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Abstract. We compute and explore the full geometric product of two ori-
ented points in conformal geometric algebra Cl(4, 1) of three-dimension-
al Euclidean space. We comment on the symmetry of the various com-
ponents, and state for all expressions also a representation in terms of
point pair center and radius vectors.
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1. Introduction

This work is a substantial extension of [15,17], where only the scalar part of
the geometric product (also called inner product) was considered. In this
work we apply conformal geometric algebra (CGA) to the description of
points, including a planar orientation. An excellent general reference on Clif-
ford’s geometric algebras is [19], a short engineering oriented tutorial is [12],
and [22] describes a free software extension for a standard industrial com-
puter algebra system (MATLAB), which was also used for validation in the
current work. Alternatively, all computations could be done in the optimized
geometric algebra algorithm software GAALOP [7]. Introductions to CGA
are given in [3, 5] and efficient computational implementations are described
in [7]. CGA has found wide ranging applications in physics, quantum com-
puting, molecular geometry, engineering, signal and image processing, neural
networks, computer graphics and vision, encryption, robotics, electronic and
power engineering, etc. Up to date surveys are [1, 10, 14]. An introduction
to the notion of oriented point can be found in [6]. Prominent applications
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could be to LIDAR terrain strip adjustment [13], protein geometry model-
ing [20,21], and machine learning.

The example of the full geometric product of two vectors a, b ∈ Rn

ab = a · b+ a ∧ b = |a||b|(cosφ+ sinφ iab), (1)

clearly demonstrates that it includes more information, than only the inner
product, about the relative geometry of the two factors, in this case the cosine
and the sine of the angle φ enclosed by the two vectors, and the oriented unit
bivector iab of the plane spanned by the two vectors. Even though in this
work we do not exhaustively analyze the relative geometric information of
two oriented points contained in their full geometric product, the current
study provides important foundations for this purpose.

In the following, we begin with the CGA expression for oriented points
in three Euclidean dimensions (Section 2) and then fully compute their geo-
metric product (Section 3). The computations have been checked with The
Clifford Multivector Toolbox for MATLAB [22] using a representative exam-
ple (Section 4).

2. The notion of oriented point in conformal geometric algebra

An oriented point is given by the trivector expression of a circle with radius
zero (r = 0) in CGA,

Q = iq ∧ q + [
1

2
q2iq − q(q · iq)]e∞ + iqe0 + iq · qE, (2)

where the three-dimensional position vector of Q is the vector q ∈ R3, the
unit oriented bivector1 of the plane (orthogonal to the unit normal vector
nq of the plane) is iq ∈ Cl2(3, 0), e0 is the vector for the origin dimension,
e∞ is the vector for the infinity dimension, and the origin-infinity bivector is
E = e∞ ∧ e0, with

e20 = e2∞ = 0, e0 · e∞ = −1, e0e∞ = −E − 1, e∞e0 = E − 1,

e0E = −e0, Ee0 = e0, e∞E = e∞, Ee∞ = −e∞, (3)

and e0 and e∞ are both orthogonal to R3. This means, e.g. that

qe0 = −e0q, qe∞ = −e∞q, iqe0 = e0iq, iqe∞ = e∞iq,

nqe0 = −e0nq, nqe∞ = −e∞nq, (4)

all relations which are frequently used in the computations later in this paper.

1I thank an anonymous reviewer for the following valuable comment: Changing the sign

of Q and therefore of iq and nq means to give the oriented point Q exactly the opposite

orientation.
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The central pseudoscalar of CGA I = e123E = i3E = Ei3, I
−1 = −i3E,

leads to the dual (bivector) form2 of the oriented point

Q∗ = QI−1 = −Qi3E

= −(iq ∧ q)i3E + [
1

2
q2iqi3 − q(q · iq)i3]e∞E + iqi3e0E − (iq · q)i3E2

= i∗q · qE + [
1

2
q2(−i∗q) + q(q ∧ i∗q)]e∞ + i∗qe0 + i∗q ∧ q

= i∗q · qE + [−1

2
q2i∗q + q(qi∗q − q · i∗q)]e∞ + i∗qe0 + i∗q ∧ q

= i∗q · qE + [
1

2
q2i∗q − q(q · i∗q)]e∞ + i∗qe0 + i∗q ∧ q,

= nq ∧ q + [
1

2
q2nq − q(q · nq)]e∞ + nqe0 + nq · qE, (7)

using3 nq = i∗q = −iqi3, for the unit normal vector of bivector iq. The same
expression for Q∗ is found in [6], equation (4).

