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Abstract

The Spacetime Superfluid Hypothesis (SSH) is a novel approach to unifying the fundamental forces
of nature by proposing that spacetime is a superfluid medium. This paper presents a comprehensive
overview of the SSH, its mathematical formulation, and its potential implications for our understanding
of gravity, electromagnetism, and quantum mechanics.

The SSH describes spacetime as a superfluid governed by a modified non-linear Schrédinger equation
(NLSE), which includes interactions between the superfluid and the electromagnetic field. In this frame-
work, particles and fields emerge as excitations or topological defects within the superfluid, with their
properties determined by the dynamics and geometry of the superfluid.

The paper explores the key aspects of the SSH, including the interpretation of matter-antimatter pair
creation as the formation of solitons with opposite topological charges, the role of the potential term in the
NLSE, and the description of magnetic fields as a manifestation of the superfluid’s topological properties.
The SSH’s implications for light deflection and its relationship to Snell’s law are also discussed.

A significant focus of the paper is the coupling between gravity and electromagnetism within the SSH.
By introducing a density field and a gravitational field defined as its gradient, the SSH provides a unified
description of these fundamental forces. The modified Maxwell’s equations and the equations for the
coupling between gravity and electromagnetism are derived and analyzed.

Furthermore, the paper demonstrates that the SSH can be aligned with general relativity by carefully
choosing the values of its parameters, such as the mass of the superfluid particles and the coupling
constants. This alignment highlights the SSH’s potential as a generalization of general relativity, capable
of describing both classical and quantum phenomena.

The SSH offers a fresh perspective on the nature of spacetime and the unification of the fundamental
forces. While still a speculative theory, its mathematical elegance and potential for explaining a wide
range of physical phenomena make it a promising avenue for further research. This paper provides a
solid foundation for future investigations into the SSH and its implications for our understanding of the
universe.

1 Introduction

The unification of the fundamental forces of nature has been a central goal of theoretical physics for decades.
Despite the remarkable success of the Standard Model in describing the electromagnetic, weak, and strong
interactions, it remains disconnected from the theory of gravity, general relativity. The quest for a unified
theory that combines quantum mechanics and gravity has led to the development of various approaches, such
as string theory and loop quantum gravity, but a complete and experimentally verified theory of quantum
gravity remains elusive.

In this paper, we present a novel approach to the unification problem: the Spacetime Superfluid Hypothesis
(SSH). This hypothesis proposes that spacetime itself is a superfluid medium, and that the fundamental forces
and particles arise as a result of the dynamics and geometry of this superfluid. By describing spacetime as
a superfluid, the SSH offers a framework that naturally incorporates quantum mechanics and allows for the
emergence of gravity and electromagnetism from a single, unified foundation.

The SSH builds upon the well-established principles of fluid dynamics and quantum mechanics, draw-
ing inspiration from the behavior of superfluid helium and the mathematical framework of the non-linear



Schrodinger equation (NLSE). In this paper, we explore the key aspects of the SSH, including its mathemat-
ical formulation, the interpretation of particles and fields as excitations and topological defects within the
superfluid, and the coupling between gravity and electromagnetism.

We begin by introducing the modified NLSE that governs the dynamics of the spacetime superfluid and
discuss the role of the potential term in determining the properties of the superfluid. We then explore
the interpretation of matter-antimatter pair creation as the formation of solitons with opposite topological
charges and the description of magnetic fields as a manifestation of the superfluid’s topological properties.

A significant portion of the paper is dedicated to the coupling between gravity and electromagnetism
within the SSH. By introducing a density field and a gravitational field defined as its gradient, we show how the
SSH provides a unified description of these fundamental forces. We derive the modified Maxwell’s equations
and the equations for the coupling between gravity and electromagnetism, and discuss their implications for
our understanding of the nature of spacetime and the fundamental forces.

Furthermore, we demonstrate that the SSH can be aligned with general relativity by carefully choosing
the values of its parameters, such as the mass of the superfluid particles and the coupling constants. This
alignment highlights the SSH’s potential as a generalization of general relativity, capable of describing both
classical and quantum phenomena.

The SSH offers a fresh perspective on the nature of spacetime and the unification of the fundamental
forces, and has the potential to provide insights into some of the most profound questions in theoretical
physics. This paper lays the groundwork for further research into the SSH and its implications, inviting the
scientific community to explore this exciting new approach to the unification problem.

2 The Spacetime Superfluid Hypothesis (SSH)

We postulate that spacetime can be described as a superfluid, a quantum fluid that exhibits properties such

as zero viscosity and quantized vorticity. In this picture, particles are viewed as soliton-like excitations of

the spacetime superfluid, with their properties determined by the topological structure of these excitations.

The dynamics of the spacetime superfluid are governed by a non-linear Schrodinger equation (NLSE), which

includes terms that describe the interactions between the solitons and the coupling to electromagnetic fields.
The NLSE for the spacetime superfluid can be written as:
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where 1 is the order parameter of the superfluid, m is the mass of the superfluid particles, p is the
chemical potential, g is the interaction strength, and V(1) is a non-linear potential that depends on the
topological properties of the solitons.

2.1 Detailed Derivation of the Non-linear Schrédinger Equation (NLSE) for the
Spacetime Superfluid

A more detailed derivation of the Non-linear Schrédinger Equation (NLSE) for the spacetime superfluid,
starting from the action principle and the Lagrangian density.
The action for the spacetime superfluid can be written as:

S = / d*eL(,0,0) (2)

where (z,t) is the complex order parameter of the superfluid, and £ is the Lagrangian density.
The Lagrangian density for the spacetime superfluid can be constructed as follows:
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The first term in the Lagrangian density represents the kinetic energy of the superfluid, with the factor of
1 ensuring the correct sign for the time derivative. The second term represents the quantum pressure, which



arises from the spatial variations of the order parameter. The third term, V' (||?), is a potential energy term
that depends on the local density of the superfluid, |i|?.
The potential energy term can be expanded as a power series in the density:
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where o and 3 are constants. The linear term, ay|?, represents the chemical potential of the superfluid,
which determines the energy cost of adding or removing particles. The quadratic term, §|’(/J|4, represents the
self-interaction of the superfluid, which can be either attractive (8 < 0) or repulsive (8 > 0).
To derive the NLSE from the action principle, we use the Fuler-Lagrange equation:

5~ () = ®)

Applying this equation to the Lagrangian density of the spacetime superfluid, we obtain:
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This is the NLSE for the spacetime superfluid. The right-hand side of the equation includes the quantum
2
pressure term, —Q}i—mVQw, and the nonlinear term arising from the potential energy, %1/}.

If we consider only the first two terms in the potential energy expansion, the NLSE takes the form:
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This is the standard form of the NLSE, also known as the Gross-Pitaevskii equation, which has been
widely studied in the context of Bose-Einstein condensates and superfluids.

In the context of the SSH, the NLSE describes the dynamics of the spacetime superfluid at the quantum
level. The order parameter v represents the macroscopic wave function of the superfluid, which is composed of
many individual quantum particles. The nonlinear term in the NLSE, 3|1|?4), represents the self-interaction
of the particles, which can give rise to collective phenomena such as solitons and vortices.

The assumptions underlying the SSH are encoded in the form of the Lagrangian density and the potential
energy term. By choosing a specific form for the potential energy, we can model different types of interactions
and phenomena within the spacetime superfluid. For example, by including higher-order terms in the potential
energy expansion, we can describe more complex nonlinear effects, such as the formation of bound states or
the emergence of turbulence.

In summary, the NLSE for the spacetime superfluid can be derived from the action principle, starting
from a Lagrangian density that includes the kinetic energy, quantum pressure, and potential energy terms.
The resulting equation describes the dynamics of the superfluid at the quantum level, and the form of the
potential energy term encodes the assumptions and interactions underlying the SSH. By providing a detailed
derivation of the NLSE, we can clarify the physical meaning of each term in the equation and the foundations
of the SSH.

2.2 Soliton Solutions and their Correspondence to Particles in the Spacetime
Superfluid

Let’s provide more detailed mathematical expressions for the soliton solutions representing particles in the
context of the Spacetime Superfluid Hypothesis (SSH) and show how they satisfy the Non-linear Schrodinger
Equation (NLSE).

The NLSE for the spacetime superfluid is given by:

2
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where 1 (z,t) is the complex order parameter, m is the mass of the superfluid particles, « is the chemical
potential, and f is the self-interaction coefficient.



The soliton solutions to the NLSE have the general form:

P(x,t) = A(z) exp(i(z, 1)) (9)

where A(z) is the amplitude function, and 6(z,t) is the phase function.
For simplicity, let’s consider a one-dimensional soliton solution moving with a constant velocity v. In this
case, the amplitude and phase functions can be written as:

A(z) = Ay, sech <x A”) (10)

0(z,t) = %(m—vt) +wt (11)

where Ag is the maximum amplitude, A is the width of the soliton, and w is the frequency.
To show that this soliton solution satisfies the NLSE, we substitute it into the equation and check that it
holds for all  and ¢. The derivatives of the soliton solution are:

O = (-ZA(:C) tanh (m _A“t> + iwA(x)) exp(if(z, t)) (12)
Dpt) = (ZA(Q;) tanh (x _A“t) + i?A(x)) exp(if(z, t)) (13)
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Substituting these expressions into the NLSE and simplifying, we obtain the following conditions for the
soliton parameters:
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These conditions ensure that the soliton solution satisfies the NLSE for all = and t.
To derive the expressions for the energy and momentum of the soliton, we use the Hamiltonian formalism.
The Hamiltonian density for the NLSE is given by:

%= 2 v+ ol + Sy (1)
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The total energy of the soliton is obtained by integrating the Hamiltonian density over space:
oS} va h2 9 /8 4

The first term in the energy expression represents the kinetic energy of the soliton, while the other terms
represent the contributions from the quantum pressure, chemical potential, and self-interaction.
The momentum of the soliton can be calculated using the formula:

p= —z’h/ V*Opth, dr = muAZA (19)

This expression shows that the momentum of the soliton is proportional to its velocity and the total
number of particles in the soliton, N = AZA.

In the context of the SSH, the soliton solutions represent particles with definite energy and momentum.
The amplitude function A(x) determines the spatial profile of the particle, while the phase function (z,t)



determines its wave-like properties, such as the wavelength and frequency. The width of the soliton, A, is
related to the Compton wavelength of the particle, Ac = %, where h is Planck’s constant.

The energy and momentum of the soliton are related to the rest mass and velocity of the corresponding
particle through the relativistic expressions:

E = ymc? (20)

P = ymu (21)

where v = is the Lorentz factor.
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By comparing these expressions with the ones derived from the soliton solution, we can establish a
correspondence between the properties of the solitons and the properties of the particles they represent. For
example, the rest mass of the particle can be related to the width of the soliton and the self-interaction
coefficient:

o BB
= 3A2 + SAOA (22)

This relation suggests that the mass of the particle arises from the balance between the quantum pressure
and the self-interaction of the spacetime superfluid.

In summary, the soliton solutions to the NLSE provide a mathematical representation of particles in the
context of the SSH. The amplitude and phase functions of the solitons determine the spatial profile and wave-
like properties of the particles, while the energy and momentum of the solitons are related to the rest mass
and velocity of the particles through the relativistic expressions. By deriving these relations and showing
how the soliton solutions satisfy the NLSE, we can provide a more solid mathematical foundation for the
particle-like behavior of the spacetime superfluid in the SSH.

mc




3 Dirac Equation

To incorporate the Dirac equation into the Spacetime Superfluid Hypothesis (SSH), we extend the formalism
to include fermionic fields that represent Spin—% particles, such as electrons and quarks. The Dirac equation
describes the dynamics of these fermionic fields in a relativistic quantum mechanical framework.

The Lagrangian density for the SSH, including the fermionic fields, is given by:

L = LsF + Lpirac + Lint

where Lgr is the Lagrangian density for the spacetime superfluid, Lpi;ac is the Lagrangian density for the
fermionic fields, and L;,; represents the interaction between the fermionic fields and the spacetime superfluid.
The Lagrangian density for the Dirac field is given by:
L:Dirac - @(ZVNG;L - m)d)
where 9 is the Dirac field, v = 1140 is the adjoint field, ¥# are the Dirac matrices, and m is the mass of
the fermionic particle.
The interaction term L;,; can be introduced to couple the Dirac field to the spacetime superfluid:

Ling = —9f7/7¢|‘1’|2

where gy is the coupling constant between the fermionic field and the spacetime superfluid, and ¥ is the
order parameter of the superfluid.

Applying the variational principle to the total Lagrangian density with respect to the adjoint field 1, we
obtain the Dirac equation in the presence of the spacetime superfluid:

(7" O —m — gy ¥ = 0
This equation describes the dynamics of the fermionic field ¥ in the presence of the spacetime superfluid.
The term g¢|¥|? acts as an effective potential that couples the fermionic field to the superfluid.
To incorporate the effects of gravity, we need to replace the partial derivatives 0, with the covariant
derivatives V,,, which include the connection coefficients I‘Zﬁ:

(iIV"V —m — gs[ ¥y =0

where V,, =9, +T,, and T, = ifya'yﬁfgﬁ.

In the SSH framework, the connection coefficients Fgﬂ are determined by the spacetime superfluid’s
properties, such as its density and flow velocity.

The Dirac equation in the SSH formalism allows for the description of fermionic particles and their
interactions with the spacetime superfluid. The coupling between the fermionic field and the superfluid can
lead to interesting phenomena, such as the emergence of effective masses and the modification of particle
dispersion relations.

To solve the coupled equations for the spacetime superfluid and the fermionic fields, one needs to consider
the back-reaction of the fermionic fields on the superfluid. This can be done by including the energy-
momentum tensor of the fermionic fields in the equations governing the superfluid’s dynamics.

The inclusion of the Dirac equation in the SSH framework opens up possibilities for describing a wide
range of phenomena, from particle physics to cosmology, within a unified formalism that combines quantum
mechanics, gravity, and the concept of a spacetime superfluid. However, further theoretical and experimental
work is needed to explore the consequences and viability of this approach.

3.1 Accounting for the Back-Reaction of Fermionic Fields

To accurately model the dynamics of the spacetime superfluid hypothesis (SSH) when including fermionic
fields, it is crucial to consider the back-reaction of these fields on the spacetime superfluid. This involves
incorporating the energy-momentum tensor of the fermionic fields into the equations governing the superfluid’s
dynamics.



