes to the curvature of space-
time.
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B. The Chern-Simons action (without cosmological
constant)

An integral on a (2+1)-dimensional space-time mani-
fold of the Chern-Simons action can be written as5,10

ICS =

∫
M

εµνρ
{
eµa

(
∂νω

a
ρ − ∂ρω a

ν + εabc ω
b
ν ω

c
ρ

)}
d2+1x

(15)

We see that the ISO(2,1) Chern-Simons action (15) pre-
cisely coincides with the Einstein-Hilbert action in (2+1)-
dimensional space-time (13)5.

C. The Einstein-Hilbert action with a cosmological
constant

If we include a non-zero cosmological constant, the
generalized Einstein-Hilbert action in (2+1)-dimensional
space-time is5

IEH =

∫
M

εµνρ
{
eµa

(
∂νω

a
ρ − ∂ρωaν

)
+ εabc e

a
µ ω

b
νω

c
ρ

+
Λ

3
εabc e

a
µ e

b
νe
c
ρ

}
d2+1x (16)

The equations of motion (16) now say not that space-time
is flat but locally homogeneous, with curvature propor-
tional to Λ5.

The simply connected covering space of such a space-
time is not a portion of Minkowski space, but a portion of
de Sitter or anti-de Sitter space. The spaces of de Sitter
and anti-de Sitter have for their symmetries SO(3,1) and
SO(2,2), respectively, not ISO(2,1) as in Minkowski flat
space-time5. Thus, it is reasonable to guess that if the
gravity theory without a cosmological constant in (2+1)-
dimensional space-time is related to the gauge theory of
ISO(2,1), then the gravity theory with a cosmological
constant in (2+1)-dimensional space-time will be related
to gauge theory of SO(3,1) and SO(2,2)5.

We see from eq.(16), the Ricci curvature tensor could
be written as8

Raνρ = ∂νω
a
ρ − ∂ρωaν + ωaν ω

a
ρ +

Λ

3
eaν e

a
ρ (17)

In terms of the spin connection, eq.(17) is a non-linear
equation due to there exists ωaν ω

a
ρ term as in eq.(14).

D. Weak-field limit and small positive cosmological
constant

In the case of weak-field limit and a small positive cos-
mological constant, Λ > 0, |Λ| << 1, eq.(17) reduces to
Abelian Ricci curvature tensor written below

Raνρ = ∂νω
a
ρ − ∂ρωaν +

Λ

3
eaν e

a
ρ (18)

At first sight, eq.(18) looks like a non-linear equation, be-
cause we see there exists a quadratic form (as a product
of the vierbein components) in the third term of eq.(18).
Although there exists such a quadratic form, eq.(18) is a
linear equation. It is because the vierbein components,
eaν , eaρ, can be viewed as fixed fields. Fixed fields here re-
fer to fields that are considered given or fixed externally,
parameters. They are not variables being solved for. The
fixed vierbein fields due to the cosmological constant in-
troduce a source term that is imposed on the curvature.
So, in terms of the spin connection, the equation (18)
remains linear.

E. Newtonian limit

In the case of weak field, a small positive cosmological
constant, Λ > 0, |Λ| << 1, and very slow motion, eq.(18)
reduces to

Rajk = ∂jω
a
k − ∂kωaj +

Λ

3
eaj e

a
k (19)

where j, k = 1, 2, denote the spatial indices. Here, ∂j and
∂k represent derivatives with respect to the spatial coor-
dinates only, and ωaj and eaj are the spatial components of
the spin connection and the vierbein, respectively. The
assumption of slow motion implies that the terms involv-
ing time derivatives are negligible compared to the spatial
derivatives. Eq.(19) is the Ricci curvature tensor in slow-
motion which we could treat it as the time-independent
curvature.