Note that oriented points naturally arise from the intersection of two
spheres tangent in one point, or a sphere and a plane tangent in one point,
see e.g. [8]. Furthermore, a dual oriented point at the origin (q = 0) has
the simple form nqe0, which is a bivector that squares to zero and can be
used as generator for transversions, similar to how bivectors 1

2te∞ generate
translations, see e.g. [4]. Moreover, from the oriented point at the origin nqe0
one can elegantly obtain the full expression of the oriented point located at
q ∈ R3 with a translation

Q∗ = T−1(q)npe0T (q), T (q) = 1 +
1

2
qe∞,

T−1(q) = T (−q) = 1− 1

2
qe∞, (8)

where the equality

−qnqq = q2nq − q2nq − qnqq = q2nq − 2q(q · nq), (9)

2Note that the result of (7) can also be written as

Q∗ = nq ∧ q + [
1

2
q2nq − q(q⌋nq)]e∞ + nqe0 + (q⌋nq)E, (5)

where ⌋ is the left contraction of geometric algebra. If then the unit orientation vector nq

is formally replaced by the carrier of a conformal point, i.e. the scalar 1 (see [9]), then we

get the expression for a standard conformal point Qno in CGA without orientation

Qno = q +
1

2
q2e∞ + e0, (6)

because 1 ∧ q = q and q⌋1 = 0.
3The dual Q∗ of an oriented point Q in (7) is computed by division with the five-

dimensional pseudoscalar I of Cl(4, 1), whereas the dual of entities in Cl(3, 0) ⊂ Cl(4, 1)
is computed by division with the three-dimensional pseudoscalar i3 = e123.
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is also needed. It also means that the expression (7) for a dual oriented point
can always be simplified to

Q∗ = nq ∧ q − 1

2
qnqqe∞ + nqe0 + nq · qE, (10)

and the factor of e∞ is

−1

2
qnqq =

1

2
q2(−q̂nqq̂) =

1

2
q2n′

q, (11)

with unit vector q̂ = q/|q|, and
n′

q = −q̂nqq̂ = nq⊥q − nq∥q, nq⊥q = (nq ∧ q)q−1, nq∥q = (nq · q)q−1,

(12)
the orientation vector nq reflected at the plane orthogonal to q̂, respectively
its two components orthogonal and parallel to q̂. Note that

nq ∧ q = nq⊥qq = n′
q ∧ q, nq · q = nq∥qq = −n′

q · q. (13)

Using n′
q and its above properties allows to write the dual oriented point4 as

Q∗ = nq ∧ q +
1

2
q2(−q̂nqq̂)e∞ + nqe0 + nq · qE

= n′
q ∧ q +

1

2
q2n′

qe∞ + nqe0 − n′
q · qE

= n′
q ∧ q +

1

2
q2n′

qe∞ − q̂n′
qq̂e0 − n′

q · qE. (16)

Comparing lines one and three of (16), we see that a dual oriented point
can be freely expressed with the original orientation vector nq or with the
reflected vector n′

q. When using nq, the factor of e∞ will include the reflection
operation applied to nq explicitly, and when using n′

q (as in line three of (16)),
then the factor of e0 will include the same reflection operation applied to n′

q,
because

n′
q = −q̂nqq̂, nq = −q̂n′

qq̂, (17)

as reflections are involutions.
It is now also easy to see that the orientation vector5 nq can be directly

obtained from Q∗ by
nq = −(Q∗ ∧ e∞)⌊E, (19)