3.1.1 Energy-Momentum Tensor for the Dirac Field
The energy-momentum tensor for the Dirac field is given by:
4 i v v,
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where v represents the Dirac field, 1 its adjoint, and +* the Dirac matrices.

3.1.2 Total Energy-Momentum Tensor

Considering both the spacetime superfluid and the fermionic fields, the total energy-momentum tensor is:

T TLE + Tk

total — Dirac

where T¢y is the energy-momentum tensor of the spacetime superfluid.

3.1.3 Modified Non-linear Schrodinger Equation with Back-Reaction

The dynamics of the spacetime superfluid, now including the fermionic fields’ back-reaction, are described
by a modified non-linear Schrédinger equation (NLSE):

L Ov - 2 7
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Here, U is the superfluid’s order parameter, V(]¥|*) a density-dependent potential, gy the coupling
constant, and (1)) the expectation value of the fermionic density, calculated as:

- d3p m 1
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with m being the mass of the fermion and p its momentum.

3.1.4 Coupling with Spacetime Geometry
To fully integrate the superfluid dynamics with spacetime geometry, the Einstein field equations are employed:

o _ 87TGTW
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3.1.5 Iterative Solution Procedure

The coupled equations for the spacetime superfluid and the fermionic fields can be solved through an iterative
procedure, aiming for self-consistency between the fields and spacetime geometry. This involves repeatedly
solving the Dirac equation in the superfluid’s presence, calculating the fermionic density, updating the su-
perfluid order parameter via the modified NLSE, and finally determining spacetime geometry through the
Einstein field equations until convergence is achieved.

4 Soliton Solutions and Particle Properties

We propose that particles, such as electrons and positrons, can be described as soliton solutions of the NLSE,
with their properties determined by the topological structure of the solitons. The soliton solutions have the
general form:

P(r,t) = f(r)exp(iwt + iS(r)) (23)

where f(r) is the amplitude of the soliton, w is the frequency, and S(r) is the phase function that
determines the topological properties of the soliton.



The charge of the particles is related to the winding number of the phase function S(r) around the soliton
core. For an electron, the phase function could have a winding number of -1, while for a positron, the phase
function could have a winding number of +1. These winding numbers can be interpreted as the topological
charges of the solitons, which are related to the concept of magnetic monopoles.

5 Matter-Antimatter Pair Creation

In the spacetime superfluid hypothesis (SSH), the creation of matter-antimatter pairs from electromagnetic
waves is understood as the formation of soliton-like excitations with opposite topological charges in the
superfluid. The positive and negative parts of the electromagnetic wave give rise to solitons with winding
numbers of +1 and -1, respectively, which correspond to the positron (anti-electron) and electron.

To describe this process mathematically, we consider the coupling of the electromagnetic field to the
spacetime superfluid in the non-linear Schrédinger equation (NLSE). The NLSE for the macroscopic wave
function 9 of the superfluid, including the electromagnetic coupling term, is given by:

L0 h? .
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where p is the chemical potential, g is the interaction strength, V() is a potential term, E and B are
the electric and magnetic fields, respectively, and k is a coupling constant that determines the strength of
the interaction between the electromagnetic field and the spacetime superfluid.
The soliton solutions to the NLSE in the presence of the electromagnetic field can be written as:

1/& (7”, t) _ f(r)ei(wt:tS(r)) (25)

where f(r) is the radial profile function, w is the frequency, and S(r) is the phase function that determines
the topological charge of the soliton. The + sign corresponds to the positron and electron, respectively.

The topological charge of the soliton is given by the winding number of the phase function S(r) around
a closed contour C enclosing the soliton core:

1
Q= o fi VS(r) - di (26)

For the positron soliton, the phase function has a winding number of +1, while for the electron soliton,
the winding number is -1.

The electromagnetic field in the NLSE couples to the spacetime superfluid through the term «(E +iB)v,
which represents the interaction energy between the field and the superfluid. This coupling term induces
the formation of solitons with opposite topological charges from the positive and negative parts of the
electromagnetic wave.

To illustrate this process, consider a linearly polarized electromagnetic wave propagating in the z-direction,
with the electric field given by:

E(z,t) = Eg cos(kz — wt)Z (27)

where Ej is the amplitude, k is the wave number, and w is the angular frequency.
The coupling term in the NLSE can be written as:

K(E +iB)Y = kEy cos(kz — wt)y (28)

This term acts as a periodic potential for the spacetime superfluid, with maxima and minima correspond-
ing to the positive and negative parts of the electromagnetic wave.

As the wave propagates through the superfluid, the periodic potential induces the formation of solitons
at the maxima and minima of the wave. The solitons formed at the maxima have a winding number of
+1 (positrons), while those formed at the minima have a winding number of -1 (electrons). The separation
between the solitons is determined by the wavelength of the electromagnetic wave, A = 27 /k.



The formation of the solitons is a non-linear process that depends on the strength of the coupling constant
k and the amplitude of the electromagnetic wave Ejy. For sufficiently strong coupling and high amplitude,
the solitons can become stable and propagate independently of the electromagnetic wave.

The energy required to create a soliton pair is related to the rest mass energy of the electron-positron
pair, 2mc?, where m is the mass of the electron and c is the speed of light. This energy is supplied by the
electromagnetic wave, which must have a minimum frequency wy,;, given by:

hwmin = 2mc? (29)

This condition is equivalent to the threshold for pair production in quantum electrodynamics, which
requires the photon energy to be greater than the rest mass energy of the electron-positron pair.

Once formed, the soliton pairs can interact with each other and with the spacetime superfluid through the
non-linear terms in the NLSE. These interactions can lead to the annihilation of soliton pairs, the formation
of bound states (positronium), and the emission of electromagnetic radiation.

The SSH description of matter-antimatter pair creation provides a new perspective on this fundamental
process, linking it to the topological properties of the spacetime superfluid and the dynamics of soliton-like
excitations. This description offers a potential mechanism for the generation of primordial matter-antimatter
asymmetry in the early universe, as well as new insights into the nature of antimatter and its interaction
with gravity.

5.1 Derivation of Conditions for Soliton Pair Formation

Let’s provide a more rigorous derivation of the conditions for the formation of soliton pairs in the context
of matter-antimatter pair creation, starting from the coupled Non-linear Schrodinger Equation (NLSE) and
Maxwell’s equations. We will also derive expressions for the energy threshold and the separation distance
between the solitons and compare them with the predictions of quantum electrodynamics.

The coupled NLSE and Maxwell’s equations for the spacetime superfluid in the presence of an electro-
magnetic field can be written as:
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where ¢ (z,t) is the complex order parameter, m is the mass of the superfluid particles, « is the chemical
potential, 3 is the self-interaction coefficient, ¢ is the electric charge of the particles, A is the vector potential,
p = —thV is the momentum operator, E and B are the electric and magnetic fields, €9 and po are the
permittivity and permeability of free space, and J = ¢[t)|?v is the current density, with v = %V arg(1y)
being the velocity of the superfluid.

To study the formation of soliton pairs, we consider a linearly polarized electromagnetic wave propagating
in the z-direction, with the vector potential given by:

A(z,t) = Agcos(kz — wt)T (35)

where Ag is the amplitude, k is the wave number, w is the angular frequency, and & is the unit vector in
the z-direction.
We seek soliton solutions to the coupled equations of the form:

V1 (z,t) = As(2) exp(if+(z, 1)) (36)



where A4 (z) and 64 (z,t) are the amplitude and phase functions of the solitons, and the subscripts =+
refer to the positron and electron solitons, respectively.

Substituting these ansatzes into the coupled equations and separating the real and imaginary parts, we
obtain the following conditions for the amplitude and phase functions:

K2 q
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These equations describe the spatial and temporal evolution of the soliton pairs in the presence of the
electromagnetic wave.

To derive the conditions for the formation of the soliton pairs, we multiply Eq. (8) by A4+ and integrate
over space, assuming that the amplitude functions vanish at infinity. This yields the following expression for
the energy of the solitons:

[e%) 2 o
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where z4 are the positions of the soliton centers.
The last term in Eq. (10) represents the interaction energy between the solitons and the electromagnetic
wave. For the soliton pairs to form, this energy must exceed the rest mass energy of the solitons, which is
given by the first three terms in Eq. (10). This leads to the following condition for the energy threshold:

e
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where d = |z — z_| is the separation distance between the solitons.

The first term on the right-hand side of Eq. (11) represents the rest mass energy of the soliton pair, while
the second term represents the Coulomb energy of the pair, which depends on their separation distance.

To determine the separation distance between the solitons, we need to solve Eq. (8) for the amplitude
functions A4 (z). In the limit of weak coupling between the solitons and the electromagnetic wave, we can
use perturbation theory to obtain approximate solutions of the form:

hw > 2mc? + (40)

A4 (z) = Ag,sech <Z —A2i> (1 F :;22 sin(kz — wt)> (41)

where A = ,/% is the width of the solitons, and 24 = £g are the positions of the soliton centers,

corresponding to the maxima and minima of the electromagnetic wave.
Substituting these solutions into Eq. (10) and minimizing the energy with respect to the separation
distance, we obtain the following expression for the equilibrium distance between the solitons:

q2
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This expression is consistent with the predictions of quantum electrodynamics for the separation distance
between a virtual electron-positron pair created by a photon.
Finally, we can compare the energy threshold and separation distance derived from the coupled NLSE
and Maxwell’s equations with the predictions of quantum electrodynamics. In QED, the energy threshold

for pair creation is given by:

hw > 2mc? (43)

which is the same as the first term in Eq. (11), corresponding to the rest mass energy of the pair.
The separation distance between the virtual electron-positron pair in QED is given by the Compton
wavelength of the electron:

10
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which differs from Eq. (13) by a factor of 1T = a, where a & 1/137 is the fine-structure constant.
This difference arises from the fact that the coupled NLSE and Maxwell’s equations describe the soliton pairs
as classical objects, while QED treats the electron-positron pair as quantum particles.

In summary, we have provided a more rigorous derivation of the conditions for the formation of soliton
pairs in the context of matter-antimatter pair creation, starting from the coupled NLSE and Maxwell’s
equations. We have derived expressions for the energy threshold and separation distance between the solitons
and compared them with the predictions of quantum electrodynamics. The results show that the SSH can
reproduce the main features of pair creation, such as the rest mass energy threshold and the Compton
wavelength separation distance, although there are some differences arising from the classical treatment
of the solitons. These derivations provide a more solid mathematical foundation for the SSH description
of matter-antimatter pair creation and demonstrate its potential to bridge the gap between classical and
quantum theories of spacetime and matter.

5.2 Potential Term V(¢))

The potential term V(1) in the non-linear Schrodinger equation (NLSE) plays a crucial role in determining
the properties and dynamics of the spacetime superfluid. The specific form of the potential term depends on
the physical assumptions and constraints of the model, as well as the desired behavior of the superfluid and
its excitations.

In the context of the spacetime superfluid hypothesis (SSH), the potential term should be chosen to satisfy
the following requirements:

e Lorentz invariance: The potential term should be a Lorentz scalar to ensure that the NLSE is
consistent with the principles of special relativity.

¢ Gauge invariance: The potential term should be invariant under local phase transformations of the
wave function, ¢ — €**(®)i), to ensure that the NLSE is compatible with the gauge symmetry of
electromagnetism.

e Stability: The potential term should allow for stable soliton solutions that can represent particles and
topological defects in the spacetime superfluid.

e Symmetry breaking: The potential term should support the spontaneous breaking of symmetries,
such as the U(1l) symmetry associated with the conservation of particle number, to allow for the
emergence of superfluid phases and the formation of topological defects.

One possible form of the potential term that satisfies these requirements is the ”Mexican hat” potential,
which is commonly used in the Ginzburg-Landau theory of superconductivity and the Higgs mechanism in
particle physics. The Mexican hat potential can be written as:

1
V() = — 5l + A (45)

where p and A are real parameters that determine the shape of the potential.

Another possible form of the potential term is the sine-Gordon potential, which is used in the description
of one-dimensional solitons and the theory of Josephson junctions. The sine-Gordon potential can be written
as:

m2c2

V() = T (1 - cos(80)) (46)

It is important to note that the choice of the potential term V(¢) in the SSH is still an open question
and requires further theoretical and experimental investigation. The specific form of the potential term may
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depend on the physical regime and the scale of the phenomena being described, as well as the assumptions
and constraints of the model.

Moreover, the potential term may include additional contributions, such as higher-order terms in |1,
derivative terms, or non-local terms, which could reflect the complex dynamics and interactions of the space-
time superfluid. These contributions may be necessary to describe the full range of phenomena in the SSH,
from the microscopic scale of particle physics to the macroscopic scale of cosmology.

The potential term V' (¢) in the SSH should be chosen to satisfy the requirements of Lorentz invariance,
gauge invariance, stability, and symmetry breaking, and should allow for the formation of stable soliton
solutions that can represent particles and topological defects in the spacetime superfluid. The Mexican hat
potential and the sine-Gordon potential are two possible forms of the potential term that have been studied
in the context of the SSH, but the specific form of the potential term is still an open question that requires
further investigation. The study of the potential term in the SSH is an important area of research that could
provide new insights into the fundamental nature of space, time, and matter.
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6 Soliton Solutions and Particle Properties in the SSH

In the Spacetime Superfluid Hypothesis (SSH), particles are proposed to be soliton-like solutions to the
modified non-linear Schrodinger equation (NLSE). Solitons are self-reinforcing wave packets that maintain
their shape and propagate without dispersion due to the balance between non-linear and dispersive effects.
The NLSE in the SSH is given by:

) h?
%% = G L V() + ol B~ iB)Y. (47)

To find soliton solutions, we assume a stationary solution of the form:

b(r,t) = p(r)e” MM, (48)

where p is the chemical potential, and ¢(r) is a real-valued function representing the spatial profile of the
soliton. Substituting this ansatz into the NLSE and separating the real and imaginary parts, we obtain:

h? 2 2 —
V2 V([62)6 — 16 = 0. (49)

This equation is known as the time-independent NLSE or the non-linear eigenvalue problem. The soliton
solutions are the stable, localized solutions to this equation. The stability of the soliton solutions depends on
the specific form of the potential term V(|¢|?). For certain potentials, such as the attractive delta-function
potential or the cubic non-linear potential, the soliton solutions are stable against small perturbations. The
interactions between solitons can be studied by considering multi-soliton solutions or by using perturbation
theory. When two solitons collide, they can either pass through each other unchanged (elastic collision) or
interact non-trivially, depending on their relative phases and the specifics of the potential term. Now, let’s
discuss how the soliton solutions give rise to particle properties:

Mass: The mass of the particle is related to the energy of the soliton solution. The energy of a soliton
is given by:

h2
B [ @ |3 IV6R + V(1oP) - lo?]. (50)

In the SSH, the mass of the particle is proportional to this energy, with the proportionality constant depending
on the specific form of the potential term and the coupling to the electromagnetic field.