F. The Chern-Simons action with a cosmological constant

Without proof, the Chern-Simons action with non-zero
cosmological constant could be written as5,8

ICS =

∫
M

εµνρ eµa

×
{
∂νω

a
ρ − ∂ρωaν + εabc

(
ωbνω

c
ρ +

Λ

3
ebνe

c
ρ

)}
d2+1x

(20)

From eq.(20), the non-Abelian curvature can be writ-
ten as

Raνρ = ∂νω
a
ρ − ∂ρωaν + εabc

(
ωbνω

c
ρ +

Λ

3
ebνe

c
ρ

)
(21)

Here, the Levi-Civita symbol appears in the term involv-
ing the spin connection and the vierbein. It differs from
eq.(17) where there is no such the Levi-Civita symbol in
the term involving the spin connection and the vierbein.
It shows that the related Chern-Simons action (20) de-
scribes the gauge fields with an internal symmetry. In
the case of the Einstein-Hilbert action (16), the Levi-
Civita symbol is used to contract the indices of the spin
connection and the vierbein.
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In the case of a weak gauge field limit and a small value
of the positive cosmological constant, eq.(21) reduces to
Abelian curvature written below

Raνρ = ∂νω
a
ρ − ∂ρωaν +

Λ

3
εabc e

b
νe
c
ρ (22)

Eq.(22) is a linear equation in terms of the spin connec-
tion. The reason is analogous to eq.(18).

In the case of Newtonian limit where the motion is very
slow compared to the velocity of light, eq.(22) reduces to

Rajk = ∂jω
a
k − ∂kωaj +

Λ

3
εabc e

b
je
c
k (23)

We see that eq.(23) is similar to eq.(19). The only dif-
ferent is there exists Levi-Civita symbol in the second
term of eq.(23) but there is not in eq.(19). This Levi-
Civita symbol shows that Chern-Simons theory works in
internal space.

G. The Abelian Chern-Simons action with a cosmological
constant

The Abelian Chern-Simons action with non-zero cos-
mological constant can be obtained from eq.(20) by re-
placing the non-Abelian curvature (21) with Abelian cur-
vature (22), then we have

ICS =

∫
M

εµνρ eµa

(
∂νω

a
ρ − ∂ρωaν +

Λ

3
εabc e

b
νe
c
ρ

)
d2+1x

(24)

In the case of Newtonian limit, eq.(24) reduces to

ICS =

∫
M

εijk eia

(
∂jω

a
k − ∂kωaj +

Λ

3
εabc e

b
je
c
k

)
d2+1x

(25)

We will use this Abelian Chern-Simons action (26) to
formulate the Newtonianl knot.

In the following, we need to reformulate the gauge po-
tential written using the Clebsch scalar variables related
to the vierbein and the spin connection. First, it is nec-
essary to show that a set of subset fields satisfies the
non-trivial Hopf maps S3 → S2. Physically, it is because
the properties of a set of subset fields could be described
by Hopf maps. Analogous to a set of subset fields that
satisfies the non-trivial Hopf maps, we have a set of cur-
vature components that also satisfy the non-trivial Hopf
maps. The time-independent problems of a set of curva-
ture components, as in the case of a set of subset fields,
could be solved by interpreting some of the quantities
that appear in Hopf’s theories as Cauchy’s initial time
values.

V. A SET OF SUBSET FIELDS AND HOPF MAPS
S3 → S2

Let us consider maps of a set of subset fields consisting
of the complex scalar fields as a function of the position

vector, φ(~r), φ∗(~r), from a finite radius r to an infinite
r implies from the stronger field to the weak field. A
scalar field has properties that, by definition, its value for
a finite r depends on the magnitude and the direction of
the position vector, but for an infinite r it is well-defined2

(it depends on the magnitude only). In other words, for
an infinite r, a scalar field is isotropic. Throughout this
article, we will work with the classical scalar field.

The properties of the complex scalar fields can be in-
terpreted as the non-trivial Hopf maps written below1

φ(~r), φ∗(~r) : S3 → S2 (26)

where S3 and S2 are three and two dimensional spheres,
respectively1. These non-trivial Hopf maps can be classi-
fied in homotopy classes labeled by the value of the cor-
responding Hopf indexes, integer numbers, and the topo-
logical invariants1,2. The other names of the topological
invariants are the topological charge, and the winding
number (the degree of a continuous mapping)22. The
topological charge is independent of the metric tensor, it
can be interpreted as energy23.

We see from eq.(26) that the complex scalar fields in
the non-trivial Hopf maps are time-independent. This
problem could be solved by interpreting some of the
quantities that appear in Hopf’s theories as Cauchy’s ini-
tial time values24.