4The bivector expression for a dual oriented point

Q∗ = nq ∧ q +
1

2
q2n′

qe∞ + nqe0 + nq · qE (14)

also shows similarity to that of a standard conformal point Qno, a vector in R4,1, without
orientation

Qno = q +
1

2
q2e∞ + e0. (15)

5Because the representation is homogenous, it may be necessary for obtaining a unit vector

to compute

nq = −(Q∗ ∧ e∞)⌊E/

√
{(Q∗ ∧ e∞)⌊E}2, (18)

in order to remove the homogenous factor.
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and the position vector6 q by

q = nq(nq∧q+nq ·q) = nq

[
(Q∗∧E)E+Q∗⌊E

]
= nq

([
(Q∗∧E)+Q∗]⌊E)

,

(20)
where ⌊ is the right contraction, which can in this case also be replaced by
the inner product.

3. Computation of geometric product of oriented points

We consider the geometric product of two oriented points in conformal geo-
metric algebra [6], as reference for practical CGA computations in this sec-
tion we recommend the introductory chapter of [16] and [9]. Note that inner
product and wedge product have priority over the geometric product, e.g.,
iq ·qE = (iq ·q)E, etc. The computations have been validated (see e.g. the ex-
ample in Section 4) with The Clifford Multivector Toolbox for MATLAB [22],
which proved indispensable for correcting quite a number of errors.

Assume a second dual oriented point P ∗ to be given by

P ∗ = np ∧ p+ [
1

2
p2np − p(p · np)]e∞ + npe0 + np · pE, (21)

where the three-dimensional position vector of P is the vector p ∈ R3 and
the unit oriented bivector of the plane (orthogonal to the unit normal vector
np = i∗p of the plane) is ip ∈ Cl2(3, 0).

Now we compute the full geometric product of the two dual oriented
points.

P ∗Q∗ =
(
np ∧ p+ [

1

2
p2np − p(p · np)]e∞ + npe0 + np · pE

)
(
nq ∧ q + [

1

2
q2nq − q(q · nq)]e∞ + nqe0 + nq · qE

)
= (np ∧ p)(nq ∧ q) + (np ∧ p)[

1

2
q2nq − q(q · nq)]e∞

+ (np ∧ p)nqe0 + (np ∧ p)nq · qE

+ [
1

2
p2np − p(p · np)](nq ∧ q)e∞ − [

1

2
p2np − p(p · np)]nqe∞e0

+ [
1

2
p2np − p(p · np)]nq · qe∞E + np(nq ∧ q)e0

− np[
1

2
q2nq − q(q · nq)]e0e∞ + npnq · qe0E

+ np · p(nq ∧ q)E + np · p[
1

2
q2nq − q(q · nq)]Ee∞

+ nq(np · p)Ee0 + (np · p)(nq · q). (22)

6Division with
√

{(Q∗ ∧ e∞)⌊E}2 will again remove any homogeneous factor.
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This result constitutes a linear combination of the four conformal blades
{1, e0, e∞, E} with Cl(3, 0) multivector coefficients

P ∗Q∗ = M +M0e0 +M∞e∞ +MEE, M,M0,M∞,ME ∈ Cl(3, 0), (23)

after the relationships (3) are taken into account for the products e0e∞, e∞e0,
e0E,Ee0, e∞E and Ee∞. We call the four Cl(3, 0) multivector coefficients
real part M , e0-part M0, e∞-part M∞ and E-part ME , respectively. Be-
cause P ∗ and Q∗ are both bivectors, the grades occurring in the geometric
product P ∗Q∗ are limited7 to scalars (2− 2) (symmetric inner product part
⟨P ∗Q∗⟩ = ⟨Q∗P ∗⟩), bivectors (2 + 0) (antisymmetric commutator product
part ⟨P ∗Q∗⟩2 = 1

2 (P
∗Q∗ − Q∗P ∗)) and 4-vectors (2 + 2) (symmetric outer

product part ⟨P ∗Q∗⟩4 = P ∗ ∧ Q∗ = Q∗ ∧ P ∗). This in turn means that the
Cl(3, 0) multivector coefficients of the real part and the E-part will be even
grade linear combinations of scalars and bivectors,