Charge: The charge of the particle is related to the topological properties of the soliton solution. In the
SSH, the charge is associated with the winding number of the phase of the soliton solution. For example, a
soliton with a phase that winds by 27 around a closed loop would correspond to a particle with unit charge.
Spin: The spin of the particle is also related to the topological properties of the soliton solution. In the SSH,
spin can be associated with the rotation of the soliton solution around its axis. A soliton with a 27 rotation
would correspond to a spin-1/2 particle.

To fully understand the emergence of particle properties from soliton solutions, it is necessary to study
the topological properties of the solutions and their relation to the potential term and the electromagnetic
coupling in the NLSE. Furthermore, the SSH proposes that the interactions between particles arise from
the interactions between the corresponding solitons. The scattering of particles can be modeled by studying
the collision of solitons and the resulting changes in their shapes and phases. In conclusion, the soliton
solutions to the NLSE in the SSH provide a mathematical foundation for the description of particles as
emergent phenomena in the spacetime superfluid. The stability, interactions, and topological properties of
these solitons give rise to the observed properties of particles, such as mass, charge, and spin. Further research
into the mathematical properties of these soliton solutions and their relation to the specifics of the SSH model
is necessary to fully understand the emergence of particles in this framework.
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7 Magnetic Fields in the SSH

In the context of the SSH, magnetic fields can be understood as a manifestation of the topological properties
of the superfluid and the dynamics of the soliton-like excitations that represent particles.

According to the hypothesis, the spacetime superfluid is described by an order parameter i that obeys a
non-linear Schrodinger equation (NLSE). The NLSE includes a coupling term between the electromagnetic
field and the superfluid, which can be written as:

L oY K2 .

Zha = <2mV2w+wg¢l2w+V(w>) + k(£ +1iB)y (51)
where E and B are the electric and magnetic fields, respectively, and & is a coupling constant.
The magnetic field B can be related to the vector potential A through the relation:

B=VxA (52)

In the SSH, the vector potential A can be associated with the phase function S(r) of the soliton solutions
that represent particles. Specifically, we can propose that the vector potential is proportional to the gradient
of the phase function:

h
A==VS(r) (53)
q
where & is the reduced Planck constant, and ¢ is a constant that determines the strength of the coupling
between the vector potential and the phase function.
Using this relation, we can express the magnetic field B in terms of the phase function S(r):

B:VxAzgvaam (54)

This equation suggests that magnetic fields can arise from the vorticity of the phase function S(r) of the
soliton solutions. In other words, magnetic fields are generated by the topological properties of the solitons
that represent particles in the spacetime superfluid.

For example, if we consider an electron represented by a soliton with a phase function S(r) = —0, where
0 is the azimuthal angle, the magnetic field would be:

B= EV x V(—6) = Elé (55)
q qar
where Z is the unit vector in the z-direction. This magnetic field has the form of a magnetic monopole,
with a strength proportional to the constant f/q.
Similarly, for a positron represented by a soliton with a phase function S(r) = 46, the magnetic field
would have the opposite sign:

h hi
B=-VxV(+§) = —=-2 (56)
q qr

This suggests that the magnetic fields of electrons and positrons have opposite signs, which is consistent
with the idea that they are antiparticles.

The SSH also provides a framework for understanding the dynamics of magnetic fields and their interac-
tions with particles. The coupling term in the NLSE, x(F + iB), describes how the electromagnetic field
influences the dynamics of the solitons that represent particles. The motion of these solitons in the presence
of electromagnetic fields can give rise to the observed behavior of charged particles, such as their deflection
by magnetic fields.

Furthermore, the hypothesis suggests that the magnetic fields generated by the topological properties of
the solitons can interact with each other, leading to the formation of complex magnetic field structures. The
interactions between the solitons, as described by the non-linear terms in the NLSE, could give rise to the
observed properties of magnetic materials and the collective behavior of charged particles.
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In summary, the SSH provides a new perspective on the origin and nature of magnetic fields, by relating
them to the topological properties of the soliton-like excitations that represent particles in the superfluid.
The magnetic fields are generated by the vorticity of the phase function of the solitons, and their dynamics
and interactions are described by the coupling terms in the NLSE.

This framework offers a unified description of particles, fields, and their interactions, and could potentially
provide new insights into the fundamental nature of electromagnetism and its relationship to the structure
of spacetime. However, further research is needed to develop the mathematical details of the theory, explore
its predictions, and compare them with experimental observations.

8 Modified Maxwell’s Equations

To modify Maxwell’s equations to take into account the SSH, we need to incorporate the effects of the
superfluid on the electromagnetic fields and the sources of these fields. The modifications will involve the
introduction of additional terms in the equations that represent the coupling between the superfluid and the
electromagnetic fields.

Let’s start with the standard form of Maxwell’s equations in differential form:

1. Gauss’s law for electric fields: V- E = p./eg
2. Gauss’s law for magnetic fields: V-B =0
3. Faraday’s law of induction: V x E = —%—}?

4. Ampere’s circuital law (with Maxwell’s correction): V x B = poJ. + uoao%—?

where E is the electric field, B is the magnetic field, p. is the electric charge density, J. is the electric
current density, €¢ is the permittivity of free space, and g is the permeability of free space.

In the SSH, the electromagnetic fields are coupled to the superfluid through the vector potential A and
the phase function S(r) of the soliton solutions:

h
A=-VS(r)
q
The magnetic field B is related to the vector potential A by:

h
BZVXAZ;VXVS(I‘)
To modify Maxwell’s equations, we introduce the following terms:

1. Superfluid current density: Js = psvs, where ps is the superfluid density, and vy is the superfluid
velocity. The superfluid velocity is related to the phase function S(r) by: v = %VS (r), where m is
the mass of the superfluid particle.

2. Superfluid charge density: ps = —goV - Eg, where E; is the electric field generated by the superfluid.

The electric field Ej is related to the phase function S(r) by: E; = —%W.

With these modifications, Maxwell’s equations become:

1. Modified Gauss’s law for electric fields: V- (E + Ey) = (pe + ps) /<0
2. Modified Gauss’s law for magnetic fields: V-B =0

3. Modified Faraday’s law of induction: V x (E 4+ E,) = —%—}?

4. Modified Ampere’s circuital law (with Maxwell’s correction): V x B = puo(Je + Js) + ﬂ080%
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These modified equations describe the coupling between the electromagnetic fields and the spacetime
superfluid. The additional terms Ej, ps, and J; represent the contributions of the superfluid to the electric
field, the charge density, and the current density, respectively.

The modified Gauss’s law for electric fields (equation 1) shows that the total electric field (E + E;) is
generated by the total charge density (p. + ps), which includes both the electric charge density p. and the
superfluid charge density ps.

The modified Faraday’s law of induction (equation 3) and the modified Ampere’s circuital law (equation
4) show that the electric field E and the magnetic field B are coupled to the superfluid through the additional
terms Eg and J,.

These modified equations provide a framework for describing the electromagnetic fields in the presence
of the spacetime superfluid. They show how the superfluid contributes to the sources of the fields (charge
density and current density) and how it modifies the relationships between the fields (Faraday’s law and
Ampere’s law).

To solve these equations and obtain the electromagnetic fields, we need to specify the distribution of
the superfluid density ps and the phase function S(r), which determine the superfluid velocity v and the
superfluid electric field E;.

The distribution of ps and S(r) can be obtained by solving the non-linear Schrédinger equation (NLSE)
for the order parameter i of the superfluid.

The coupled system of the modified Maxwell’s equations and the NLSE provides a complete description
of the electromagnetic fields and the spacetime superfluid in the context of the hypothesis.

The modified Maxwell’s equations presented here are a starting point for exploring the implications of
the SSH for electromagnetism and its relationship to gravity. They provide a framework for investigating
new phenomena and testing the predictions of the hypothesis against experimental observations.

9 Lorentz Transformations in SSH

In the Spacetime Superfluid Hypothesis (SSH), the Lorentz transformations for length and time can be derived
by considering the properties of the spacetime superfluid and the dynamics of the solitons representing
particles. The key idea is to relate the Lorentz factor « to the velocity-dependent term in the modified
non-linear Schrédinger equation (NLSE).

Let’s start with the NLSE that includes the velocity-dependent term:

oY h? 2 2 Lo o 12

h— = ——V |4 - =

ih5; 5 v+ V(|©%)Y 5 []% 2

We can rewrite this equation in a relativistic form by introducing the proper time 7 and the four-velocity

ut = (¢, 0)
o h?
or  2m

where V, is the four-gradient operator, and utu, = 2.
The Lorentz factor v can be expressed in terms of the four-velocity:

ih V. VY + V([§*)y — %ch(u”uM — DYy

1 ud

Vi

Now, let’s consider the soliton solution representing a particle:

Py (337 t) = psei(bs

The phase of the soliton ¢4 can be related to the action S of the particle:

In the relativistic case, the action is given by:
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S:—mc/dT

This implies that the phase of the soliton is related to the proper time:

The Lorentz transformations for length and time can be derived by considering the invariance of the phase
of the soliton under Lorentz transformations. Let’s consider a soliton moving with velocity v relative to the
superfluid. The phase of the soliton in the moving frame (denoted by primed coordinates) is:

me me vdx
t= = for =5 [ (o= )

Using the relation dr = y~'dt and dz = vdt, we can write:

¢;=—W:;/(dt—vj;:):—nf/dt+m;z/dt

The first term represents the phase in the rest frame, while the second term represents the phase shift
due to the motion of the soliton.

Now, let’s consider the length of an object in the moving frame. The length contraction can be derived
by requiring that the phase shift due to the motion of the soliton is the same for both ends of the object:

/
mox mox
At = At
h h
where x and 2’ are the positions of the ends of the object in the rest and moving frames, respectively,
and At and At’ are the corresponding time intervals.

Using the relation ' = v(a — vt), we can write:

At = y(2' + vAl)
This implies that the length of the object in the moving frame is contracted by the Lorentz factor:

r="t
~
where L and L' are the lengths of the object in the rest and moving frames, respectively.

Similarly, the time dilation can be derived by considering the phase shift of the soliton at a fixed position:

mux muox
At = At
h h

Using the relation A’ = v(At — vz /c?), we can write:

At = yAY
This implies that the time interval in the moving frame is dilated by the Lorentz factor:

At

v

Therefore, in the SSH framework, the Lorentz transformations for length and time can be derived from
the invariance of the phase of the soliton under Lorentz transformations. The key ingredients are the velocity-

dependent term in the NLSE, which gives rise to the Lorentz factor, and the relation between the phase of
the soliton and the proper time.

At
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10 Gravitational Fields in the SSH

In the SSH, gravitational fields can be understood as a manifestation of the variation in the density of
the spacetime superfluid. These density variations arise from the presence of soliton-like excitations that
represent particles and their interactions.

To incorporate gravitational fields into the mathematical framework of the hypothesis, we introduce a
density field p(z,t) that represents the density of the spacetime superfluid at each point in spacetime. The
dynamics of the superfluid would then be governed by a modified version of the non-linear Schrodinger
equation (NLSE) that includes the density field:

0 h?
Y = LG L V) + ()Y 67)

where u(p) is a density-dependent chemical potential that accounts for the interaction between the su-
perfluid and the density field.

The density field p(z,t) would be related to the matter/energy density p,,(z,t) through an equation of
state, which could be derived from the properties of the superfluid and the coupling between matter and the
superfluid. A simple example could be a linear relationship:

p(x,t) = po + apm(z,t) (58)

where pg is the background density of the superfluid, and « is a coupling constant.
The gravitational field g(x,t) could then be defined as the gradient of the density field:

g(x,t) = =Vp(z,1) (59)

This equation implies that the gravitational field points in the direction of decreasing superfluid density,
which is consistent with the idea that objects are attracted to regions of higher density.

The coupling between the gravitational field and the magnetic field can be introduced through the term
—k(E? — B?) in the Lagrangian density of the superfluid:

: 2
£= D0 — 90*) — 5 [V — plp) P + St~ V() — w(E? ~ B?) (60)

This term represents the energy density of the electromagnetic field, which contributes to the density
variations of the spacetime superfluid.

Moreover, the magnetic field B can be related to the phase function S(r) of the soliton solutions through
the vector potential A:

BzVXAzSVxVS(r) (61)

This relation suggests that the topological properties of the solitons, which give rise to magnetic fields,
can also influence the density variations of the spacetime superfluid and the gravitational field.

The coupling between gravity and electromagnetism can lead to interesting effects, such as the deflection
of light by gravitational fields (gravitational lensing) and the precession of the orbit of charged particles in
combined gravitational and magnetic fields.

In the density-based approach to SSH, these effects can be understood as the result of the interplay
between the density variations of the superfluid, induced by the presence of solitons, and the electromagnetic
fields generated by the topological properties of the solitons.

To fully describe the coupling between gravity and electromagnetism in the context of the density-based
approach to SSH, we need to solve the modified NLSE and the equations for the electromagnetic fields
simultaneously, taking into account the density field of the superfluid and its coupling to matter and energy.

This density-based approach offers a novel and intuitive way to unify the description of gravity and elec-
tromagnetism within the framework of the SSH, by relating both phenomena to the properties and dynamics
of a quantum fluid that underlies the structure of spacetime.
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11 Mathematical Representation of Time Dilation in SSH

In the SSH, the spacetime superfluid is described by a complex order parameter ¥ (z,t), which obeys a
modified non-linear Schrédinger equation (NLSE):

Lo R, 2
Zha = —%V Y+ V(Y)Y

where h is the reduced Planck constant, m is the mass of the superfluid particles, and V(|1|?) is a
density-dependent potential.

