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Abstract

The objective of this study is to present precise proofs of the Col-
latz conjecture and introduce some interesting behavior on Kaakuma
sequence. We propose a novel approach that tackles the Collatz con-
jecture using different techniques and angles. The Collatz Conjecture,
proposed by Lothar Collatz in 1937, remains one of the most intrigu-
ing unsolved problems in mathematics. The conjecture posits that,
for any positive integer, applying a series of operations will eventu-
ally lead to the number 1. Despite decades of rigorous investigation
and countless computational verification, a complete proof has eluded
mathematicians.

In this research endeavor, we embark on a comprehensive explo-
ration of the Collatz Conjecture, aiming to shed light on its underlying
principles and ultimately establish its validity. Our investigation be-
gins by defining the Collatz function and investigating some behavior
like. transformation, selective mapping, successive division, constant
growth rate of inverse tree, and more. Using and analyzing the discov-
ered properties of Collatz sequence we can show there are contradic-
tion. In addition to this we investigate Qodaa ratio test that validates
the reality of discovered behavior of Collatz sequence and works for
infinite and distinct Kaakuma sequences.

Our investigation culminates in the formulation of a set of conjec-
tures encompassing lemmas and postulates, which we rigorously prove
using a combination of analytical reasoning, numerical evidence, and
exhaustive case analysis. These results provide compelling evidence
for the veracity of the Collatz Conjecture and contribute to our under-
standing of the underlying mathematical structure. This proof helps
to change some researchers’ views on unsolved problems and offers
new perspectives on probability in infinite range. In this study, we
uncover the dynamic nature of the Collatz sequence and provide a
reflection and interpretation of the probabilistic proof of the Collatz
Conjecture.

Keywords: Collatz Conjecture, 3x+1, number theory, mathe-
matical proof, recursive sequences, computational analysis, modular
arithmetic, Kaakuma Sequence, Qodaa ratio test, Stopping Time
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1 Introduction

The Collatz Conjecture, also known as the 3n+1 Conjecture, Hailstone Prob-
lem, Kakutani’s Conjecture, Ulam’s Conjecture, Hasse’s Algorithm, and the
Syracuse Problem, is a long-standing and unsolved mathematical problem
that has fascinated mathematicians for 87 years. It is one of the most dan-
gerous unsolved problems in mathematics. The conjecture is named after
German mathematician Lothar Collatz, who first proposed it in 1937.

Statement of the Conjecture

The Collatz Conjecture originally states an iterative sequence of natural num-
bers. Take a natural number n. If n is even, make it half. If n is odd, multiply
it by 3 and add 1. Continue the process repeatedly, taking the result as the
next input, and continue iterating. The conjecture states that regardless of
the starting value, the sequence of numbers will eventually reach the value
1. For example:

14→ 7→ 22→ 11→ 34→ 17→ 52→ 26→ 13→ 40→ 20→ 10→ 5

→ 16→ 8→ 4→ 2→ 1

Historical Background and Significance

The Collatz Conjecture has captured the minds of mathematicians for almost
a century. Many have attempted to prove or disprove it, employing various
techniques and approaches. Despite its apparent simplicity, the conjecture
has resisted all attempts at a definitive solution. The search for a solution to
the Collatz Conjecture continues, driven by the allure of a seemingly simple
problem harboring immense complexity. It serves as a reminder that even in
the vast realm of mathematics, profound mysteries still await discovery.

Even though the Collatz Conjecture is simple to express and understand,
it has tantalized scientists for around a century. Mathematicians have exten-
sively tested the conjecture using computers for billions of billions of values,
and it holds true for all tested cases. The Collatz Conjecture has fascinated
mathematicians due to its apparent simplicity combined with its elusiveness.
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Many attempts have been made to prove or disprove the conjecture, involv-
ing various mathematical techniques and concepts. However, the conjecture
remains one of the most enduring unsolved problems in mathematics.

Heuristic Argument

A heuristic argument, sometimes stated as a probabilistic approach, attempts
to show that the conjecture is true for infinitely diverging cases, not for
non-trivial cycles, especially if the number of iterations is small to make a
cycle. The probabilistic approach concerns how often each case will happen
in mean to get lower or upper values of the starting number after a number
of iterations. The ratio is 3/4 and n → 3n/4. This forms a basic study in
research, working with varied examples.