M = Ms +Mb, ME = MEs +MEb, (24)

and the Cl(3, 0) multivector coefficients of the e0-part and the e∞-part will
be odd grade vectors and trivectors,

M0 = M0v +M0t, M∞ = M∞v +M∞t, (25)

respectively.
The symmetric part of the geometric product of two oriented points is

then

⟨P ∗Q∗⟩sy =
1

2
(P ∗Q∗ +Q∗P ∗) = ⟨P ∗Q∗⟩+ ⟨P ∗Q∗⟩4

= Ms +M0te0 +M∞te∞ +MEbE, (26)

and the antisymmetric part is the bivector part

⟨P ∗Q∗⟩as =
1

2
(P ∗Q∗−Q∗P ∗) = ⟨P ∗Q∗⟩2 = Mb+M0ve0+M∞ve∞+MEsE,

(27)
respectively.

According to what has been pointed out about the symmetry of the
various product parts, we therefore expect that Ms,MEb,M0t and M∞t

will be symmetric under changing the order of factors P ∗ and Q∗, whereas
Mb,MEs,M0v and M∞v will be antisymmetric, respectively. This means that
every of the four Cl(3, 0) multivector coefficients in (24) and (25) comprises
exactly one symmetric and one antisymmetric blade part, and the two parts
always have grade difference two.

We conveniently define the three-dimensional Euclidean distance vector
from p to q as

d = q − p, (28)

and we introduce the three-dimensional mid point position

c =
1

2
(p+ q) (29)

7Note that in geometric algebra the symmetry of products depends critically on the grades
of the factors.
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and the three-dimensional distance vector r connecting c with q as

r = q − c =
1

2
d, (30)

and can then express the two Euclidean point positions as

p = c− r, q = c+ r. (31)

In the following we list and explain all eight multivector coefficient parts
separately in the order of Ms,Mb,MEs,MEb,M0v,M0t,M∞v, and M∞t.

3.1. Real scalar part

The real scalar part is also known as the inner product of the two dual
oriented points

Ms = ⟨P ∗Q∗⟩ = (np ∧ p) · (nq ∧ q) + [
1

2
p2np − p(p · np)] · nq

+ np · [
1

2
q2nq − q(q · nq)] + (np · p)(nq · q)

= (np ∧ p) · (nq ∧ q) +
1

2
p2n′

p · nq +
1

2
q2n′

q · np + (np · p)(nq · q),
(32)

with

n′
p = −p̂npp̂, n′

q = −q̂nqq̂. (33)

The real scalar part Ms and can also be expressed8 with (28) and (30) as

Ms =
1

2
d2np · nq − d · npd · nq = 4r2(

1

2
np · nq − r̂ · npr̂ · nq), (34)

where the unit direction vector r̂ = r/|r|. Note that Ms is independent of the
absolute Euclidean positions of P and Q, i.e., only the distance vector r, and
the point orientations nq, nq, matter for the real scalar part. Furthermore,
Ms is symmetric with respect to interchanging the oriented points P and Q,
and it is also symmetric with respect to only interchanging the two point
orientations np ↔ nq.

The real scalar partMs has already been extensively discussed in [15,17],
and applied in [20,21].

3.2. Real bivector part

By straightforward computation we express the real bivector part in three
different forms. First in terms of p, q,np and nq:

Mb = ⟨(np ∧ p)(nq ∧ q)⟩2 +
1

2
p2(np ∧ nq)− (p ∧ nq)(p · np)

+
1

2
q2(np ∧ nq)− (np ∧ q)(q · nq). (35)

8I thank an anonymous reviewer for the following valuable observation: the use of (34),
compared to (32), exemplifies how the numerical error can be reduced.
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Note further that by straightforward computation

⟨(np ∧ p)(nq ∧ q)⟩2
= (np ∧ q)(p · nq) + (np · q)(p ∧ nq)− (p · q)(np ∧ nq)− (p ∧ q)(np · nq).