There exists (one) dimensional reduction in the non-
trivial Hopf maps (26). The problems in the higher di-
mensional space can often be more complex than the
problems in the lower dimensional space. By mapping
onto the lower dimensional space, as in the Hopf maps,
the problem becomes simpler, without losing the infor-
mation about the non-trivial topological properties of
space.

Physically, we interpret this dimensional reduction as
a consequence of the isotropic (well-defined) property of
the complex scalar fields for an infinite r. In the infinite
r, the value of the complex scalar fields only depends on
its magnitude. The direction of the position vector, as
the complex scalar fields are the function of the position
vector, does not matter. The property of the complex
scalar fields as a function of space (the position vector)
seems likely in harmony with the property of space-time
itself. Space-time could be locally anisotropic but glob-
ally isotropic (the distribution of matter energy in the
universe is assumed to be homogeneous).

A little we would like to say about the non-trivial Hopf
maps. Roughly speaking, the Hopf maps or the Hopf
fibration, S3 → S2, is a non-trivial fibration where the
fibre is S1. Here, S3 is the total space (domain), S2 is
base space (codomain) and each point on S2 corresponds
to a circle S1 in S3. It means that S3 can be seen as a
bundle of circles (fibres) over S2.
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VI. HOPF INVARIANT, HOPF INDEX, AND
CHERN-SIMONS ACTION

These non-trivial Hopf maps (26) are related to the
Hopf invariant16, H, expressed as an integral16,25,26

H =

∫
S3

ω ∧ dω (27)

where ω is a 1-form on S316 and dω is a 2-form. We see
eq.(27) is identical to the formulation of circulation in
hydrodynamics27 where circulation is identical to Hopf
invariant, ω and dω are identical to velocity field and
vorticity, respectively.

The relation between the Hopf invariant and the Hopf
index, h, can be written explicitly as1

H = h γ2 (28)

where γ is the total strength of the field which is the sum
of the strengths of all the tubes formed by the integral
lines of electric and magnetic fields1.

Related to gauge theory and magnetohydrodynamics
(self-helicity), it can be interpreted naturally that the
Hopf invariant has a deep relationship with the Chern-
Simons action (the Chern-Simons integral)16. We will see
that the Hopf invariant is identical to the Chern-Simons
action itself. The Hopf invariant is just the winding num-
ber of Gauss mapping16 (so probably, there exists a re-
lationship between Gauss mapping and non-trivial Hopf
maps).

The Hopf invariant or the Chern-Simons integral is an
important topological invariant to describe the topologi-
cal characteristics of the knot family16,17. In a more pre-
cise expression, the Hopf invariant or the Chern-Simons
integral is the total sum of all the self-linking and all the
linking numbers of the knot family16,17. The self-linking
and linking numbers by themselves have a topological
structure.

VII. SMALL METRIC PERTURBATIONS, SCALAR
AND VECTOR POTENTIALS

The linearized metric perturbations take a role as ”po-
tentials” in the linearized gravitation28. We consider a
set of curvature components, ea(~r, t), ea

∗
(~r, t), as scalar

potentials and they could be interpreted similarly to the
linearized metric perturbations. The linearized (small)
metric perturbations can be written as

hµν = gµν − ηµν (29)

or28

hµν = ρµν e
i~k·~r (30)

where gµν is the metric tensor, ηµν is the metric of

Minkowski (flat) space-time, ρµν is the amplitude, ~k · ~r
is the phase, ~k is the wave vector, and ~r is the position

vector. The subscript indices, µ, ν, represent space-time
coordinates. In an empty space-time, the amplitude is
constant. The small metric perturbations means that
|hµν | << 1 for all µ and ν. Eq.(30) shows us that the lin-
earized metric perturbations can be understood in terms
of the wave.

In analogy to eq.(30), we propose that the scalar and
the related vector potentials could be written in terms of
the wave, respectively as29

ea = ρaeiq (31)

where ρa is the amplitude, q is the phase, the notation e
in eiq refers to the exponential (eiq = exp(iq)), and

eaρ = fa ∂ρq (32)

where the subscript index ρ in eaρ represents space-time
coordinates, and the superscript index a represents a
set of indices that label the curvature components, ∂ρq
means the gradient of the phase, fa is the function of
amplitude written as below

fa = −1/
{

2π[1 + (ρa)2]
}

(33)

where fa(~r, t) and q(~r, t) the Clebsch variables24 or Gaus-
sian potentials10,27, scalars.