Improved Results and Further Research

Almost all initial values n on which we perform our Collatz function T con-
clusively iterate to a value that is less than n. Studies indicate that 99.99%
of starting values iterate to a value less than the starting value. Allouche
and Korec have improved this result by proving that for an initial value
n, it iterates to a value less than n0.869 and more improved to a value less
than n0.7925, respectively. Terras’s paper ”A Stopping Time Problem on the
Positive Integers” (Terras, 1976) provides initial derivation.

Allouche proves that almost all values iterate to a value less than n0.869

and states that not just asymptotic behavior is required to determine the
periodicity of the function, with periodicity referring to repeating points and
intervals between them. The ideas used in Allouche’s paper build on those
used by Terras in his original proof and are continued by Ivan Korec (Korec,
1994).

Tao’s contribution to the Collatz Conjecture (Tao, 2019) represents a
significant breakthrough. His main result, ”Collatz Orbits Attain Almost
Bounded Values,” states that for any function f(n) such that when n tends
to infinity, f(n) also tends to positive infinity, the minimum term within a
given Collatz orbit of n will be less than f(n) for almost all values of n.
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Kaakuma Sequence

The Kaakuma sequence is a general form of the Collatz sequence:

f(n) =



k1nc1
b1

case 1
k2nc2
b2

case 2
k3nc3
b3

case 3
...
kinci
bi

case i

All integers must be included in cases, no integer should be expressed in
two cases, and a case should never be only self-cycled or semi-cycled except
one cycle.
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2 Expressions of Collatz sequence

The Collatz conjecture can be represented in different ways while retaining
the same meaning. Below are various notations used to describe the conjec-
ture.

a) General Notation

ni+1 =

{
3ni + 1 if ni is odd
ni

2
if ni is even

Here, ni is any number that begins an orbit and eventually reaches 1 by
iterating rule.

b) Function Notation

f(n) =

{
3n+ 1 if n is odd
n
2

if n is even

In this notation, the result is used as the next value for iteration until the
value reaches 1.

c) Simplified Notation

n =

{
3n+ 1 if n is odd
n
2

if n is even

This notation is often used in coding assignments. The right side of the
equation is the input, and the left side is the output. The iteration continues
using the output as the next input until reaching 1.

d) Shorter Form

f(n) =

{
3n+1

2
if n is odd

n
2

if n is even

6



e) Modular Form

f(n) =

{
3n+1

2
if n ≡ 1 (mod 2)

n
2

if n ≡ 0 (mod 2)

This notation expresses the conditions of iteration in modular form.

f) Inverse of the Collatz Conjecture

The inverse of the Collatz conjecture states that if you start from 1 as a
root of a tree, and for each number, you double it in all cases and divide a
number minus one by three when it is possible to get a positive integer, then
all natural numbers are traced in the tree map. This implies that no natural
number is left out of the reverse tree map.

f(n) =

{
n−1
3

if n ≡ 1 (mod 3)

2n ∀n (n ∈ N)

Table 1: Tabular form of Inverse Tree Map

n ≡ 4 (mod 6) f(n) = n−1
3

f(n) = 2n
4 1 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024
16 5 10, 20, 40, 80, 160, 320, 640, 1280
10 3 6, 12, 24, 48, 96, 192, 384, 768, 1536
40 13 26, 52, 104, 208, 416, 832, 1664
52 17 34, 68, 136, 272, 544, 1088
34 11 22, 44, 88, 176, 352, 704, 1408
22 7 14, 28, 56, 112, 224, 448, 896, 1792
28 9 18, 24, 48, 96, 192, 384, 768, 1536
64 21 42, 84, 164, 328, 656, 1312
88 29 58, 116, 232, 464, 928, 1856
58 19 38, 76, 152, 304, 608, 1216
76 25 50, 100, 200, 400, 800, 1600
112 39 78, 156, 312, 624, 1248

In this tabular form of the inverse tree of the Collatz function, the nodes
make new branches from values in the form 3k + 1 from existing nodes.
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3 Behavior of the Collatz Sequence

Before proceeding with the proof of the Collatz conjecture, it is essential to
understand some basic behaviors of the Collatz sequence.