(36)

The definition (28) allows to simplify the real bivector part to

Mb =
1

2
d2(np∧nq)+(d·np)(p∧nq)+(d·nq)(q∧np)−(p∧q)(np ·nq). (37)

Inserting (31) the real bivector part can further be expressed as

Mb =2
(
r2(np ∧ nq) + (r · np)(c ∧ nq)− (r · np)(r ∧ nq)

+ (r · nq)(c ∧ np) + (r · nq)(r ∧ np)− (np · nq)(c ∧ r)
)
. (38)

We can split the real bivector part Mb into a symmetric part Mb+ and an an-
tisymmetric part Mb− with respect to exchanging9 the two point orientations
np ↔ nq. We obtain

Mb = Mb+ +Mb−, (39)

with

Mb+ = 2
(
(r · np)(c ∧ nq) + (r · nq)(c ∧ np)− (np · nq)(c ∧ r)

)
(40)

and

Mb− = 2
(
r2(np ∧ nq)− (r · np)(r ∧ nq) + (r · nq)(r ∧ np)

)
= 2r2

(
np ∧ nq − (r̂ · np)(r̂ ∧ nq) + (r̂ · nq)(r̂ ∧ np)

)
, (41)

Note that Mb− is identical to the full real bivector part Mb, when the point
pair is centered around the origin, i.e., with c = 0.

3.3. Scalar E-part

The scalar E-part is found to be

MEs =
1

2
p2(np · nq) + (p · np)(p · nq) +

1

2
q2(np · nq)− (q · np)(q · nq)

=
1

2
(q2 − p2)(np · nq) + (p · np)(p · nq)− (q · np)(q · nq). (42)

Using definition (31) the scalar E-part can be simplified to

MEs = 2
(
(c · r)(np · nq)− (r · np)(c · nq)− (c · np)(r · nq)

)
. (43)

Note that, as expected, MEs is antisymmetric with respect to interchanging
the two oriented points P and Q, in marked contrast to the above symmetry
of the real scalar part Ms.

For a pair of points centered at the origin (c = 0), MEs vanishes

MEs = 0. (44)

9Note that when exchanging not only the two point orientations, but also the positions,

then c is invariant, but r → −r, which means that, as expected, Mb as a whole is anti-

symmetric with respect to changing the order of P and Q in the geometric product.
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3.4. Bivector E-part

The bivector E-part is found to be

MEb = (nq · q)(np ∧ p) + (np · p)(nq ∧ q)− 1

2
p2(np ∧ nq)

+ (np · p)(p ∧ nq) +
1

2
q2(np ∧ nq)− (q · nq)(np ∧ q). (45)

Using definition (31) the bivector E-part can be reexpressed as

MEb = 2
(
(c · r)(np ∧ nq)− (nq · c)(np ∧ r)− (nq · r)(np ∧ r)

+ (np · c)(nq ∧ r)− (np · r)(nq ∧ r)
)
, (46)

which is symmetric under the exchange of the two oriented points P and Q.
We can split the bivector E-part MEb into a symmetric part MEb+ and an
antisymmetric part MEb− with respect to exchanging the two point orienta-
tions np ↔ nq. We obtain

MEb = MEb+ +MEb−, (47)

with

MEb− = 2
(
(c · r)(np ∧ nq)− (nq · c)(np ∧ r) + (np · c)(nq ∧ r)

)
(48)

and

MEb+ = −2
(
(nq · r)(np ∧ r) + (np · r)(nq ∧ r)

)
= −2r2

(
(nq · r̂)(np ∧ r̂) + (np · r̂)(nq ∧ r̂)

)
(49)

Note that MEb+ is identical to the full bivector E-part MEb, when the point
pair is centered around the origin, i.e., with c = 0. Furthermore, note the
striking similarity with the symmetry behavior of the real bivector part Mb

under the exchange of orientation np ↔ nq, see (39) to (41), although the
roles of the symmetric and antisymmetric parts are interchanged.