These Clebsch variables are related to any divergence-
less vector field1. An example of a divergenceless vector
field is the vorticity, ~ω, in hydrodynamics27 or the mag-

netic field, ~B, where ~∇· ~B = 0. The Clebsch variables are
not uniquely defined (many different choices are possible
for them)1.

We consider that eaρ (32) is not a total derivative, oth-

erwise it would be a pure gauge24. A pure gauge in this
context means that the field configuration does not pro-
duce any observable curvature or field strength. For ex-
ample, in electromagnetism, a pure gauge vector poten-
tial can be written as the gradient of a scalar function λ,
Aµ = ∂µλ. In this case, the corresponding field strength
Fµν = ∂µAν−∂νAµ is zero, indicating no physical electro-
magnetic field is present. Since eaρ is not a total deriva-
tive, it is not a pure gauge and therefore represents a
physical, non-trivial field configuration.

We will see that this vector potential, eaρ (32), could
be viewed as the gauge potential and in turn, could be
related to, in terms of Cartan gravity, the gauge fields
(the vierbein and the spin connection).

VIII. A SET OF CURVATURE COMPONENTS

As the field strength in Maxwell’s theory could consist
of the complex scalar fields, we assume that the curvature
could consist of the complex scalar potentials. The scalar
fields are precisely equivalent to the scalar potentials (the
linearized small metric perturbations). It is very clear if
we see the notation of the scalar potentials (31) which
involve the imaginary number, i.
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The properties of the complex scalar potentials, as the
complex scalar fields, could also be described by the Hopf
maps written below

ea(~r), ea
∗
(~r) : S3 → S2 (34)

If we relate the Hopf maps with the space we are work-
ing, these three and two-dimensional spheres could be
interpreted as the constant curvature spheres.

The complex scalar potentials in the non-trivial Hopf
maps (34) are time-independent. Analogous to time-
independent complex scalar fields, this problem could be
solved by interpreting some of the quantities that appear
in Hopf’s theories as Cauchy’s initial time values24.

IX. NON-LINEAR AND LINEAR RICCI THEORIES

These maps (34) have a consequence (by considering
that the field strength is identical to the curvature) that
we could write the Ricci curvature tensor as

Raµν =

√
c

2πi

(
∂µe

a∗∂νe
a − ∂νea

∗
∂µe

a

(1 + ea∗ea)2

)
(35)

where ea is a set of components of the Ricci curvature
tensor, the scalar potentials, and ea

∗
is the complex con-

jugate of ea. In analogy to non-linear field theory in
electromagnetism1, we consider c as an action constant,
introduced so that the Ricci curvature tensor will have
suitable dimensions for the curvature. Eq.(35) is the non-
linear equation where the nonlinearity is shown by the
ea

∗
ea term in the denominator.

In the case of a weak-field limit, the complex scalar
potentials are very small, |ea∗ea| << 1, eq.(35) reduces
to a linear equation as written below

Raµν =

√
c

2πi

(
∂µe

a∗∂νe
a − ∂νea

∗
∂µe

a
)

(36)

This linear Ricci curvature tensor equation (36) is equiv-
alent to eq.(4). It means that the linearized Ricci cur-
vature tensor (4) could be interpreted the same as the
linear Ricci theory (36) in the case of a weak-field limit.

By using the vector potential (32), the linear Ricci the-
ory (36) could be written as24

Raµν =

√
c

2πi
{∂µ(fa ∂νq)− ∂ν(fa ∂µq)} (37)

This is the linear Ricci theory written in terms of the
Clebsch variables. We see that the vector potential writ-
ten using the Clebsch scalar variables is equivalent to
the Levi-Civita connection (the Christoffel symbols) in
eq.(4).

X. GAUGE POTENTIAL AND GAUGE FIELDS

In gauge theory, there exists only gauge (vector) po-
tential, but in general relativity, we have the gauge fields

(the vierbein and the spin connection). These gauge
fields could be viewed identically to the gauge potential.
In this case, the gauge potential can be written as5,8,10

Aµ = eaµPa + ωaµJa (38)

where eaµ is the vierbein (translational part), ωaµ is the
spin connection (rotational part), Pa, Ja are the gen-
erators of translation and Lorentz rotation of ISO(2,1)
Poincare group, respectively.