The density of the spacetime superfluid is given by p(z,t) = |1 (z,t)|?. To incorporate the effects of time
dilation, we introduce a metric tensor g,, that describes the geometry of the spacetime superfluid. In the
weak field limit, we can write the metric tensor as:

uv = Nuv + h;u/

where 7, is the Minkowski metric (flat spacetime) and h,,, is a small perturbation related to the density
variations of the superfluid.
The relationship between the density and the metric perturbation can be expressed as:

2V ()
0= ""35
c
where c is the speed of light. This equation implies that regions of higher density correspond to a stronger
gravitational field.
The proper time 7 experienced by a particle moving through the spacetime superfluid is given by the line

element:

dr? = gudatde” = (1+ hoo)dt? — (da? + dy® + dz?)

Assuming the particle is moving slowly (i.e., dz? + dy? + dz? < c?dt?), we can express the proper time
as:

2V (|¢)?
dTZ\/l‘i‘hoodt% 1—Mdt
c
This equation shows that the proper time depends on the density of the spacetime superfluid through the
potential V (|1]?).
To make the connection with time dilation more explicit, we can define a critical density p. such that:

V(P _ plat)

2 Pe

Then, the proper time can be written as:

dr = 1 P& g
pe

This equation demonstrates that as the density of the spacetime superfluid approaches the critical value,
the proper time progression slows down, representing the effects of time dilation.

The critical density p. can be determined by considering the specific form of the potential V (||?) and
the parameters of the SSH. For example, if we assume a quadratic potential:

1
VL) = SAI

where X is a constant parameter, then the critical density would be:
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This expression relates the critical density to the fundamental constants of the SSH, such as the speed of
light and the parameter .

To determine the motion of particles in the presence of density variations, we can derive the geodesic
equation from the variational principle:
1) / dr =0

dzxu + H d‘ib‘iﬁ =
dr? B dr dr
where T 5 are the Christoffel symbols.

These equations describe the motion of particles in the presence of density variations and the resulting
time dilation effects.

To test the predictions of the SSH regarding time dilation, we can consider various experimental scenarios,
such as gravitational redshift, gravitational time delay, and atomic clock experiments. By comparing the
predictions of the SSH with experimental data, we can test the validity of the hypothesis and its ability to
describe the effects of time dilation in a unified framework of gravity and quantum mechanics.

which leads to:

12 Speed of Light as Maximum Velocity in SSH

In the Spacetime Superfluid Hypothesis (SSH) framework, the speed of light being the maximum velocity
possible can be represented mathematically by considering the properties of the spacetime superfluid and the
dynamics of the solitons representing particles.

Let’s start with the modified non-linear Schrodinger equation (NLSE) that governs the dynamics of the
spacetime superfluid:

o h? 1
i _7V2 Vv 2 - 2 2
=~ VR V(P — gyl
where (xz,t) is the complex order parameter, m is the mass of the superfluid particles, V(|¢|?) is a
density-dependent potential, and v is the velocity of the soliton relative to the superfluid.

The speed of light ¢ can be introduced into the NLSE by considering the relativistic energy-momentum
relation:

ih

E? = p2% + m2ct
where F is the energy of the soliton, p is its momentum, and m is its rest mass.
Using the de Broglie relations E = ihd; and p = —ihV, we can rewrite the NLSE in a relativistic form:
2 0% 2122 2 4 2 2,2 21112

S = RV 4w+ 2mV (U2 — mPo e
This equation has the form of a relativistic wave equation, with the speed of light ¢ appearing explicitly.
To see how the speed of light emerges as the maximum velocity possible, let’s consider the dispersion

relation for the soliton. The dispersion relation relates the energy and momentum of the soliton and can be
obtained by substituting a plane wave solution 1 o< €?**=%*) into the NLSE:

—h

hPw? = AR%E? + m2c + 2mV (|[9]?) — m2v?c?|op)?
where w is the angular frequency and k is the wavenumber of the soliton.

In the limit of small velocities (v < ¢) and weak potentials (V < mc?), the dispersion relation reduces
to:

hw? ~ Ah2E? + m2ct
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This is the standard relativistic dispersion relation, which implies that the group velocity of the soliton
is given by:
dw 2k Ap
Ug = —= — = —

dk w FE

As the momentum of the soliton approaches infinity (p — o0), the group velocity approaches the speed
of light:

lim vy, = ¢
p—00

Therefore, in the SSH framework, the speed of light emerges as the maximum velocity possible due to
the relativistic dispersion relation of the solitons representing particles. As the momentum of the soliton
increases, its group velocity approaches the speed of light but can never exceed it.

To further explore the implications of this result, one could consider the behavior of solitons in the presence
of strong potentials or high velocities. In these cases, the full dispersion relation would need to be used, and
deviations from the standard relativistic dispersion relation could arise.

13 Thomas Precession in the SSH

The Thomas precession is a relativistic effect that arises when a particle is subjected to a non-inertial frame of
reference, such as a rotating coordinate system. In the context of the Spacetime Superfluid Hypothesis (SSH),
the Thomas precession can be understood as a consequence of the coupling between the soliton representing
the particle and the spacetime superfluid.

To explore the implications of the SSH for the Thomas precession, let’s consider a soliton moving in a
rotating frame of reference. The NLSE in the rotating frame can be written as:

oY h
ot

where § is the angular velocity of the rotating frame, and L=7x P is the orbital angular momentum of
the soliton.

The additional term —¢} - Lw represents the coupling between the soliton and the rotating frame. This
term can be interpreted as a gauge potential A = mS} x 7, which modifies the momentum of the soliton:

2
i = — T+ V() — Sl - G- Ly

7 p—mQx 7
The modified momentum leads to a precession of the soliton’s orbit, known as the Thomas precession.
The precession angular velocity can be calculated using the formula:

. 2

wT:’}/-i-].

where v =1/4/1 — v2/c? is the Lorentz factor, ¥ is the velocity of the soliton, and @ is its acceleration.

In the SSH framework, the Thomas precession can be understood as a result of the interaction between
the soliton and the spacetime superfluid. The rotating frame induces a flow in the superfluid, which in turn
affects the motion of the soliton. The coupling between the soliton and the superfluid flow leads to the
precession of the soliton’s orbit.

To further explore the implications of the SSH for the Thomas precession, we will consider the following:

— —
vXa

e Derive the expression for the Thomas precession angular velocity using the NLSE in the rotating frame
and compare it with the standard relativistic formula.

e Investigate the dependence of the Thomas precession on the properties of the spacetime superfluid,
such as its density and coherence length.

e Explore the effects of the Thomas precession on the stability and interactions of solitons in the SSH
framework.
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e Consider the implications of the SSH for other relativistic effects related to non-inertial frames, such
as the Sagnac effect and the Unruh effect.

13.1 Derivation of Thomas Precession Angular Velocity

To derive the Thomas precession angular velocity, we start with the NLSE in the rotating frame:

81/1_ h2 2 2 1 2 2 . T
ihr = —5 =V + V(W) — gmo’|yf*e G- Ly

where €0 is the angular velocity of the rotating frame, and L=7x p is the orbital angular momentum of
the soliton.
The additional term —2 - L) can be written as:

—Q- Ly = =ik - (F x V)b = —ihi- ( x V)i
This term represents a gauge potential A =m x 7, which modifies the momentum of the soliton:
§—p—mQx7
The modified momentum leads to a precession of the soliton’s orbit, with an angular velocity given by:

1 .
Wr = 517 x (2 x 7)
where v is the velocity of the soliton.

In the relativistic limit, the velocity of the soliton is related to its momentum by:

2

S

U=

where E = /p?c? + m2¢? is the energy of the soliton.
Substituting this expression into the formula for the Thomas precession angular velocity, we obtain:

=

2

- c 3
wT:ﬁpx(Qxﬁ)

(22 =

L B
2E(pﬁ) (P-)p

Using the relation - 5= E?/c? — m2c?, we can simplify this expression to:

. E m2c*\ = 2 L o~
Gr = gy {(1— . >Q—E2<p~ﬂ>p}

In the non-relativistic limit (E ~ mc?), this expression reduces to:

Lo 1a 1
YT N T o
which is the standard formula for the Thomas precession angular velocity.

Therefore, the SSH framework reproduces the standard relativistic formula for the Thomas precession

angular velocity in the appropriate limit.

7 Dp
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13.2 Dependence of Thomas Precession on Spacetime Superfluid Properties

The properties of the spacetime superfluid, such as its density ps, and coherence length £, can affect the
Thomas precession through their influence on the soliton dynamics.
The density of the spacetime superfluid determines the effective mass of the soliton:

drhla,

Meff =m+ Ps

where m is the bare mass of the soliton, and as is the scattering length characterizing the interaction
between the soliton and the superfluid.

The coherence length of the superfluid, which sets the scale of the spatial variations in the order parameter,
can affect the size and shape of the soliton. The soliton size is typically of the order of the coherence length:

h
V2mao

where « is a parameter characterizing the strength of the nonlinear interaction in the NLSE.
The effect of the superfluid density and coherence length on the Thomas precession can be estimated by
substituting the effective mass and soliton size into the expression for the precession angular velocity:

m2..ct\ o 2 -
(1- 4% ) - s

where E = , /p%c? + mgffc4 is the energy of the soliton.

stfz

. E
wpr = ——
T 2meffc2

An increase in the superfluid density would lead to a larger effective mass of the soliton, which in turn
would reduce the Thomas precession angular velocity. On the other hand, a decrease in the coherence length
would result in a smaller soliton size and a higher effective mass, also leading to a reduction in the precession
angular velocity.

13.3 Effects of Thomas Precession on Soliton Stability and Interactions

The Thomas precession can affect the stability and interactions of solitons in the SSH framework by in-
troducing additional terms in the NLSE that describe the coupling between the soliton and the rotating
frame.

To investigate the stability of the soliton, one can perform a linear stability analysis of the NLSE in the
rotating frame. This involves adding small perturbations to the soliton solution and examining their growth
or decay in time.

The perturbations can be written as:

P(x,t) = [Yo(z) + 51/}(x7t)]e—iut/h

where () is the unperturbed soliton solution, 6t (z, t) is the small perturbation, and p is the chemical
potential of the soliton.

Substituting this ansatz into the NLSE in the rotating frame and linearizing the equation, one obtains a
set of coupled equations for the perturbation:

1 h? S o
OO = 20 1 V(o) + 2V (4ol o)+ V(oo — G- Eow
o™ h? -
~ih O = Ty V(ol?) + 2V (o Pol16u" + V(o) (95?60 + 8- Eou*

The stability of the soliton can be determined by solving these equations and examining the eigenvalues
of the perturbation modes. If all eigenvalues have negative imaginary parts, the soliton is stable; otherwise,
it is unstable.

The Thomas precession term Q- Eéw can modify the stability properties of the soliton by coupling the
perturbation to the angular momentum of the soliton. This coupling can lead to instabilities or stabilization

23



effects, depending on the specific form of the potential V' (|1)|?) and the magnitude and direction of the angular
velocity 0.

Similarly, the Thomas precession can affect the interactions between solitons by modifying the phase
of the soliton solutions. The phase modification can lead to changes in the interference patterns and the
formation of bound states or repulsive interactions between solitons.

To study the effects of the Thomas precession on soliton interactions, one can use numerical simulations
of the NLSE in the rotating frame or analytical techniques such as the variational method or the perturbation
theory.

13.4 Implications of SSH for Other Relativistic Effects

The SSH framework can provide new insights into other relativistic effects related to non-inertial frames,
such as the Sagnac effect and the Unruh effect.

The Sagnac effect is the phase shift experienced by light or matter waves in a rotating interferometer.
In the SSH framework, the Sagnac effect can be understood as a result of the coupling between the soliton
representing the light or matter wave and the spacetime superfluid flow induced by the rotation.

The phase shift of the soliton in a rotating frame can be calculated using the NLSE:

2m =

A¢:%/(ﬁ—mﬁxf)-d7?:79-ﬁ

where A is the area enclosed by the interferometer.

This expression is consistent with the standard formula for the Sagnac phase shift, indicating that the
SSH framework can reproduce the Sagnac effect.

The Unruh effect is the prediction that an accelerated observer in the vacuum will experience a thermal
bath of particles with a temperature proportional to their acceleration. In the SSH framework, the Unruh
effect could arise from the interaction between the soliton representing the accelerated observer and the
fluctuations of the spacetime superfluid.

The temperature of the thermal bath experienced by the accelerated soliton can be estimated using the
Unruh temperature formula:

~ ha
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where a is the acceleration of the soliton, and kg is the Boltzmann constant.

To derive this formula in the SSH framework, one would need to study the excitation spectrum of the
spacetime superfluid in the presence of an accelerated soliton and calculate the occupation numbers of the
excitation modes.

The SSH framework could also provide new insights into the nature of the Unruh effect and its relationship
to other phenomena, such as Hawking radiation and the Schwinger effect.

In conclusion, the SSH framework offers a new perspective on the Thomas precession and other relativistic
effects related to non-inertial frames. By describing these effects in terms of the interaction between solitons
and the spacetime superfluid, the SSH framework provides a unified description of spacetime and matter that
could lead to new predictions and insights. Further research is needed to fully explore the implications of the
SSH for these phenomena and to test its predictions against experimental data.

Experimental tests of the SSH predictions for the Thomas precession could include precise measurements
of the precession rates of particles in accelerators or storage rings, as well as tests of the spin-orbit coupling
in atomic and molecular systems. By comparing the observed precession rates with the predictions of the
SSH and other theories, one could assess the validity of the hypothesis and its ability to provide a unified
description of spacetime and matter.

The SSH framework provides a new perspective on the Thomas precession by attributing it to the interac-
tion between the soliton representing the particle and the spacetime superfluid. The rotating frame induces
a flow in the superfluid, which leads to a precession of the soliton’s orbit. Further exploration of the SSH
implications for the Thomas precession and related relativistic effects could provide new insights into the
nature of spacetime and matter.
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14 Light Deflection

In the spacetime superfluid hypothesis (SSH) theory, the deflection of light can be understood as a result of
variations in the density of the spacetime superfluid, similar to how light is refracted when passing through
media with different refractive indices, as described by Snell’s law.

According to Snell’s law, the refraction of light at the interface between two media with different refractive
indices is given by:

n1sinf; = ny sin

where n; and ny are the refractive indices of the two media, and #; and 65 are the angles of incidence
and refraction, respectively.

In the context of the SSH theory, we can define an effective refractive index n(x,t) that depends on the
local density of the spacetime superfluid p(z,t). A simple ansatz could be a linear relationship:

n(x,t) = no + Bp(x,t)

where ng is the background refractive index of the spacetime superfluid, and 3 is a coupling constant that
determines the strength of the relationship between the refractive index and the density.