3.5. Vector e0-part

The vector e0-part is found to be

M0v = (np ∧ p) · nq + np · (nq ∧ q)− (nq · q)np + (np · p)nq

= 2
(
(np · nq)r − (r · nq)np − (r · np)nq

)
, (50)

where we have applied definition (31) in the final step. The above expression
for the vector e0-part M0v shows that it is independent of the position of the
center c of the pair of points.

Note that the vector e0-part M0v is antisymmetric when exchanging the
two oriented points P and Q, but it is symmetric when only interchanging
the two point orientations np ↔ nq.

Note further that we have the relationship

MEb+ = M0v ∧ r. (51)
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3.6. Trivector e0-part

The trivector e0-part is found to be

M0t = np ∧ p ∧nq +np ∧nq ∧ q = (q − p) ∧np ∧nq = 2r ∧np ∧nq, (52)

is manifestly independent of the position of the center c of the pair of points,
and is indeed symmetric under the interchange of the two oriented points P
and Q.

Remark 1. Altogether we have thus found five constituents of the Cl(3, 0)
multivector coefficients of the geometric product P ∗Q∗ of two oriented points
that are independent of the position of the center c of the pair of points,
namely Ms of (34), Mb− of (41), MEb+ of (49), M0v of (50), and M0t of
(52).

3.7. Vector e∞-part

The vector e∞-part is found to be

M∞v =
1

2
q2[nq · (p ∧ np)]− (q · nq)[q · (p ∧ np)] +

1

2
p2[np · (nq ∧ q)]

− (p · np)[p · (nq ∧ q)] +
1

2
p2(nq · q)np − (nq · q)(p · np)p

− 1

2
q2(np · p)nq + (np · p)(q · nq)q

= [
1

2
q2(p · nq)− (p · q)(q · nq) +

1

2
p2(q · nq)]np

+ [−1

2
p2(q · np) + (p · q)(p · np)−

1

2
q2(p · np)]nq

+ [−1

2
q2(np · nq) + (q · np)(q · nq)− (p · np)(q · nq)]p

+ [
1

2
p2(np · nq)− (p · np)(p · nq) + (p · np)(q · nq)]q. (53)

Using definition (31) leads to the expression

M∞v = r[(r2 + c2)(np · nq)− 4(r · np)(r · nq)

− 2(r · np)(c · nq) + 2(c · np)(r · nq)]

+ 2c[−(c · r)(np · nq) + (r · np)(c · nq) + (c · np)(r · nq)]

+ np[2r
2(c · nq) + (−c2 − 2c · r + r2)(r · nq)]

− nq[2r
2(c · np) + (c2 − 2c · r − r2)(r · np)]. (54)

Note that the vector e∞-part M∞v is indeed antisymmetric when exchanging
the two oriented points P and Q.

For a pair of points centered at the origin (c = 0), M∞v reduces to

M∞v = [−4(r · np)(r · nq) + r2(np · nq)]r + r2(r · nq)np + r2(r · np)nq

= |r|3
(
[−4(r̂ · np)(r̂ · nq) + (np · nq)]r̂ + (r̂ · nq)np + (r̂ · np)nq

)
,

(55)
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which is symmetric when only interchanging the two point orientations np ↔
nq.

3.8. Trivector e∞-part

The trivector e∞-part is found to be

M∞t =
1

2
q2(np ∧ p ∧ nq) +

1

2
p2(np ∧ nq ∧ q)

− (q · nq)(np ∧ p ∧ q)− (p · np)(p ∧ nq ∧ q)

= −2(c · r)(c ∧ np ∧ nq) + (c2 + r2)(r ∧ np ∧ nq)

− 2(c · nq + r · nq)(c ∧ r ∧ np) + 2(c · np − r · np)(c ∧ r ∧ nq),
(56)

which is indeed seen to be symmetric under the exchange of the two oriented
points P and Q.