In analogy to (32), we could write the gauge potential
Aµ as

Aµ = f ∂µq (39)

where the function of amplitude, f , is analogous to (33),
can be written as

f = −1/
{

2π[1 + (ρ)2]
}

(40)

ρ is amplitude, q is phase.
By substituting eq.(39) into (38), we obtain that

f ∂µq = eaµPa + ωaµJa (41)

where

eaµ = fae ∂µq (42)

and

ωaµ = faω ∂µq (43)

fae and faω are amplitude functions of the vierbein and the
spin connection, respectively. We see from eqs.(42),(43),
the only difference between the vierbein and the spin con-
nection is their amplitude functions.

By substituting eqs.(42),(43), into (41), the gauge po-
tential becomes

f ∂µq = fae ∂µq Pa + faω ∂µq Ja (44)

or,

f ∂µq = (fae Pa + faω Ja) ∂µq (45)

Eq.(45) has a consequence that

f = fae Pa + faω Ja (46)

Roughly speaking, the amplitude function, f , of the
gauge potential decomposes into the amplitude functions
of the vierbein and the spin connection.

XI. A NEWTONIAN KNOT

By substituting eqs.(42),(43) into eq.(26) we obtain
the Abelian Chern-Simons action in (2+1)-dimensional
space-time as written below

ICS =

∫
M

εijk fea ∂iq {∂j(faω ∂kq)− ∂k(faω ∂jq)

+
Λ

3
εabc f

b
e ∂jq f

c
e ∂kq

}
d2+1x (47)

The action, ICS, (47) is related to a topological object
i.e. a Newtonian knot, an integer number. This integer
number is what we mean by a set of curvature compo-
nents, as a set of subset fields, obeying the topological
quantum condition.
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XII. DISCUSSION AND CONCLUSION

It has been realized that the role of topology has be-
come more and more important in recent days and in the
future of physics. But to understand topology is compli-
cated enough because topology is inherently related to
nonlinearity. It is widely believed that topological ob-
jects are impossible to exist in linear theories, such as an
Abelian Chern-Simons action in the topological quantum
field theory. But the belief is no longer can be main-
tained. The discovery of the electromagnetic knot in vac-
uum Maxwell’s theory more than thirty years ago (by the
paper of Ranada1) has shown that the topological object
could exist in the linear theory. In that paper, Ranada
describes the electromagnetic knot by assuming that the
field strength tensor consists of a set of subset fields, com-
plex scalar fields. A set of subset fields is locally equal to
the field strength tensor, but globally different since a set
of subset fields obeys the topological quantum condition
but the field strength tensor does not.

We adopt the idea of Ranada’s electromagnetic knot
and apply it to the case of gravity theory. This is because
electromagnetism and gravity are similar. The electro-
magnetic theory or Maxwell’s theory is the gauge theory
and the gravity theory (the general theory of relativity)
could be treated as the gauge theory. Maxwell’s the-
ory is an Abelian U(1) local gauge theory of internal
space and general relativity, a non-linear theory, which
could be linearized in the case of the weak-field limit,
is the gauge theory of translation in (3+1)-dimensional
(external) space-time. The gauge potential and the field
strength tensor in electromagnetism are identical to the
connection and the curvature in gravity theory, respec-
tively. So, we are interested in the case of the weak-field
limit in vacuum or empty space-time.

We propose that the curvature i.e. the Ricci curvature
tensor has a set of curvature components consisting of
complex scalar potentials. A set of curvature components
is locally equal to the Ricci curvature tensor i.e. the Ricci
curvature tensor can be obtained by patching together
a set of curvature components (except in a zero-measure
set) but globally different. The difference between a set of
curvature components and the Ricci curvature tensor in
an empty space-time is global instead of local since a set
of curvature components obeys the topological quantum
condition but the Ricci curvature tensor does not.

The linear Ricci curvature tensor satisfies the linear
Ricci theory, but a set of curvature components satisfies
the non-linear Ricci theory. Both, the linear Ricci cur-
vature tensor and a set of curvature components, satisfy
the linear Ricci theory in the case of a weak field of grav-
itation. It means that, in the case of a weak field, the
non-linear Ricci theory reduces to the linear Ricci theory.