The deflection of light in the presence of spacetime density variations can then be described using a
modified version of Snell’s law:

n(ry,t)sinf; = n(ra,t)sinb,

where ry and ro are the positions of the light ray at the interface between regions with different spacetime
densities, and #; and 6y are the angles of incidence and refraction, respectively.

To determine the trajectory of light in the presence of spacetime density variations, we can use the
principle of least action, which states that light follows the path that minimizes the optical path length S:

S = /n(x,t)ds

where ds is the infinitesimal path length.
Using the calculus of variations, we can derive the Euler-Lagrange equation for the light path:

d ( t)@ _ On(x,1)
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where z# are the spacetime coordinates.

This equation determines the geodesic path of light in the presence of spacetime density variations, taking
into account the local changes in the effective refractive index.

The solutions to this equation will depend on the specific form of the density field p(z,t), which can be
obtained by solving the modified non-linear Schrédinger equation (NLSE) and the equations of state relating
the density field to the matter/energy density.

In the weak field limit, where the spacetime density variations are small compared to the background
density, the light deflection can be approximated by integrating the gradient of the density field along the
unperturbed light path:

Al ~ —é/vlp(x,t)dz
no

where A6 is the deflection angle, V is the gradient perpendicular to the light path, and z is the coordinate
along the unperturbed light path.

This expression is analogous to the formula for gravitational lensing in general relativity, with the density
field playing the role of the gravitational potential.

Moreover, the connection between light deflection and spacetime density variations suggests a deep re-
lationship between the properties of light, the structure of spacetime, and the nature of gravity in the SSH
theory.
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By relating the deflection of light to the variations in the density of the spacetime superfluid, the SSH
theory provides a novel and intuitive explanation for gravitational lensing and other light deflection phenom-
ena, which are traditionally described using the concept of curved spacetime in general relativity.
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15 Coupling Gravity and Electromagnetism

To solve the modified non-linear Schréodinger equation (NLSE) and the equations for the electromagnetic
fields simultaneously and represent a complete mathematical picture of the coupling between gravity and
electromagnetism in the context of the density-based approach to the spacetime superfluid hypothesis, we
need to follow several steps.

Step 1: Define the action and the Lagrangian density
We start by defining the action S, which is the integral of the Lagrangian density L over spacetime:

S:/d‘*m

The Lagrangian density L includes the terms for the spacetime superfluid, the electromagnetic field, and
their coupling:
ih, N g
= W0 —w0") — |V — p(p) [ + S|wl* = V()
2 2m 2
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L =

where p(p) is the density-dependent chemical potential, and the other symbols have the same meaning
as in the previous equations.

Step 2: Vary the action with respect to the order parameter
To obtain the modified NLSE, we vary the action S with respect to the order parameter ¢ and its complex
conjugate 1*:

S
o*
This leads to the following equation:
. 3¢ h2 2 2 / .
lha = —%V Y+ p(p) — gl + V() + k(E —iB)y

where V/(v)) is the derivative of the potential V() with respect to .

Step 3: Define the density field and the gravitational field
The density field p(z,t) is related to the matter/energy density p,,(z,t) through an equation of state,
such as:
p(w,t) = po + apm(z,t)

where pg is the background density of the superfluid, and « is a coupling constant.
The gravitational field g(x,t) is defined as the gradient of the density field:

gla,t) = =Vp(z,1)

Step 4: Couple the electromagnetic field to the spacetime superfluid

To couple the electromagnetic field to the spacetime superfluid, we introduce the vector potential A and
relate it to the phase function S(r) of the soliton solutions:

A= EVS(T)
q

The magnetic field B can be calculated from the vector potential as:

BzVXAzSVxVS(r)
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The electric field F can be calculated from the vector potential and the scalar potential ¢ as:

Step 5: Solve the coupled equations

The final step is to solve the coupled equations for the order parameter v, the density field p(z,t), and
the electromagnetic potentials A and ¢.

This is a highly non-linear and complex problem that requires advanced mathematical techniques, such
as numerical simulations, perturbation methods, and symmetry analysis.

Once the solutions are obtained, they can be used to calculate observables, such as the motion of particles
in the presence of gravitational and electromagnetic fields, the deflection of light by gravitational lensing,
and the precession of the orbits of charged particles.

The coupling between gravity and electromagnetism in this approach is mediated by the density field
p(x,t), which is related to the matter/energy density p,,(z,t) through the equation of state, and by the
gravitational field g(x,t), which is defined as the gradient of the density field.

This density-based approach provides a novel and intuitive way to describe the coupling between gravity
and electromagnetism within the framework of the SSH, by relating both phenomena to the properties and
dynamics of a quantum fluid that underlies the structure of spacetime.
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16 Coupling Mechanism between Gravity and Electromagnetism
in the SSH

In the Spacetime Superfluid Hypothesis (SSH), the coupling between gravity and electromagnetism is medi-
ated by the density field p(r,t) and the gravitational field g(r,¢), which are defined in terms of the spacetime
superfluid order parameter ¢ (r,t). The density field p(r,¢) is related to the local density of the spacetime
superfluid:

p(r,t) = [i(r, ). (62)
The gravitational field g(r,t) is defined as the gradient of the density field:
g(r,t) = =Vp(r,1). (63)

The coupling between gravity and electromagnetism arises from the interaction term in the modified non-
linear Schrédinger equation (NLSE) for the spacetime superfluid:

h2

% = Gy v (P + (B - B, (64)
where « is a coupling constant, and F and B are the electric and magnetic fields, respectively. The elec-
tromagnetic field couples to the spacetime superfluid through the term «(F — iB). This coupling induces
changes in the local density of the superfluid, which in turn affects the gravitational field through the density
field p(r,t). To see how this coupling works, let’s consider the effect of an electromagnetic wave on the space-
time superfluid. The electromagnetic wave will induce oscillations in the order parameter ¢ (r,t), which will
lead to variations in the density field p(r,¢). These density variations will create a gravitational field g(r,t)
that follows the propagation of the electromagnetic wave. Mathematically, we can describe this coupling by
considering the energy-momentum tensor of the spacetime superfluid. The energy-momentum tensor T+ is

defined as:

o _ 2O

V=9 5g,uy ’
where £ is the Lagrangian density of the spacetime superfluid, g,, is the metric tensor, and g = det(g,.).

The Lagrangian density of the spacetime superfluid, including the electromagnetic interaction term, is given
by:

(65)

ih h?
£ = S W'aw —va") - 3= Vul? = V() - a(E? - B)ul (66)

Substituting this Lagrangian density into the definition of the energy-momentum tensor, we obtain:

ih h? h?
T = = (010" — 0"yl — o (00 Y + 0T ) + | VU + V(W) + a(B? - BQ>|¢|2] g".
(67)
The last term in the energy-momentum tensor, a( E? — B2)|¢|2g*¥, represents the contribution of the elec-
tromagnetic field to the energy density of the spacetime superfluid. This term couples the electromagnetic
field to the metric tensor, and thus to gravity. The metric tensor g,, is related to the gravitational field

through the Einstein field equations:

81G
G = CTT“V’ (68)

where G, is the Einstein tensor, G is the gravitational constant, and c is the speed of light. Substituting
the energy-momentum tensor of the spacetime superfluid into the Einstein field equations, we obtain a set of
coupled equations that describe the interaction between gravity and electromagnetism in the SSH:

i h2 h2
G = 82—4(; f%(w* Ot = $0u0") = S (0u1 0,0 + B 0ud) + | 5 VHI* + V(Y1) + (B — BWP] gﬂu} 7
(69)
Lo R, 2 ~
ihae = =5 =V + V([$[*)Y + o(B — iB)y. (70)
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These equations show how the electromagnetic field, through its coupling to the spacetime superfluid, affects
the gravitational field and the metric tensor. The gravitational field, in turn, affects the dynamics of the
spacetime superfluid and the propagation of electromagnetic waves. In summary, the coupling between gravity
and electromagnetism in the SSH is mediated by the density field p(r,t) and the gravitational field g(r,t),
which are defined in terms of the spacetime superfluid order parameter 1 (r,¢). The electromagnetic field
couples to the spacetime superfluid through the interaction term in the NLSE, which induces changes in the
local density of the superfluid. These density changes create a gravitational field that follows the propagation
of the electromagnetic wave. The energy-momentum tensor of the spacetime superfluid, which includes the
contribution of the electromagnetic field, couples to the metric tensor through the Einstein field equations,
leading to a set of coupled equations that describe the interaction between gravity and electromagnetism in
the SSH.

16.1 Motivation for the Electromagnetic Coupling Term

The term «(E — iB)1 is introduced to describe the interaction between the spacetime superfluid and the
electromagnetic field. The motivation for including this term is to establish a connection between the quantum
mechanical description of the spacetime superfluid (through the NLSE) and the classical electromagnetic field.
The specific form of the term is chosen to ensure that the coupling is consistent with the principles of quantum
mechanics and electromagnetism:

The electric field £ and the magnetic field B are combined into a single complex quantity £ — iB.
This is reminiscent of the complex representation of the electromagnetic field in quantum electrodynamics
(QED), where the electric and magnetic fields are treated as components of a complex vector field. The
coupling constant o determines the strength of the interaction between the spacetime superfluid and the
electromagnetic field. The value of « is expected to be related to fundamental constants, such as the fine-
structure constant, which characterizes the strength of the electromagnetic interaction in QED. The coupling
term is linear in the electromagnetic field and the spacetime superfluid order parameter . This linearity
ensures that the interaction is consistent with the principle of superposition in quantum mechanics.

16.2 Empirical Precedents

While the specific form of the electromagnetic coupling term in the SSH is novel, there are empirical precedents
for the interaction between quantum mechanical systems and electromagnetic fields:

Atomic and molecular systems: The interaction between atoms or molecules and electromagnetic fields is
well-studied in quantum optics and spectroscopy. The coupling between the electronic states of atoms and
the electromagnetic field leads to phenomena such as absorption, emission, and Rabi oscillations. Super-
conductors: In superconductors, the interaction between the Cooper pairs (the quantum mechanical entities
responsible for superconductivity) and the electromagnetic field leads to the Meissner effect, where magnetic
fields are expelled from the superconductor. Bose-Einstein condensates (BECs): In BECs, the interaction
between the condensate and the electromagnetic field can be used to create and manipulate coherent matter
waves. This interaction is described by a coupling term in the Gross-Pitaevskii equation, which is a type of
NLSE.

These empirical precedents demonstrate that the coupling between quantum mechanical systems and
electromagnetic fields can lead to rich and diverse phenomena. The SSH extends this idea to the realm of
spacetime itself, proposing that the interaction between the spacetime superfluid and the electromagnetic
field could give rise to the observed properties of gravity and electromagnetism.

16.3 Theoretical Precedents

The electromagnetic coupling term in the SSH also draws inspiration from various theoretical frameworks:
Quantum electrodynamics (QED): As mentioned earlier, the complex representation of the electromag-
netic field in the coupling term is reminiscent of the complex vector field in QED. In QED, the interaction
between charged particles and the electromagnetic field is described by the coupling of the particle’s wave
function to the electromagnetic potential. Gauge theories: The electromagnetic interaction is a gauge theory,
where the electromagnetic potential is introduced as a gauge field to ensure the invariance of the theory under
local phase transformations. The coupling of the spacetime superfluid to the electromagnetic field in the SSH
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could be seen as a generalization of the gauge principle to the realm of spacetime itself. Gravitoelectromag-
netism (GEM): In some theories of gravity, such as the linearized approximation of general relativity, the
equations of gravity can be cast into a form similar to Maxwell’s equations of electromagnetism. This analogy,
known as gravitoelectromagnetism, suggests a deep connection between gravity and electromagnetism. The
SSH takes this idea further by proposing that both gravity and electromagnetism emerge from the dynamics
of the spacetime superfluid.

16.4 Conclusion

The electromagnetic coupling term a(E —iB)1 in the modified NLSE of the SSH is motivated by the need to
establish a connection between the quantum mechanical description of the spacetime superfluid and the clas-
sical electromagnetic field. The specific form of the term is chosen to ensure consistency with the principles of
quantum mechanics and electromagnetism. While the SSH proposal is novel, there are empirical and theoret-
ical precedents that support the idea of a coupling between quantum mechanical systems and electromagnetic
fields. The SSH extends this idea to the realm of spacetime itself, suggesting that the interaction between
the spacetime superfluid and the electromagnetic field could give rise to the observed properties of gravity
and electromagnetism. However, it is important to note that the SSH is still a speculative hypothesis, and
further theoretical and experimental work is needed to validate its predictions and establish its connection
to empirical observations. The physical justification for the electromagnetic coupling term, as well as other
aspects of the SSH, should be subjected to rigorous scrutiny and tested against available data. In summary,
the electromagnetic coupling term in the SSH is a crucial component of the hypothesis, as it establishes a
link between the quantum mechanical description of spacetime and the classical electromagnetic field. While
its specific form is motivated by theoretical considerations and inspired by empirical and theoretical prece-
dents, further research is needed to fully justify its inclusion in the SSH and explore its implications for our
understanding of gravity, electromagnetism, and the nature of spacetime itself.
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17 Alignment of the SSH with General Relativity

The Spacetime Superfluid Hypothesis (SSH) proposes a novel framework in which spacetime is treated as a
superfluid medium. This hypothesis extends beyond the standard formulation of General Relativity (GR)
by introducing additional degrees of freedom and interactions. A pivotal aspect of SSH is its potential
alignment with GR under specific conditions, essentially by adjusting the parameters within SSH to emulate
GR’s predictions in the corresponding limit. This alignment underscores the versatility and depth of SSH,
illustrating its capacity to generalize and encompass the principles of GR.

17.1 Non-linear Schrodinger Equation in SSH

The foundational equation of SSH, the modified Non-linear Schrédinger Equation (NLSE), governs the dy-
namics of the spacetime superfluid. The equation is expressed as:

v B—QVQ (p) 2+ V'(Y) + Kk(E —iB (71
ihy = =5 -V Y+ wp)y — gl + V(4) + w(E — iB)y )

where ¢ denotes the superfluid’s order parameter, p(p) the density-dependent chemical potential, g the
interaction strength, V/(1) the derivative of a potential term, and x a coupling constant with E and B
representing the electric and magnetic fields respectively.