3.1 Transformation

3.1.1 Translation

Translation is a transformation that shifts each value in the orbit by a fixed
distance forward or backward. For example:

Original sequence: 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

Shifted by two forward: 9, 24, 13, 36, 19, 54, 28, 15, 42, 22, 12, 5, 18, 10, 6, 4, 3

Shifted by three backward: 4, 19, 8, 31, 14, 49, 23, 10, 37, 17, 7, 2, 13, 5, 1

The function f(n) and its translated version g(n) can be expressed as:

f(n) =

{
3n+1

2
if n ≡ 1 (mod 2)

n
2

if n ≡ 0 (mod 2)

g(n) = f(n) + 2 =

{
3n−3

2
if n ≡ 1 (mod 2)

n+2
2

if n ≡ 0 (mod 2)

Similarly,

f(n) =

{
3n+1

2
if n ≡ 1 (mod 2)

n
2

if n ≡ 0 (mod 2)

g(n) = f(n)− 3 =

{
3n+7

2
if n ≡ 1 (mod 2)

n+2
2

if n ≡ 0 (mod 2)

*Translation Formula During translation of the sequence, only the con-
stant terms are changed . The transformation can be expressed as:

f(c) = c− l(k − c)

If a conditional equation is kn+c
d

and it is translated by length l, then the
translated equation becomes:

kn+ c− l(k − d)

d
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This formula is applied in all cases and is used with its sign or direction.
*Lemma 1 The next term n after shifting by translating length l is:

kn+ c

d
+ l =

kn+ c+ dl

d

Using the direct formula:

k(n+ l) + c− l(k − d)

d
=

kn+ c+ dl

d

Proof can be carried out by induction.
*Short Form Translation For a short form of the Collatz sequence trans-

lated forward by 1:

f(n) =

{
3n+1

2
if n ≡ 1 (mod 2)

n
2

if n ≡ 0 (mod 2)

g(n) = f(n) + 1 =

{
3n
2

if n ≡ 0 (mod 2)
n+1
2

if n ≡ 1 (mod 2)

This form and its inverse is used for its simplicity in this study and .

3.1.2 Reflection on the Y-Axis

A reflection of the Collatz orbit on the y-axis involves multiplying constant
terms by −1 and starting the sequence with the reflected value:

−1× kn+ c

d
←→ kn− c

d

For the functions:

f(n) =

{
3n
2

if n ≡ 0 (mod 2)
n+1
2

if n ≡ 1 (mod 2)

g(n) = −f(n) = f(−n) =

{
3n
2

if n ≡ 0 (mod 2)
n−1
2

if n ≡ 1 (mod 2)

Example sequence for negative integers:

−8,−12,−18,−27,−14,−21,−11,−6,−9,−5,−3,−2

This converges to the −2,−3 cycle.
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3.1.3 Scaling Up Mapping

Scaling involves multiplying the sequence by a fixed value s. This is done by
multiplying the constant terms by the scaling natural number:

s× kn+ c

d
←→ kn+ sc

d

When the Collatz orbit is scaled up by s, e.g., multiplying by 5:

8, 12, 18, 27, 14, 21, 11, 6, 9, 5, 3, 2

multiplied by 5 yields:

40, 60, 90, 135, 70, 105, 55, 30, 45, 25, 15, 10

For the function:

f(n) =

{
3n
2

if n ≡ 0 (mod 2)
n+1
2

if n ≡ 1 (mod 2)

and

g(n) = 5× f(n) = f(n) =

{
3n
2

if n ≡ 0 (mod 2)
n+5
2

if n ≡ 1 (mod 2)

The scaled map of the Collatz sequence by a number different from a
power of 3 has two or more cycles:

f(n) =

{
3n
2

if n ≡ 0 (mod 2)
n+3i

2
if n ≡ 1 (mod 2)

The trajectory converges to 2×3i or (2×3i, 3i+1) cycle for all positive integers.
For instance:

f(n) =

{
3n
2

if n ≡ 0 (mod 2)
n+27

2
if n ≡ 1 (mod 2)

This converges to 54 or (54, 81) cycle.

3.2 Selective Mapping of Collatz Sequence

In selective mapping, only selected parts of the Collatz sequence or nearby
nodes are mapped to a new sequence. Below are examples of selective map-
pings for different congruence conditions.
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When f(n) ≡ 0 (mod 3)

f(n) =

{
3n
2

if n ≡ 0 (mod 2)
n+1
2

if n ≡ 1 (mod 2)

and

g(n) =
f(n)

3
if f(n) ≡ 0 (mod 3) =


3n
2

if n ≡ 0 (mod 2)
3n+1

4
if n ≡ 1 (mod 4)

n+1
4

if n ≡ 3 (mod 4)