The problem arises in the case of (3+1)-dimensional
space-time when general relativity is not equivalent to
gauge theory. Fortunately, in the case of lower dimen-
sions i.e. (2+1)-dimensional space-time, general relativ-
ity is equivalent to gauge theory. So, we turn our atten-

tion to the weak-field limit in (2+1)-dimensional empty
space-time. But, gravity theory in (2+1)-dimensional
empty space-time, without a cosmological constant, gives
rise to flat space-time. The theory is trivial. How about
gravity theory in (2+1)-dimensional empty space-time
with a non-zero cosmological constant? Luckily, the
space-time is not flat: space-time has constant curvature
i.e. de Sitter space if the cosmological constant is posi-
tive and anti-de Sitter space if the cosmological constant
is negative. The theory is not trivial. We are interested
in a small positive cosmological constant (de Sitter space
with a small constant curvature).

For the physical system of slow-moving or slow tem-
poral variations compared to the velocity of light (New-
tonian limit), the time derivative of the system is negli-
gible. We can treat the physical system as quasi-static,
meaning it evolves so slowly that for many practical pur-
poses, it can be considered nearly constant over short
time intervals. But, it can still have significant spatial
variations. These variations determine how the physical
system varies in space and contribute to geometry, i.e.
the local curvature. In turn, the local curvature effects
on the geodesic of test particle. For slow motion, the time
components of the derivatives of the spin connection can
be approximated as negligible, leaving us with the spatial
components only. This interpretation is rooted in the na-
ture of space-time in general relativity, where time and
space are intertwined, but their effects can be treated
differently.

We find that in the case of the Newtonian limit in
(2+1)-dimensional empty space-time with a small pos-
itive cosmological constant, a non-Abelian Ricci curva-
ture tensor reduces to an Abelian Ricci curvature tensor.
This Abelian Ricci curvature tensor is a linear theory in
terms of the spin connection. We also find an Abelian
Ricci curvature tensor in gauge theory which is precisely
equivalent to an Abelian Ricci curvature tensor in gravity
theory. The Levi-Civita symbol in Abelian Ricci tensor
in gauge theory shows that we work in internal space.

It is necessary to show that a set of subset fields sat-
isfies the non-trivial Hopf maps S3 → S2. Physically, it
is because the properties of a set of subset fields could
be described by Hopf maps. Analogous to a set of subset
fields, we have a set of curvature components that also
satisfy the non-trivial Hopf maps. The time-independent
problems of a set of curvature components, as in the case
of a set of subset fields, could be solved by interpreting
some of the quantities that appear in Hopf’s theories as
Cauchy’s initial time values.

A set of curvature components could consist of complex
scalar potentials. It is because, in the linearized gravi-
tation, the linearized (small) metric perturbations take
a role as potentials. We interpret these linearized met-
ric perturbations as the scalar potentials. The notation
for both is precisely equivalent. They could be denoted
as the amplitude times the exponential of iq, where q is
the phase, and i is the imaginary number. The scalar
potentials could be complex because there exists i there.
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The related gauge (vector) potential can be written us-
ing the Clebsch scalar variables, fa and q, where fa is
the function of amplitude. In this way, the gauge poten-
tial can be understood simply. These Clebsch variables
are related to any divergenceless vector field, i.e. the di-
vergence of any vector field gives the zero result. The
Clebsch variables are not uniquely defined (many differ-
ent choices are possible for them). Here, the gauge po-
tential is not a total derivative, otherwise it would be a
pure gauge. A pure gauge in this context means that the
field configuration does not produce any observable cur-
vature or field strength. Since the gauge potential is not
a total derivative, it is not a pure gauge and therefore
represents a physical, non-trivial field configuration.

Cartan gravity or the vierbein formalism of general rel-
ativity makes general relativity similar to a gauge theory.
For this reason, we need to reformulate the gauge poten-
tial in gauge theory related to the gauge fields, i.e. the
vierbein and the spin connection. The remarkable one
is the vierbein and the spin connection have the similar
forms described using Clebsch variables. The only dif-
ference between the vierbein and the spin connection is
their amplitude functions. It has the consequence that
the amplitude function of the gauge potential decomposes
into the amplitude functions of the vierbein and the spin
connection.