For a pair of points centered at the origin (c = 0), M∞t reduces to

M∞t = r2(r ∧ np ∧ nq) = |r|3(r̂ ∧ np ∧ nq). (57)

Note that for c = 0, the ratio of M∞t of (56) and M0t of (52) allows to
directly compute the scalar point pair radius

M∞t

M0t
=

1

2
r2. (58)

4. Explicit example of geometric product of two conformal
points

This section presents a numerical example, computed with The Clifford Mul-
tivector Toolbox for MATLAB [22] for the full geometric product of two
conformal points. We define the position and unit orientation vectors of the
two points as

p = 3e1 − 4e2 + 5e3, np = −0.2e1 + 0.4e2 − 0.8944e3,

q = e1 + 2e2, nq = 0.5e1 + 0.3e2 + 0.8124e3. (59)

The two corresponding oriented points in CGA are then

P ∗ = −0.4e12 + 1.6833e13 − 1.5777e23 + (15.0164e1 − 16.6885e2 + 11e3)e∞

+ (−0.2e1 + 0.4e2 − 0.8944e3)e0 − 6.6721E,

Q∗ = 0.7e12 − 0.8124e13 − 1.6248e23 + (0.15e1 − 1.4500e2 + 2.0310e3)e∞

+ (0.5e1 + 0.3e2 + 0.8124e3)e0 + 1.1E. (60)

Their full geometric product is

P ∗Q∗ = 0.7562 + 17.0959e12 + 8.1817e13 − 16.4890e23

+ (42.1361e1 − 2.7920e2 + 38.0273e3 − 28.8649e123)e∞

+ (−2.8752e1 − 5.1166e2 − 5.2924e3 − 1.5950e123)e0

+ (−13.8647− 17.7297e12 + 0.3007e13 + 25.4788e23)E (61)
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The eight Cl(3, 0) multivector components can then be identified as

Ms = 0.7562, Mb = 17.0959e12 + 8.1817e13 − 16.4890e23,

MEs = −13.8647, MEb = −17.7297e12 + 0.3007e13 + 25.4788e23,

M0v = −2.8752e1 − 5.1166e2 − 5.2924e3, M0t = −1.5950e123,

M∞v = 42.1361e1 − 2.7920e2 + 38.0273e3, M∞t = −28.8649e123. (62)

Symmetric and antisymmetric parts of the bivectors Mb and MEb under
exchange of the orientation vectors np ↔ nq are

Mb+ = 13.1085e12 + 3.3967e13 − 18.084e23,

Mb− = 3.9874e12 + 4.7849e13 + 1.5950e23,

MEb+ = −13.7422e12 + 1.8956e13 + 28.6687e23,

MEb− = −3.9874e12 − 1.595e13 − 3.19e23. (63)

Centering the point pair at the origin (c = 0) gives

T (c)P ∗Q∗T (−c) = 0.7562 + 3.9874e12 + 4.7849e13 + 1.5950e23

+ (22.6048e1 + 43.8413e2 + 41.1101e3 − 12.9592e123)e∞

+ (−2.8752e1 − 5.1166e2 − 5.2924e3 − 1.5950e123)e0

+ (−13.7422e12 + 1.8956e13 + 28.6687e23)E (64)

Comparison of (61) and (64) illustrates the invariance of the parts Ms and
M0 under translation.

We furthermore list for this special case (c = 0) the symmetric and
antisymmetric parts of the bivectors Mb0 and MEb0

Mb0+ = 0,

Mb0− = 3.9874e12 + 4.7849e13 + 1.5950e23,

MEb0+ = −13.7422e12 + 1.8956e13 + 28.6687e23,

MEb0− = 0, (65)

which illustrates that for c = 0 :

Mb0+ = 0, Mb0− = Mb−, MEb0+ = MEb+, MEb0− = 0. (66)

5. Conclusion

In this work we have computed all parts of the full geometric product of
two oriented points in conformal geometric algebra (CGA) Cl(4, 1) of three-
dimensional Euclidean geometry. The computations have been validated with
The Clifford Multivector Toolbox for MATLAB [22], using a representative
example. Only the scalar part has previously been computed, analyzed [15,
17], and applied [20,21]. The symmetry of all eight resulting parts was stated
and an important alternative representation in terms of the center position
and the radius vector of the pair of oriented points was given. We expect
that this theoretical work provides the foundation for better understanding
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the geometry of oriented points, which is likely to lead to further concrete
applications.
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