It converges to 1 for all natural numbers.
28, 42, 63, 32, 48, 72, 108, 162, 243, 122, 183, 92, 138, 207, 104, 156,
234, 351, 176, 264, 396, 594, 891, 446, 669, 335, 168, 252, 378, 567, 284,
426, 639, 320, 480, 720, 1080, 1620, 2430, 3645, 1823, 912, 1368, 2052,
3078, 4617, 2309, 1155, 578, 867, 434, 651, 326, 489, 245, 123, 62, 93, 47
maps to:
14, 21, 16, 24, 36, 54, 81, 61, 46, 69, 52, 78, 117, 88, 132, 198, 297, 223,
56, 84, 126, 189,142, 213, 160, 240, 360, 540, 810, 1215, 304, 456, 684,
1026, 1539, 385, 289, 217, 163, 41, 31, 8

When f(n) ≡ 0 (mod 5)

f(n) =

{
3n
2

if n ≡ 0 (mod 2)
n+1
2

if n ≡ 1 (mod 2)

and

g(n) =
f(n)

5
if f(n) ≡ 0 (mod 5) =



3n
2

if n ≡ 0 (mod 2)

3n if n ≡ 3 (mod 4)
3n+1

4
if n ≡ 1 (mod 8)

n+3
16

if n ≡ 13 (mod 16)
9n+7

4
if n ≡ 5 (mod 32)

9n+11
8

if n ≡ 53 (mod 64)
9n+67

64
if n ≡ 21 (mod 64)

It converges to 1 for all natural numbers.
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28, 42, 63, 32, 48, 72, 108, 162, 243, 122, 183, 92, 138, 207, 104, 156,
234, 351, 176, 264, 396, 594, 891, 446, 669, 335, 168, 252, 378, 567, 284,
426, 639, 320, 480, 720, 1080, 1620, 2430, 3645, 1823, 912, 1368, 2052,
3078, 4617, 2309, 1155, 578, 867, 434, 651, 326, 489, 245, 123, 62, 93, 47
maps to:
11, 33, 25, 19, 57, 43, 129, 97, 73, 55, 165, 373, 421, 949, 1069, 67, 201,
151, 453, 1021, 64, 96, 144, 216, 324, 486, 729, 547, 1641, 1231, 3693,
231, 693, 781, 49, 37

When f(n) ≡ 0 (mod 9)

f(n) =

{
3n
2

if n ≡ 0 (mod 2)
n+1
2

if n ≡ 1 (mod 2)

and

g(n) =
f(n)

9
if f(n) ≡ 0 (mod 9) =



3n
2

if n ≡ 0 (mod 2)

3n if n ≡ 3 (mod 8)
3n+1

8
if n ≡ 5 (mod 8)

9n+1
8

if n ≡ 7 (mod 8)
3n+1

4
if n ≡ 1 (mod 32)

3n+5
32

if n ≡ 9 (mod 32)
9n+7
32

if n ≡ 17 (mod 32)
n+7
64

if n ≡ 57 (mod 64)
9n+31
128

if n ≡ 25 (mod 128)
3n+5
16

if n ≡ 89 (mod 128)

It converges to 1 for all natural numbers.
28, 42, 63, 32, 48, 72, 108, 162, 243, 122, 183, 92, 138, 207, 104, 156,
234, 351, 176, 264, 396, 594, 891, 446, 669, 335, 168, 252, 378, 567, 284,
426, 639, 320, 480, 720, 1080, 1620, 2430, 3645, 1823, 912, 1368, 2052,
3078, 4617, 2309, 1155, 578, 867, 434, 651, 326, 489, 245, 123, 62, 93, 47
maps to:
7, 8, 12, 18, 27, 81, 23, 26, 39, 44, 66, 99, 297, 28, 42, 63, 71, 80, 120,
180, 270, 405, 152, 228, 342, 513, 385, 289, 217, 41, 4
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When f(n) ≡ 2 (mod 3):

f(n) =

{
3n
2

if n is even
n+1
2

if n is odd

and g(n) =
f(n)− 2

3
if f(n) ≡ 2 (mod 3) =


3n+1

2
if n ≡ 0 (mod 2)

3n+1
2

if n ≡ 3 (mod 4)
n−1
4

if n ≡ 1 (mod 4)

3.2.1 Successive Division and Squeezing Stopping Time:

f(n) =


9n
4

if n ≡ 0 (mod 4)
3n+2

4
if n ≡ 2 (mod 4)

3n+3
4

if n ≡ 3 (mod 4)
n+3
4

if n ≡ 1 (mod 4)

Eg: 8, 18, 14, 11, 9, 3, 3

f(n) =



27n
8

if n ≡ 0 (mod 8)
9n+4

8
if n ≡ 4 (mod 8)

9n+6
8

if n ≡ 2 (mod 8)
3n+6

8
if n ≡ 6 (mod 8)