We substitute the gauge potential in terms of the vier-
bein and the spin connection written using the Clebsch
variables to the Abelian Chern-Simons action with the
small positive cosmological constant to obtain an New-
tonian knot in (2+1)-dimensional empty space-time.

We could say that the empirical or the observational
evidence to support the existence of an Newtonian knot
in (2+1)-dimensional empty space-time is guaranteed
by the formal equivalence between an Newtonian knot
and the electromagnetic knot formulations in vacuum
Maxwell’s theory for which knot solutions had been
known to exist as shown by Ranada1,12.

There exists (one) dimensional reduction in the non-
trivial Hopf maps (26). The problems in the higher di-
mensional space can often be more complex than the
problems in the lower dimensional space. By mapping
onto the lower dimensional space, as in the Hopf maps,
the problem becomes simpler, without losing the infor-
mation about the non-trivial topological properties of
space.

Physically, we interpret this dimensional reduction as
a consequence of the isotropic (well-defined) property of
the complex scalar fields for an infinite r. In the infinite
r, the value of the complex scalar fields only depends on
its magnitude. The direction of the position vector, as
the complex scalar fields are the function of the position
vector, does not matter. The property of the complex
scalar fields as a function of space (the position vector)
seems likely in harmony with the property of space-time
itself. Space-time could be locally anisotropic but glob-
ally isotropic (the distribution of matter energy in the
universe is assumed to be homogeneous). The dimen-

sional reduction from (3+1) to (2+1) dimensions is a
natural consequence of the weak-field properties of grav-
ity.

A little we would like to say about the non-trivial Hopf
maps. Roughly speaking, the Hopf maps or the Hopf
fibration, S3 → S2, is a non-trivial fibration where the
fibre is S1. Here, S3 is the total space (domain), S2 is
base space (codomain) and each point on S2 corresponds
to a circle S1 in S3. It means that S3 can be seen as a
bundle of circles (fibres) over S2.

XIII. ACKNOWLEDGMENT

We would like to thank Caesnan Marendra Grahan
Leditto, Richard Tao Roni Hutagalung, Idham Syah
Alam, AI (Chat GPT) for fruitful discussions. Also we
would like to thank Reviewers for reviewing this article.

MH thank to beloved Juwita Armilia and Aliya
Syauqina Hadi for much love. Al Fatihah for his Ibunda
and Ayahanda. May Allah bless them with the highest
level of heaven, Jannatul Firdaus.

This research is supported fully by self-funding.

1Antonio F Ranada, Topological electromagnetism, J. Phys. A:
Math. Gen. 25 (1992) 1621-1641.

2Antonio F. Ranada, A Topological Theory of the Electromagnetic
Field, Letters in Mathematical Physics 18: 97-106, 1989.

3Chen Ning Yang, Topology and Gauge Theory in Physics, Inter-
national Journal of Modern Physics A, Vol. 27, No. 30 (2012)
1230035.

4Y. M. Cho, Gauge theory, gravitation, and symmetry, Physical
Review D, Volume 14, Number 12, 15 December 1976. Y. M. Cho,
Einstein Lagrangian as the translational Yang-Mills Lagrangian,
Physical Review D, Volume 14, Number 10, 15 November 1976.

5Edward Witten, 2+1 Dimensional Gravity as an Exactly Soluble
System, Nuclear Physics B 311 (1988) 46-78.

6Steven Carlip, Quantum Gravity in 2+1 Dimensions, Cambridge
University Press, 2003.

7Wouter Merbis, Chern-Simons–like Theories of Gravity, Ph.D.
Thesis, University of Groningen, 2014.

8Bastian Wemmenhove, Quantisation of 2+1 dimensional Gravity
as a Chern-Simons theory, Thesis, Instituut voor Theoretische
Fysica Amsterdam, 2002.

9Jorge Zanelli, Chern-Simons Gravity: From 2+1 to 2n+1 Di-
mensions, Brazilian Journal of Physics, Vol. 30, No.2, June 2000.

10Roman Jackiw, Diverse Topics in Theoretical and Mathematical
Physics, World Scientific, 1995.

