A BOUND FOR THE ISOTROPIC CONSTANT

JOHAN ASPEGREN

ABSTRACT. We obtain a dimension-independent bound for the isotropic con-
stant for convex bodies. A key idea in the proof is to keep the diameter
approximately constant and try the control the mass. Often in these kind of
questions the volume is kept constant.
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1. INTRODUCTION

The isotropic conjecture or the Bourgain’s slicing problem asks the existence of
a following universal constant c.

Theorem 1.1. There exists an affine hyperplane H and an universal constant c
such that
mu—1(HNK) > ¢,

for convex bodies K of unit volume.

A classic reference for these kind of questions is ﬂgﬂ More recently the claim is
already proved up to a polylog with very modern methods @.Those methods very
introduced in the groundbreaking work by Chen . The entries of the covariance
matrix of a convex body K are defined as

(ai;) = foi"Tj B foi foj

1, - .

! K| K| |K]

We define the isotropic constant of any convex body K in scaling invariant way
using

[ = Det(CovK)
|K[?

The isotropic position is a position, when the covariance matrix is diagonal and

all the diagonal entries are the same. Moreover, it is assumed that the volume

is unit. This kind of position exists ﬂgﬂ An another position that always exists

is the John’s position. It is the position of a convex body, where the minimal
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circumscribed ellipsoid is the unit ball. We prove the Bourgain’s slicing conjecture
by proving an universal upper bound for the isotropic constant.

2. PREVIOUSLY KNOWN RESULTS

For any measurable set A we let |A| be the n-dimensional Lebesque measure.The
inner volume ratio for a convex body K is defined as

ivr(K) = min(|K|/|T(B,))"",

where T is an affine map, B, the standard unit ball and T(B,) C K. The outer
volume ratio for a convex body K is defined as

(2.1) ovr(K) = rnTin(|T(Bn)|/\K|)1/”7

where T is an affine map, B,, the standard unit ball and K C T'(B,,). Ball |2] and
Barthe [4] proved using the Braschamb-lieb [§8] and reversed Braschamb-Lieb [4]
inequalities, respectively, that in the non-symmetric case ivr(K) and ovr(K) are
maximized when the convex body K is the standard simplex S,. Moreover, in
the symmetric case jvr(K) is maximized when K is the cube C,, and ovr(K) is
maximized when K is the crosspolytope C'P,,. The extended Khinchine inequality
says that for any convex bodies

1 1
2.2 —/ z;[2dx)'? < C—/ x;|dx.

A proof can be found in [7].

3. THE PROOF
First we show a key fact.

Theorem 3.1. Let K be a convex body of unit diameter in a scaled John’s position.
Then
|K|Y™ > ()~ Y™ > en™?

Proof. For K’ in John’s position we have that K’ C B(0,1). So for the diameter d
we have that
1<d<2.

Moreover, via (2.1) we have that
B0.1)] _ |BO.1)

1Sal = K|
So
1 1

1Sl 1K'
Thus,

|1Sal < |K[.
Now, the diameter of K was the unit. So we have

|Sn| < 27| K.
Thus,

(3.1) 1S, [V < 2| K |Vm,
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Now, we just need to calculate the volume of the standard simplex S, in John’s
position. We have that

(3.2) ISV > On~t,

where C is an universal constant. So combining and gives us the claim.
O

We will also need the lemma showing the essential monotonicity of the means.
Lemma 3.2. Let K be a convex body. If ||z||2 < a then
/ ZZ 1 |£L’Z‘d$ |x;|da
Kl = JBo.a |B(0,a)]
Proof. We have

nlK| T Jx K[ T
On the other hand we have
/ |zi|ode [|z||2dz an
B0, |B0,a)]  Jpo.a vnIB0,a)]  (n+1)yn’

/ i lwilde _ [ Vollzllade _ a

The following theorem is the key theorem.

Theorem 3.3. Let K be a convex body in a scaled John’s position such that

(33) [ Nalldz = 1.
K
Then it holds in a scaled John’s position that

%Z?:l |z;|dz <C.

(3.4) S <

K
Proof. We notice that the diameter of K must be greater than a constant. Assuming
that ||z]|2 < a we have from the essential monotonicity of the means (3.2)), that
1 (fK Y oieq |wildx < CfB(o,a) |zi|dx Ca

no n|K| = a[B(0,6)  (n+1)
Then little algebra gives us

a > c.

Remark 3.4. Tt’s clear that the position (3.3 exists because the average can be the
unit.

So we have from theorem [B.1] that
(3.5) |K|M™ > n7t

Thus, we have
15n )
/ n D i1 |xl|d:r
K |K[FF/n

%Z:’L:l |z

dx
kK]

<cn

:C,

where we used the inequality (3.5) and the asumption (3.3). a
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We can assume that the covariance matrix is diagonal, because it is real and
symmetric. So it can be diagonalized by an orthogonal matrix. Because K is
centralized, we have

(a”) fK Li j
K|
Moreover, we assume K is in a John’s position. We have

H r;x;dx /2

" |K|1+2/n

_H/ |371| dx )1/2
Ik |K|1+2/n

" | |da
<fio [ otz
};[1 K« |[E[TF/n

where we used the extended Khinchine’s inequality (2.2). Now, after taking the

nth root we have
|I1|d$ 1/n
-l et

C |z;|dx
< = Lkl heindi
= ;/K |K|1+1/n

where we used the GM-AM inequality and the theorem It’s clear that the
inequality (3.4)) is scaling invariant. This ends the proof of the theorem
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