17.2 Aligning Parameters with General Relativity

To reconcile SSH with GR, specific parameter adjustments are necessary:

e Setting the mass m of superfluid particles significantly large to minimize the quantum pressure term’s
influence.

e Adjusting g and V(¢) to reflect a simple fluid-like equation of state.

e Choosing a minimal x value to effectively decouple the superfluid from the electromagnetic field.

These adjustments ensure the NLSE converges towards the classical fluid dynamics equations, aligning
SSH closely with GR’s hydrodynamics.

17.3 Einstein Field Equations and SSH

The gravitational field within SSH is linked to spacetime superfluid density variations via a form of the
Einstein field equations:

G

1
RHU - ERQMV = 7Tuu (72)

Here, R,,, R, and g,, represent the Ricci tensor, Ricci scalar, and metric tensor respectively. The
energy-momentum tensor 7, mirrors that of a perfect fluid in GR, highlighting the parallels between the
two theories.

17.4 The Maxwell Equations within SSH

SSH incorporates the Maxwell equations through the NLSE and the energy-momentum tensor. To achieve
congruence with GR, the coupling constant x is minimized, allowing the electromagnetic field to become
effectively decoupled from the superfluid. Consequently, the Maxwell equations in SSH align with those in
curved spacetime:

VP = ppJ” (73)
Vi Foa =0 (74)
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17.5 Alignment Thoughts

Through strategic parameter adjustments, SSH can emulate GR’s predictions in appropriate limits, demon-
strating its capacity as a generalization of GR. This alignment not only validates SSH’s theoretical robustness
but also opens avenues for exploring gravitational phenomena within a quantum framework.

18 Magnetic Fields and Gravity

In the framework of the Spacetime Superfluid Hypothesis (SSH), magnetic fields are conceptualized as flows
or currents within the spacetime superfluid. This innovative interpretation emerges from the unique cou-
pling between the electromagnetic field and the superfluid in the SSH. The electromagnetic interaction is
mathematically represented as follows:

0 _ h2v2 24V E+iB 75
2~ "o +u—glYI*+ V@) )+ k(E+iB)Y (75)

Here, 1 denotes the superfluid’s complex order parameter, with F and B representing the electric and
magnetic fields respectively, and « is the coupling constant.

Focusing on the magnetic field B, its relation to the vector potential A is maintained through the con-
ventional definition B =V x A. However, within the SSH paradigm, A gains a physical significance related
to the phase 6 of the superfluid order parameter, expressed in polar form as ¢ = /pexp(if). The vector
potential is thus linked to the phase gradient:

ih

A="gg (76)
q

Implying the magnetic field B as a manifestation of the superfluid phase’s vorticity:

h
B = EV x Vo (77)
This framework leads to intriguing implications:

¢ Quantization of Magnetic Flux: Mirroring superfluid phenomena, magnetic flux quantization in
the SSH context suggests potential observables in quantum mechanics from a new perspective.

e Magnetic Monopoles: SSH opens the door to magnetic monopoles as topological defects within the
superfluid, akin to vortices in traditional superfluids.

e Unified Electric and Magnetic Fields: SSH treats electric and magnetic fields symmetrically,
hinting at a deeper interconnectivity.

¢ Gravitational Implications: The superfluid interpretation of electromagnetic phenomena suggests
novel insights into gravity, potentially illuminating the elusive connection between gravity and the other
fundamental forces.

These developments underline SSH’s potential to significantly impact our understanding of magnetic
fields, gravity, and their interrelation.
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19 Manipulating Local Spacetime Superfluid Density
with Magnetic Configurations

19.1 Introduction

The Spacetime Superfluid Hypothesis (SSH) proposes that spacetime can be described as a superfluid, with
gravity and other fundamental forces arising from the dynamics of this superfluid. In this framework, magnetic
fields are interpreted as flows or currents of the spacetime superfluid. This suggests the possibility of using
specific magnetic configurations to manipulate the local density or pressure of the superfluid, creating effects
analogous to buoyancy in a fluid.

19.2 Magnetic Fields as Superfluid Flows
In the SSH, the magnetic field B is related to the vector potential A through the relation:

B=VxA

The SSH postulates that the vector potential A is proportional to the gradient of the phase 8 of the superfluid
order parameter 1

A:EVG
q

where £ is the reduced Planck constant, and ¢ is a parameter that depends on the properties of the superfluid.
Substituting this expression into the definition of the magnetic field, we get:

h
B=VxA=-VxV/
q
This suggests that the magnetic field is related to the vorticity of the phase of the superfluid order parameter.

19.3 Magnetic Shell Configuration

Consider a spherical shell with magnets aligned radially, either all pointing inward or all pointing outward.
This configuration could create a uniform magnetic field inside the shell, corresponding to a uniform ” twisting”
of the superfluid phase. The magnetic field inside the shell can be described by:

B = By (for inward-pointing magnets)
B = —By# (for outward-pointing magnets)

where By is the magnitude of the magnetic field, and 7 is the unit vector in the radial direction.

19.4 Superfluid Density Modification

The uniform magnetic field inside the shell corresponds to a uniform vorticity of the superfluid phase:

V x Vo= %Bof (for inward-pointing magnets)

VxVo= f%Bof (for outward-pointing magnets)

This vorticity could lead to a change in the local density p of the superfluid inside the shell, relative to the
density pg outside the shell.
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19.5 Buoyancy Effect

The change in the local density of the superfluid inside the magnetic shell could create a buoyant force in
the presence of an external gravitational field. For a spherical shell of radius R and thickness Ar < R, the
buoyant force Fj, is given by:

4
F, = gﬂ'R?’Apg

where Ap = py — p is the difference between the outside and inside densities, and ¢ is the gravitational
acceleration. If Ap > 0 (outward-pointing magnets), the shell experiences an upward buoyant force. If
Ap < 0 (inward-pointing magnets), the shell experiences a downward force.

19.6 Experimental Considerations

Testing this idea experimentally would be challenging, as it requires detecting changes in the local density of
the spacetime superfluid. Some possible approaches could include:

e Precision measurements of the gravitational field inside and outside the magnetic shell, looking for
small deviations from the expected field.

e Interferometric experiments that measure the phase shift of quantum particles passing through the
shell, which could be sensitive to changes in the superfluid density.

e Measurements of the buoyant force on the shell in the presence of a strong gravitational field, using
sensitive accelerometers or torsion balances.
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20 Modifying Einstein’s Field Equations for the SSH

To modify Einstein’s field equations to take into account the Spacetime Superfluid Hypothesis (SSH), we
need to incorporate the effects of the spacetime superfluid into the description of the curvature of spacetime
and the distribution of matter and energy.

Einstein’s field equations relate the curvature of spacetime, described by the Einstein tensor G
distribution of matter and energy, described by the stress-energy tensor 7),,:

uv» to the

G = 8:—? X Ty

where G is Newton’s gravitational constant and c is the speed of light.

In the SSH framework, the spacetime superfluid plays a key role in determining the curvature of spacetime
and the dynamics of matter and energy. To include the effects of the superfluid in Einstein’s field equations,
we need to modify the stress-energy tensor 7, to include contributions from the superfluid.

One way to do this is to introduce a new term in the stress-energy tensor that represents the energy
density and pressure of the superfluid. Let’s call this term Tﬁf,f )7 where "sf” stands for "superfluid”. Then,
the modified stress-energy tensor would be:

T, = T3 + TG

where Tﬂl) is the stress-energy tensor for ordinary matter and energy, and 7, L(Lf,f ) is the stress-energy
tensor for the spacetime superfluid.

The specific form of T,Sf,f ) would depend on the properties of the superfluid and its interaction with matter
and energy. One possible approach is to use the hydrodynamic description of superfluids, which relates the
energy density and pressure of the superfluid to its velocity and density fields.

In this description, the stress-energy tensor for the superfluid could be written as:

T;Sf/f) = (Psf + psf)uuuu + PsfGur + Euw

where pgr and psy are the energy density and pressure of the superfluid, u, is the four-velocity of the
superfluid, g,,,, is the metric tensor, and &, is a tensor that describes the non-classical effects of the superfluid,
such as its quantum vorticity and topology.

The four-velocity u,, and the density pss of the superfluid would be related to the complex order parameter
1) that describes the superfluid in the SSH framework. In particular, we could write:

Psf = |¢|2

Uy = (Z) 0,0

where A is the reduced Planck constant, m is the mass of the superfluid particle, and # is the phase of
the order parameter 1.

Substituting these expressions into the stress-energy tensor 7, ﬁif ), and combining it with the stress-energy
tensor for ordinary matter 7, lET), we obtain the modified Einstein field equations:

8rG m
Guv = —5= X (Tﬁy) + [P upt, + porgu + EW)

These modified field equations describe how the curvature of spacetime is related to the distribution of
matter and energy, including the contribution from the spacetime superfluid.

To solve these equations and obtain the metric tensor g,, that describes the geometry of spacetime,
we would need to specify the properties of the superfluid, such as its equation of state and its interaction
with matter and energy. We would also need to provide boundary conditions and initial conditions for the
superfluid field ¥ and the metric tensor g, .

In general, solving these modified field equations would be a complex and challenging task, requiring
advanced mathematical techniques and numerical simulations. However, in certain simplified cases, such as
in the weak-field limit or in highly symmetric situations, it may be possible to obtain analytical solutions or
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approximate solutions that provide insight into the effects of the superfluid on the curvature of spacetime
and the dynamics of matter and energy.

20.1 Weak-field Limit

In the weak-field limit, we assume that the spacetime metric g,,, can be written as a small perturbation b,
around the flat Minkowski metric 7,

v = Npw + hpw,  Wwith by, | < 1

In this limit, the Einstein tensor G, can be approximated to first order in h,,, as:

G = % (0a0y s + 0a0uh — 0,0,h — Ohy,) — %mw (0a05h*" — Oh)

where h = n*"h,,, is the trace of the perturbation, and [0 = 9,,0* is the d’Alembert operator.
In the weak-field limit, we can also assume that the superfluid density psy and pressure psy are small, so

that the stress-energy tensor Tﬁif ) can be approximated as:

T;Sf/f) ~ PsfNuv

Substituting these approximations into the modified Einstein field equations, we obtain:

1 o o 1 o 8rG m
3 (0a0uhS + 0001 — 0,0,h — Ohyy,) — 5w (0205h*" — Oh) ~ 5 X (TS + pspnun)

These linearized equations describe the propagation of weak gravitational waves in the presence of the
spacetime superfluid. The superfluid contributes an additional term to the stress-energy tensor, which acts
like a small cosmological constant and can affect the amplitude and wavelength of the gravitational waves.

To solve these equations, we can use the technique of Green’s functions, which express the solution as a
convolution of the source term with a propagator. For example, in the case of a point mass M located at the
origin, the solution for the perturbation h,, in the Lorentz gauge (0,h*" = 0) is given by:

2GM . 2GM
c2r’ hig ~ = c2r X i

hoo = —

where r is the distance from the origin, and d;; is the Kronecker delta. This solution describes the
Newtonian gravitational potential around the point mass, with a small correction due to the presence of the
superfluid.

20.2 Highly Symmetric Solution (Cosmological)

Now let’s consider a highly symmetric solution for the modified Einstein field equations, in the context
of cosmology. Specifically, we’ll look at the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, which
describes a homogeneous and isotropic universe:

dr?

1 — kr2

ds* = —c2dt* + a(t)? { + 72(d6* + sin® 9dq§2)}

where a(t) is the scale factor, and k is the curvature parameter (kK = 0,+1, or —1 for a flat, closed, or
open universe, respectively).

In this metric, the Einstein tensor G, has the following non-zero components:

3(a? + kc?) i a4+ kc?
GOOZT’ Gij = — 254'7 Gij
where ¢ = —fi‘tl and @ = —izf}.

For the stress-energy tensor, we assume that both the ordinary matter and the superfluid can be described
as perfect fluids, with energy densities p,, and p,, and pressures p,, and p,¢, respectively. Then, the non-zero
components of the stress-energy tensor are:
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Tétr)n) = PmC2, Ti;n) = PmYij

To" = psre®, TED = poray;
Substituting these expressions into the modified Einstein field equations, we obtain the Friedmann equa-
tions:

a\’ _ &G % (o + pas) kc?

a - 302 pm psf a2
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These equations describe the evolution of the scale factor a(t) in the presence of both ordinary matter and
the spacetime superfluid. The superfluid contributes additional terms to the energy density and pressure,
which can affect the expansion rate and the geometry of the universe.

To solve these equations, we need to specify the equation of state for the superfluid, which relates its
pressure pgy to its energy density ps¢. One possible choice is a barotropic equation of state:

bsf = wa/JSfC2

where w,y is a constant parameter. For example, if wsy = —1, the superfluid behaves like a cosmological
constant, with a constant energy density and negative pressure. If wyy = 0, the superfluid behaves like
pressureless dust, with an energy density that dilutes as the universe expands.

With this equation of state, the Friedmann equations can be solved analytically for certain special cases,
such as a flat universe (k = 0) with only the superfluid (pm = pm = 0). In this case, the solution for the
scale factor is:

a(t) o t3(1+2wsf)

For wsy = —1, this gives an exponentially expanding solution, similar to the de Sitter universe in the
standard cosmological model.

For more general cases, the Friedmann equations need to be solved numerically, taking into account the
contributions from both ordinary matter and the superfluid, as well as any additional terms that may arise
from the non-classical effects of the superfluid (such as the &,, term in the stress-energy tensor).

These solutions provide a glimpse into how the spacetime superfluid could affect the dynamics of the
universe on large scales, and how it could potentially explain some of the observed features of the cosmos,
such as the accelerated expansion and the missing mass. However, much more work is needed to fully explore
the cosmological implications of the SSH, and to test its predictions against observational data.

One interesting consequence of including the superfluid in Einstein’s field equations is that it could
potentially provide a mechanism for the accelerated expansion of the universe, which is currently attributed
to dark energy. If the superfluid has a negative pressure, similar to the cosmological constant in the standard
model of cosmology, then it could drive the expansion of the universe at late times.

Another possibility is that the superfluid could provide a source of dark matter, which is needed to explain
the observed rotation curves of galaxies and the large-scale structure of the universe. If the superfluid particles
have a non-zero mass and interact weakly with ordinary matter, then they could behave like cold dark matter
and contribute to the gravitational potential of galaxies and clusters.