11Roman Jackiw, Lower Dimensional Gravity, Nuclear Physics B
252 (1985) 343-356.

12A. V. Crisan, C. R. L. Godinho, I. V. Vancea, Gravitoelectro-
magnetic knot fields, arXiv:2103.00217v1 [gr-qc] 27 Feb 2021

13Y. M. Cho, Seung Hun Oh, Pengming Zhang, Knots in Physics,
International Journal of Modern Physics A, Vol. 33, No. 07,
1830006 (2018).

14Y. M. Cho, Franklin H. Cho and J.H. Yoon, Vacuum decomposi-
tion of Einstein’s theory and knot topology of vacuum space-time,
Class. Quantum Grav. 30 (2013) 055003 (17pp).

15Michael Atiyah, The Geometry and Physics of Knots, Cambridge
University Press, 1990.

16Ji-rong Ren, Ran Li, Yi-shi Duan, Inner topological structure of
Hopf invariant, https://arxiv.org/abs/0705.4337v1, 2007.

17Yi-shi Duan, Xin Liu, Li-bin Fu, Many knots in Chern-Simons
field theory, Physical Review D 67, 085022 (2003).

18P. A. M. Dirac, General Theory of Relativity, John Wiley & Sons,
1975.

9



19M.P. Hobson, G.P. Efstathiou, A.N. Lasenby, General Relativ-
ity: An Introduction for Physicists, Cambridge University Press,
2006.

20Charles W. Misner, Kip S. Thorne, John Archibald Wheeler,
Gravitation, W. H. Freeman and Company, 1973.

21K. Surya Kiran, Chethan Krishnan, Avinash Raju, 3D Grav-
ity, Chern-Simons and Higher Spins: A Mini Introduction,
arXiv:1412.5053v3 [hep-th] 15 Sep 2015.

22Wikipedia, Topological quantum number.
23Miftachul Hadi, Hans Jacobus Wospakrik, SU(2) Skyrme

Model for Hadron, https://arxiv.org/abs/1007.0888, 2010. Mif-
tachul Hadi, Irwandi Nurdin, Denny Hermawanto, Analytical
Analysis and Numerical Solution of Two Flavours Skyrmion,
https://arxiv.org/abs/1006.5601, 2010.

24A. F. Ranada, A. Tiemblo, A Topological Structure in

the Set of Classical Free Radiation Electromagnetic Fields,
arXiv:1407.8145v1 [physics.class-ph] 29 Jul 2014.

25J. H. C. Whitehead, An Expression of Hopf’s Invariant as an
Integral, Proceedings of the National Academy of Sciences, Vol.
33, No. 5, 117-123, 1947.

26Raoul Bott, Loring W. Tu, Differential Forms in Algebraic
Topology, Springer, 1982.

27Roman Jackiw, Lectures on Fluid Dynamics, Springer, 2002.
28James B. Hartle, Gravity: An Introduction to Einstein’s General

Relativity, Pearson, 2014.
29Miftachul Hadi, Knot in weak-field geometrical optics, OSF,
https://osf.io/e7afj/, 2023, and all references therein.

10

https://osf.io/e7afj/

	Topology of the Newtonian limit in (2+1)-dimensional empty space-time
	Abstract
	Introduction
	(3+1) Gravity
	T = 0, = 0
	T = 0, =0
	Weak-field limit of (3+1) gravity

	(2+1) Gravity
	T = 0, = 0
	T = 0, =0

	Could (2+1) Einstein-Hilbert action be interpreted as (2+1) Chern-Simons action?
	The Einstein-Hilbert action without a cosmological constant
	The Chern-Simons action (without cosmological constant)
	The Einstein-Hilbert action with a cosmological constant
	Weak-field limit and small positive cosmological constant
	Newtonian limit
	The Chern-Simons action with a cosmological constant
	The Abelian Chern-Simons action with a cosmological constant

	A set of subset fields and Hopf maps S3S2
	Hopf Invariant, Hopf index, and Chern-Simons action
	Small metric perturbations, scalar and vector potentials
	A set of curvature components
	Non-linear and linear Ricci theories
	Gauge potential and gauge fields
	A Newtonian knot
	Discussion and Conclusion
	Acknowledgment