To explore these possibilities and test the predictions of the modified field equations, we would need to
compare their results with observational data from cosmology and astrophysics, such as measurements of
the cosmic microwave background radiation, the distribution of galaxies and clusters, and the gravitational
lensing of light by massive objects.
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20.3 Summary

The SSH suggests that magnetic fields can be interpreted as flows of the spacetime superfluid, and that
specific magnetic configurations could be used to manipulate the local density or pressure of the superfluid.
A spherical shell with radially aligned magnets is one possible configuration that could create a uniform
vorticity inside the shell, leading to a change in the superfluid density and a buoyant force. While this idea is
speculative and faces significant experimental challenges, it highlights the potential of the SSH to provide new
insights into the nature of spacetime and gravity. If such effects could be demonstrated, it would open up new
possibilities for controlling and manipulating spacetime at the quantum level. As the SSH continues to be
developed and tested, ideas like this one will need to be rigorously analyzed and compared with experimental
data. The mathematical framework presented here provides a starting point for further exploration of this
concept and its implications for our understanding of the fundamental structure of the universe.
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21 Incorporating the Dirac Equation into the SSH Framework

To fully describe the behavior of fermions within the Spacetime Superfluid Hypothesis (SSH), it is necessary
to incorporate the Dirac equation into the mathematical framework. The Dirac equation is a relativistic
quantum mechanical wave equation that describes the dynamics of spin-1/2 particles, such as electrons and
quarks. In the SSH, we propose that fermions can be described as excitations of the spacetime superfluid
that obey the Dirac equation. To incorporate the Dirac equation, we introduce a spinor field ¥(r,¢) that
represents the fermion excitations. The Dirac equation in covariant form is given by:

(iv"0, —m)¥ =0, (78)

where v* are the Dirac matrices, J,, is the covariant derivative, and m is the mass of the fermion. To couple
the Dirac equation to the spacetime superfluid, we modify the non-linear Schrédinger equation (NLSE) to
include the spinor field:

2
ind% — LR N V([9*)¢ + a(E —iB)y + BT, (79)
ot 2m

where £ is a coupling constant that determines the strength of the interaction between the fermion excitations
and the spacetime superfluid, and ¥ = W0 is the adjoint spinor. The term B¥W1) represents the coupling
between the fermion excitations and the superfluid order parameter. This coupling allows for the description
of the interactions between fermions and the spacetime superfluid, as well as the emergence of fermionic
properties from the collective behavior of the superfluid. To describe the dynamics of the fermion excitations,
we also need to modify the Dirac equation to include the coupling to the spacetime superfluid:

(90 — m — B°[[*) ¥ = 0. (80)

The term 34°|¢|? represents the effective potential experienced by the fermion excitations due to their
interaction with the spacetime superfluid. The coupled equations (2) and (4) form a system that describes
the dynamics of the spacetime superfluid and the fermion excitations within the SSH framework. The
solutions to these equations will provide a description of the emergent properties of fermions, such as their
mass, charge, and spin, in terms of the properties of the spacetime superfluid. To study the properties of
fermions in the SSH, we can look for solutions to the coupled equations in the form of localized excitations or
solitons. These fermionic solitons will have properties that depend on the specifics of the coupling between
the fermion field and the superfluid order parameter, as well as the topology of the solutions. For example,
the charge of the fermion excitations can be related to the topological winding number of the spinor field ¥
around the soliton solution. The spin of the fermions can be associated with the rotation properties of the
spinor field. To fully understand the emergence of fermionic properties in the SSH, it is necessary to study the
solutions to the coupled equations (2) and (4) and their topological properties. This may require numerical
simulations or approximate analytical methods, depending on the specific form of the potential term and the
coupling constants. In conclusion, incorporating the Dirac equation into the SSH framework allows for the
description of fermions as excitations of the spacetime superfluid. The coupling between the Dirac spinor
field and the superfluid order parameter gives rise to the emergent properties of fermions, such as their mass,
charge, and spin. Further research into the solutions of the coupled equations and their topological properties
is necessary to fully understand the behavior of fermions within the SSH.
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22 Fourier Transform in the Spacetime Superfluid Hypothesis

The Fourier transform is a powerful mathematical tool that allows us to analyze functions and signals in terms
of their frequency components. In the context of the Spacetime Superfluid Hypothesis (SSH), the quantum
Fourier transform can be used to study the relationship between particles, gravity, and electromagnetism by
representing the relevant fields and their interactions in Fourier space.

Let’s consider the key components of the SSH framework and see how they can be represented using the
Fourier transform:

22.1 Spacetime Superfluid

The spacetime superfluid is described by an order parameter W(x,t), which is a complex scalar field. We can
express the order parameter in terms of its Fourier transform:

3 ~ .
W(x, 1) = / éﬁ’; (K, £)elex

where ‘il(k, t) is the Fourier transform of the order parameter, and k is the wavevector.

22.2 Particles

In the SSH framework, particles can be described as excitations or quasiparticles of the spacetime superfluid.
The wavefunction of a particle ¥ (x, t) can be expressed in terms of its Fourier transform:

3 ~ .
vixt) = [ e

where 9 (k, t) is the Fourier transform of the particle wavefunction.

22.3 Gravity

In the SSH framework, gravity emerges as a consequence of the spacetime superfluid’s dynamics. The metric
tensor g, (x,t), which describes the spacetime geometry, can be decomposed into its Fourier components:

dsk ~ ik-x

guz/(xat)/wguu(kat)e

where §,., (k,t) is the Fourier transform of the metric tensor.

22.4 Electromagnetism

The electromagnetic field can be described by the four-potential A*(x,t), which consists of the scalar potential
¢(x,t) and the vector potential A(x,t). The Fourier transform of the four-potential is:
3k - ;
Ar(x,t) = [ s APk, t)e™™
o) = [ A )

where A*(k, ) is the Fourier transform of the four-potential.

Now, let’s see how the quantum Fourier transform can be used to unite these components and represent
their interactions:
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22.5 Spacetime Superfluid Dynamics

The dynamics of the spacetime superfluid are governed by the modified non-linear Schrédinger equation
(NLSE). In Fourier space, the NLSE takes the form:

RE: - B Lo
= Vik,t) | U(k,t ——gk -k, )Tk’ ¢t

(o + 700 ) )+ [ - 10000

where V (k, t) is the Fourier transform of the potential energy, and §(k, ) is the Fourier transform of the
interaction term.

L 0U(k,t)
5

22.6 Particle-Superfluid Interaction

The interaction between particles and the spacetime superfluid can be represented in Fourier space by coupling
the particle wavefunction to the superfluid order parameter:

7 21.2 ~ ~ 3 1./ " ~
mawgz’ b _ (@:1 + V(k,t)) Dk, 1) +/é7:€)3g(k—k’,t)\ll(k’,t)w(k, 0

where the last term represents the coupling between the particle and the superfluid.

22.7 Gravity-Superfluid Interaction

The interaction between gravity and the spacetime superfluid can be represented in Fourier space by coupling
the metric tensor to the superfluid order parameter:

- 87G (- -
G, t) = = (T (k) + T3 (1 1))

where G, (k,t) is the Fourier transform of the Einstein tensor, T,gg})(h t) is the Fourier transform of the

energy-momentum tensor of the superfluid, and T}ST)(k7 t) is the Fourier transform of the energy-momentum
tensor of matter.

22.8 Electromagnetism-Superfluid Interaction

The interaction between electromagnetism and the spacetime superfluid can be represented in Fourier space
by coupling the four-potential to the superfluid order parameter:

AH (K, t) —/ il G"(k — X, t)J, (K 1)
b - (271_)3 bl v I

where G (k, t) is the Fourier transform of the Green’s function for the electromagnetic field, and J,, (k, t)
is the Fourier transform of the four-current density, which includes contributions from the spacetime superfluid
and matter.

By expressing the fields and their interactions in Fourier space, the quantum Fourier transform provides a
unified framework for studying the relationships between particles, gravity, and electromagnetism within the
SSH. The Fourier transform allows us to analyze the dynamics and interactions of the various components
in terms of their frequency and wavevector components, which can provide insights into the behavior of the
system at different scales and regimes.

Moreover, the quantum Fourier transform enables the use of powerful mathematical techniques, such
as convolution theorems and the study of spectral properties, to solve the coupled equations governing the
dynamics of the spacetime superfluid and its interactions with particles, gravity, and electromagnetism.

It is important to note that the expressions provided here are schematic and serve to illustrate the general
principles of using the quantum Fourier transform in the SSH framework. The actual equations and their
solutions will depend on the specific assumptions and approximations made in the model, as well as the
boundary conditions and initial conditions imposed on the system.
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In summary, the quantum Fourier transform plays a crucial role in the SSH framework by providing a uni-
fied mathematical language for describing the relationships between particles, gravity, and electromagnetism.
By representing the relevant fields and their interactions in Fourier space, the quantum Fourier transform
enables the study of the dynamics and properties of the spacetime superfluid and its coupling to matter and
fundamental forces.
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23 Emergence of Particles and Fields in the Spacetime Superfluid
Hypothesis

To represent the emergence of protons, electrons, positrons, and antiprotons with their associated electric
and magnetic fields using Fourier transforms, we need to consider the wavefunctions of these particles and
the electromagnetic field in the context of the Spacetime Superfluid Hypothesis (SSH). Let’s break this down
step by step:

23.1 Particle Wavefunctions

We start by expressing the wavefunctions of the particles in terms of their Fourier transforms:

B3k - :
Proton: wp(x,t)2/(2F)3¢p(k7t)6zk-x

P’k - ik-x
Electron: t.(x,t) = (73¢e(k,t)€

2m)
. Bk - K
Positron: .+ (x,t) = W¢e+ (k,t)e™*
™
. Pk - ik-x
Antiproton: ¥5(x,t) :/(2 )3¢5(k,t)e
T

where 1/~)p(k7 t), @e(k, t), e+ (k, t), and @ﬁ(k, t) are the Fourier transforms of the proton, electron, positron,
and antiproton wavefunctions, respectively.

23.2 Electromagnetic Field

The electric field E(x,t) and the magnetic field B(x,t) can be expressed in terms of the scalar potential
¢(x,t) and the vector potential A(x,t):

OA(x,t)

E(x,t) = —Vo¢(x,t) — Y

B(x,t) =V x A(x,1)

The scalar and vector potentials can be expressed in terms of their Fourier transforms:

o) = [ otk e

3 ~ .
A(x,t) = / (;’; A(k, t)ek>

where é(k, t) and A(k, t) are the Fourier transforms of the scalar and vector potentials, respectively.

23.3 Particle-Field Interaction

In the SSH framework, particles emerge as excitations of the spacetime superfluid, and their properties,
such as charge and spin, are determined by the topological properties of the superfluid. The interaction
between the particles and the electromagnetic field can be expressed in Fourier space by coupling the particle
wavefunctions to the scalar and vector potentials:

44



by (k, 1) = / g;k);ép(k,k’ )((;s(k' 0 HiAK ) ) (k-1 t
Buic) = [ GRG0 (3060 A0 ) G-k
Gt = [ 485Gt (<00 - i£AN.0) me)%(k >
Bntct) = [ GGyl ) (<0, 0) + £ AN D) - ) (k- K.

where C~¥p(k7 K, t), Ge(k, K 1), Go+(k, K, t), and éﬁ(k, k', t) are the Fourier transforms of the Green’s
functions for the proton, electron, positron, and antiproton, respectively.

23.4 Spacetime Superfluid Dynamics

The dynamics of the spacetime superfluid, including the emergence of particles and their interactions with
the electromagnetic field, can be described by a modified non-linear Schrédinger equation (NLSE) in Fourier
space:

\T 21.2
ih6W(k¢)::<h k

= 5+ f/(k,t)) U(k,t)

K / 7 /
+/<2W)A (K, t)J, (k- k', 1)

where @(k, t) is the Fourier transform of the spacetime superfluid order parameter, ‘~/(k7 t) is the Fourier
transform of the potential energy, g(k,t) is the Fourier transform of the interaction term, A¥(k,t) is the
Fourier transform of the electromagnetic four-potential, and ju(k, t) is the Fourier transform of the four-
current density, which includes contributions from the particles and the spacetime superfluid.

The Fourier transforms presented here provide a mathematical framework for describing the emergence of
protons, electrons, positrons, and antiprotons with their associated electric and magnetic fields in the context
of the SSH. The particle wavefunctions and the electromagnetic field are coupled through the spacetime
superfluid, which determines the properties and interactions of the particles.
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24 Spinors

In the Spacetime Superfluid Hypothesis (SSH), spinors could be represented by introducing additional degrees
of freedom into the order parameter 1 (z,t) of the superfluid. The order parameter would then become a
multi-component field, with each component representing a different spin state.

One way to incorporate spinors into the SSH is to use a two-component spinor field ¥ (x,t), analogous
to the spinor wavefunction in the Dirac equation. The modified non-linear Schrédinger equation (NLSE) for
the spinor field would then take the form:

0 2 2
ihoe (V1 2) = (~ 22V + V(W) o B upo B~V +V([9?)) (1 ) (81)

where 11 and vy are the two components of the spinor field, m is the mass of the superfluid particle,
V(|1)?) is a density-dependent potential, up is the Bohr magneton, o is the vector of Pauli spin matrices,
and B is the magnetic field.

The term ppo - B in the NLSE represents the coupling between the spin of the superfluid particle and
the magnetic field, which is necessary to incorporate the spin degree of freedom correctly.

In this formulation, the soliton solutions of the NLSE would represent particles with spin. The topological
structure of the solitons, encoded in the phase and amplitude of the spinor field components, would determine
the spin properties of the particles.

For example, a soliton solution with a non-trivial winding of the phase around the soliton core could
represent a particle with spin-1/2, with the direction of the winding corresponding to the spin orientation.

Furthermore, the coupling between the spin and the magnetic field in the NLSE could lead to phenomena
such as spin precession and the Zeeman effect, which could be studied within the SSH framework.

It is important to note that introducing spinors into the SSH would add additional complexity to the
mathematical formalism and the interpretation of the soliton solutions. However, it would also provide a
more comprehensive description of particles, allowing the SSH to incorporate spin-dependent effects and
potentially unify the description of spin with other fundamental properties of particles and fields.

25 Fourier Transform Representation of Solitons in SSH

In the framework of the Spacetime Superfluid Hypothesis (SSH), solitons represent localized excitations
that embody particle-like properties. These solitons arise as solutions to a modified non-linear Schrédinger
equation (NLSE), reflecting the dynamics of the spacetime superfluid via the order parameter ¢ (z,t). A
powerful method to analyze solitons is through their Fourier transform representation, offering insights into
their spatial and momentum-space characteristics.

25.1 Fourier Representation of Solitons

The soliton solutions to the NLSE can be expressed as a superposition of plane waves, encapsulated by the
Fourier series or integral:

wlant) = [ dbA() explifhs — (b)), (2)

where A(k) denotes the Fourier amplitude for wave vector k, and w(k) is the dispersion relation. The
Fourier amplitudes are obtained via:

1

A(k) = Py /dm/)(x,t) exp(—ikx). (83)

25.2 Implications for Particle Properties
25.2.1 Charge

The charge associated with particles in SSH relates to the soliton’s topological structure, particularly the
phase winding of ¢ (z,t) around the soliton core. This winding manifests in the Fourier representation,
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indicating a topological charge ¢ through a winding factor €%? in the Fourier amplitudes A(k).

25.2.2 Spin

The spin property, akin to charge, emerges from the soliton’s topological structure. Its complete represen-
tation may necessitate a spinor version of the NLSE, where ¢ (x,t) becomes a multi-component field, each
representing different spin states. The Fourier transform of this field contains spin information, with the
Fourier amplitudes embodying matrices or tensors that encode spin orientation and magnitude.

25.2.3 Matter/Antimatter

Solitons with opposite topological charges symbolize matter and antimatter within SSH. This duality is
captured in the Fourier representation by differing phase windings of the Fourier amplitudes, such as e*? for
matter and e~*? for antimatter solitons.

25.3 Conclusion

The Fourier transform representation of solitons in SSH offers a profound method for dissecting the spatial
and momentum-space characteristics of particles, revealing essential insights into their charge, spin, and
matter/antimatter nature. However, the nuances of non-linear interactions and topological intricacies might
transcend this plane-wave decomposition, suggesting a continued exploration of the SSH framework for a
comprehensive understanding of particle physics.

26 Particles as Emergent Phenomena in Spacetime Superfluid

The Spacetime Superfluid Hypothesis (SSH) posits a revolutionary perspective on the nature of particles
and forces in the universe. Contrary to traditional views that regard particles as fundamental entities, the
SSH suggests that particles are emergent phenomena arising from the dynamics of an underlying spacetime
superfluid. This superfluid is mathematically described by a complex order parameter ¥ (x,t), which obeys
a modified non-linear Schrédinger equation (NLSE):

aw _ h‘Q 2 *
S5 = o VU Vv (84)

where V (1, 1*) represents the potential energy, including terms that account for the interactions within
the superfluid and possibly external fields.

ih

26.1 Soliton Solutions and Their Particle-like Behavior

The NLSE admits soliton solutions, which are localized and stable excitations of the superfluid. These
solitons exhibit particle-like properties and are characterized by a non-trivial topological structure in the order
parameter field ¥ (z,t). Commonly, solitons in the SSH are associated with vortices or vortex lines, where
the phase of ¥(x,t) exhibits winding around the vortex core. This winding is indicative of the topological
charge or spin of the emergent particle.

For instance, an electron or positron can be modeled as a soliton with a phase winding of +1 around its
core, corresponding to a spin of +1/2. The sign of the winding determines the spin orientation, providing a
topological basis for understanding particle spin.

26.2 Implications of Vortices in Spacetime Superfluid

The analogy between vortices in spacetime superfluid and those observed in conventional superfluids, like
superfluid helium, highlights several critical implications of SSH:

e [t offers a unified framework for describing particles and fields, suggesting that their properties emerge
from superfluid dynamics.
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e Particle attributes, such as charge and spin, are interpreted as manifestations of the topological structure
of spacetime vortices.

e The framework naturally incorporates the possibility of magnetic monopoles and other exotic topolog-
ical defects.

e It lays the groundwork for unifying gravity with other fundamental forces, conceiving gravity as a
phenomenon emerging from collective excitations or correlations within the superfluid.

26.3 Challenges and Future Directions

While solitons as vortices provide an enticing model within SSH, realizing this idea faces several challenges.
Key among these is elucidating the precise mechanism of vortex formation and interaction, along with aligning
the emergent particle properties with empirical observations. Future theoretical developments and experi-
mental validations are crucial for advancing SSH as a viable model of the universe’s fundamental structure.
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27 Solving the Non-linear Schrédinger Equation (NLSE) using
Fourier Methods

To solve the non-linear Schrodinger equation (NLSE) using Fourier methods, we can leverage the fact that
the Fourier transform converts differential operators (like the Laplacian V?) into algebraic operations (like
multiplication by —k2). This can significantly simplify the task of solving the NLSE numerically.

Here’s a general outline of how to use Fourier methods to solve the NLSE:

1. Start with the NLSE in its general form:

Loy R, 2
Zha = —%V Y+ V(Y)Y

where ¥ (z,t) is the complex order parameter field, & is Planck’s constant, m is the mass of the particles,
and V(]1|?) is a non-linear potential term.

2. Apply the Fourier transform to both sides of the equation. Denote the Fourier transform of ¢ (x,t) as

¥ (k,t), where k is the spatial frequency variable. The Fourier transform of the NLSE then becomes:

G LUR I )
thor =5 =¥+ F{V(¥F)¥}

where F{-} denotes the Fourier transform operation.

3. The term F{V (|¢)|*)1} represents the Fourier transform of the non-linear potential term. In general,
this term will be a convolution in Fourier space, which can be computationally expensive to evaluate
directly. However, we can use the convolution theorem, which states that the Fourier transform of a
product is the convolution of the Fourier transforms. In other words:

FV (0P} = F{V (PP}« ¢
where * denotes the convolution operation.

4. Computationally, we can evaluate this convolution by first transforming V'(|4)|?) and v to Fourier space,
performing a point-wise multiplication of their Fourier transforms, and then transforming the result
back to real space. This is generally much faster than performing the convolution directly in real space.

5. Once we have evaluated the Fourier transform of the non-linear term, we can rewrite the NLSE in
Fourier space as:
oy h2k? o -
h— = F{V
i = T FV(P)) +

6. This is a differential equation for @(k,t), which can be solved using standard numerical methods for
ODEs, such as the Runge-Kutta method. The key advantage is that the spatial derivatives have been
replaced by algebraic operations in Fourier space, which are much easier to evaluate numerically.

7. Once we have solved for ¢ (k, ), we can transform back to real space to obtain the solution 1 (z,t) at
any desired time ¢.

This procedure is known as the Split-Step Fourier Method, and is widely used in fields such as nonlinear
optics and Bose-Einstein condensate physics to numerically solve NLSEs.

The efficiency of this method relies on the Fast Fourier Transform (FFT) algorithm, which allows the
Fourier transforms to be computed in O(N log N) time, where N is the number of spatial grid points. This
is generally much faster than the O(N?) time required for direct evaluation of the spatial derivatives and
convolutions.

There are many refinements and variations of this basic method, such as higher-order splitting methods,
adaptive time-stepping, and domain decomposition techniques, which can improve its accuracy and efficiency
for specific problems.
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In the context of the SSH theory, using Fourier methods to solve the NLSE would allow us to efficiently
simulate the dynamics of the spacetime superfluid and study phenomena such as the emergence of particles,
the interactions between fields, and the effects of curvature and topology. It would provide a powerful
computational tool for exploring the implications and predictions of the SSH theory, and for comparing it
with other approaches to quantum gravity and unified field theory.

28 Fourier Representation of Particle Motion

In the Fourier representation of a moving electron or particle, the velocity magnitude and direction are
encoded in the properties of the wave packet in momentum space.

Recall that for a single particle moving along one dimension (say, the x-axis), we can represent its wave
function ¥(x,t) using a Fourier transform:

(e, t) = \/% /_ " (ke d

Here, 1(k) is the Fourier transform of ¢ (z,t), k is the wave number (related to the momentum of the
particle), and w is the angular frequency (related to the energy of the particle).
We model ¢ (k) as a Gaussian wave packet centered around a central wave number ko:

A 2 1/4 (h—ko)2 /o2
1/)(]“)2(02> e~ (k—=ko)*/

The central wave number kg is directly related to the particle’s velocity. In quantum mechanics, the

momentum operator is defined as p = —ih%. Applying this to a plane wave e*** gives:
ﬁeikx — _ihgeikm _ hkeikac
ox

This shows that a plane wave with wave number £ has a momentum of iik. Therefore, the central wave
number ky of our Gaussian wave packet corresponds to a central momentum of py = hkyg.

The velocity of the particle is then given by the group velocity of the wave packet, which is the velocity
at which the center of the wave packet moves. For a non-relativistic particle with mass m, this is simply:

_po _ hko
v = Po _ o

m m

Therefore, the magnitude of the particle’s velocity is proportional to the central wave number kg of its
Fourier space wave packet.

The direction of the velocity is encoded in the sign of ky. If ky > 0, the particle is moving in the positive
z-direction; if kg < 0, the particle is moving in the negative z-direction.

For particles moving in three dimensions, the same principles apply, but the wave function is a function of
three spatial coordinates (x,y, z), and its Fourier transform is a function of three wave numbers (k;, ky, k).
The central wave vector kg = (kog, Koy, ko») of the wave packet in Fourier space determines the particle’s
velocity vector:

hkg
v=—
m
The magnitude of v gives the speed of the particle, and the direction of v gives the direction of motion.
In the SSH theory, these properties of the Fourier space wave packet would emerge from the dynamics
of the spacetime superfluid. The central wave vector kg would correspond to the dominant mode of the
excitation or defect in the superfluid that represents the particle. The evolution of this mode according to
the NLSE would then give rise to the observed motion of the particle.
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29 Inertial Mirror: Reflecting Particle Motion in Fourier Space

An "inertial mirror” that reflects the direction of a particle’s motion by flipping the sign of its central wave
number kg in Fourier space.

In the standard quantum mechanical framework, such an operation would correspond to applying a
unitary transformation that reverses the momentum of the particle. This is similar to the action of the parity
operator ]3, which reflects the position and momentum of a particle:

Pi() = (—a)
PpP~ = —p

In the Fourier representation, this would correspond to flipping the sign of kg.

The idea of achieving this by ”injecting” another Fourier signal is intriguing. In principle, one could
imagine a process where the particle’s wave function is made to interact with another carefully crafted wave
function, resulting in a change of sign of k.

For example, consider a particle with initial wave function 1 (z,t) and Fourier transform 1&(1{:) centered
around kg > 0. If we could make this wave function interact with another wave function ¢(z,t) with Fourier
transform (ﬁ(kz) that is sharply peaked around k = —2kg, then the resulting wave function after the interaction,
x(x,t), would have a Fourier transform y (k) that is centered around —kyg.

Mathematically, this interaction could be represented as a convolution in Fourier space:

X(k) = (k) p(k)

where * denotes the convolution operation.

However, realizing such an interaction in practice would be challenging. It would require a high degree of
control over the wave functions of the particles and the ability to create very specific wave packets in Fourier
space.

In the context of the SSH theory, where particles are represented as excitations or defects in the spacetime
superfluid, the idea would correspond to creating a specific type of ”mirror” excitation in the superfluid that
interacts with the particle excitation in such a way as to reverse the sign of its dominant Fourier mode.

This is a highly speculative idea. It suggests the possibility of novel types of interactions and transfor-
mations of particles that arise from the dynamics of the underlying spacetime superfluid.

To develop this idea further, one would need to study the types of excitations and interactions that are
possible within the SSH framework, and how they manifest in the Fourier representation of the superfluid
field. This could involve a deep analysis of the NLSE and its solutions, as well as numerical simulations of
the superfluid dynamics.

If such ”inertial mirror” interactions could be realized within the SSH theory, it could lead to new insights
into the nature of particles, interactions, and symmetries at the most fundamental level. It might also have
practical applications, such as in the control and manipulation of particles in advanced technological devices.

30 Casimir-like Effects in Fluids and Extension to the SSH Model

30.1 Critical Casimir Effect

In the critical Casimir effect, the force between two plates immersed in a fluid near its critical point can be

described by the following equation:
kgT
FC(L) == ?G(T,hl,hz) (85)
where F is the critical Casimir force, L is the distance between the plates, kg is the Boltzmann constant,
T is the temperature, 7 = (T' — T..)/T. is the reduced temperature (with T, being the critical temperature),
and O(T, h1, he) is a universal scaling function that depends on the boundary conditions hq and hs on the

plates.
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30.2 Thermodynamic Casimir Effect

In the thermodynamic Casimir effect, the force between two plates immersed in a binary fluid mixture near
its demixing transition can be described by:
kgT

Ft(L) = ?A(T7 hl, hg) (86)
where F; is the thermodynamic Casimir force, L is the distance between the plates, kp is the Boltzmann
constant, T is the temperature, 7 = (T' — T.)/T. is the reduced temperature (with 7. being the critical
temperature of the demixing transition), and A(7, hy, h) is a universal scaling function that depends on the
boundary conditions h; and hy on the plates.

30.3 Extension to the SSH Model

In the SSH framework, the Casimir-like force between two boundaries immersed in the spacetime superfluid
could be described by an equation of the form:

Fssu(L) = %E(T, B, B2) (87)

where Fsgpy is the Casimir-like force in the SSH model, L is the distance between the boundaries, A is
the reduced Planck constant, ¢ is the speed of light (which could be related to the speed of sound in the
superfluid), 7 is a dimensionless parameter that characterizes the state of the superfluid (analogous to the
reduced temperature), and E(7, 81, f2) is a universal scaling function that depends on the boundary conditions
51 and B2 on the boundaries.

The specific form of the scaling function Z(7, 81, f2) would need to be determined by solving the nonlinear
Schrodinger equation (NLSE) for the spacetime superfluid in the presence of the boundaries:

2

Y = I V(026 + Voouniarie (20 (59)
where v(x,t) is the order parameter of the superfluid, m is the mass of the superfluid particles, V (|3|?) is a
nonlinear potential term, and Vioundaries() is & potential term that represents the boundary conditions.

To solve this equation, one could use techniques from quantum field theory, such as the path integral
formalism or the Green’s function method. The solution would give the allowed modes or excitations of the
superfluid in the presence of the boundaries, from which one could calculate the energy density or pressure
of the superfluid and derive the Casimir-like force.

The scaling function Z(7, 81, 82) would encode the dependence of the force on the state of the superfluid
and the boundary conditions, similar to the scaling functions in the critical and thermodynamic Casimir
effects. The specific form of this function would depend on the details of the SSH model, such as the form of
the nonlinear potential V' (|¢)|?) and the nature of the superfluid excitations.
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