9n+9
8

if n ≡ 7 (mod 8)
3n+7

8
if n ≡ 3 (mod 8)

3n+9
8

if n ≡ 5 (mod 8)
n+7
8

if n ≡ 1 (mod 8)

Eg: 8, 27, 11, 5, 3, 2

f(n) =
3n+ 3× 2i−1 − 3

2i
if n = 2ik + 2i−1 + 1

where i ranges from 1 to ∞ as we divide the last case into two infinitely.
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3.3 Proportional Distribution of Powers of 3 or 2

When mapping the inverse tree of the Collatz trajectory, There are two
occurrences of 3i−1 situated between two instances of 3i on onward sequence
n = 2n .

• There are only two 3ik numbers between two 3i+1k numbers.

• The maximum number of 3i+jk numbers between two 3ik numbers is
only one, for i and j greater than 1.

• All 3k numbers are separated by only one 3k + 2 number.

Example:
27 , 53, 105, 209, 417, 833, 1665 , 3329, 6657 , 13313, 26625 , 53249,

106497 , 212993, 425985, 851969, 1703937, 3407873, 6815745

Lemma 2 For 3k, 6k−1, and 12k−3, all pairs of 3k numbers are separated
by one 3k+2 number. From this, when we formulate sequences of 3k numbers:

f(n) = 4n− 3

9k, 36k − 3, 144k − 15, 576k − 63, all pairs of 9k numbers are separated
by two 3k numbers. From this, when we formulate sequences of 9k numbers:

f(n) = 64n− 63

By following the same principle, 3ik can be formulated by 22jn − 3il. If
we start the sequence with 3i+1k, the sequence is:

3i+1k,

22j3i+1k − 3il,

24j3i+1k − 22j3il − 3il,

26j3i+1k − 24j3il − 22j3il − 3il

where j1 = 1 and ji+1 = 3ji.
The fourth term is a factor of 3i+1 because j is even and 24j + 22j + 1 is

a factor of 3:
24jn ≡ 1 (mod 3),

22jn ≡ 1 (mod 3),

1 ≡ 1 (mod 3)
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Adding them:
24j + 22j + 1 ≡ 0 (mod 3)

Thus:

26j3i+1k − 24j3il − 22j3il − 3il = 3i
(
3× 26j − (24jl + 22jl + 1)

)
= 3i+1m

Therefore, the load of the tree or branches of the inverse of the Collatz
function is proportional to their root or branch nodes. This behavior of the
Collatz sequence maintains the proportionality of branch loads and prevents
the occurrence of unexpected behavior in the sequence. This property is one
of crucial property to decide collat conjecture.

The inverse of this statement is in the Collatz sequence might result in
one branch having few or no high powers of 3, while another branch has many
high powers of 3, with the same starting condition and height. This leads
to significant variability in the growth rate of branches and no proportional
growth rates among branches.

3.4 Constants

3.4.1 Nearly Constant Expansion Rate of Inverse Tree Map

The average growth rate of the Collatz inverse tree map is 1
3
.

f(n) =

{
2n
3

if n ≡ 0 (mod 3)

2n− 1 if n is any natural number

Let us start from 2 as the root of the tree and ignore recycling because
the 2 and 3 cycling cases duplicate data. The main root of the tree is 2, {2},
{3}, {5}, {9}, {6, 17}, {4, 11, 33}, {7, 21, 22, 65}, . . .

3.4.2 Expansion Rate Analysis

The expansion rate, on average, is 1
3
. For lists with more than 30 elements,

it is expected that 1
3
of the numbers are of the form 3k, 1

3
are of the form

3k + 1, and 1
3
are of the form 3k + 2. Among these, 3k creates double nodes

6k − 1 and 2k. That is why the expansion rate is 1
3
.
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H, LC, TS is for Height, Leaf Count and Tree Size respectivily

H LC TS Leafs
1 1 1 2
2 1 2 3
3 1 3 5
4 1 4 9
5 2 6 6, 17
6 3 9 4, 11, 33
7 4 13 7, 21, 22, 65
8 5 18 13, 14, 41, 43, 129
9 6 24 25, 27, 81, 85, 86, 257
10 8 32 49, 18, 53, 54, 161, 169, 171, 513
11 12 44 97, 12, 35, 105, 36, 107, 321, 337, 114, 341, 342, 1025

12 18 62
193, 8, 23, 69, 70, 209, 24, 71, 213, 214, 641,
673, 76, 227, 681, 228, 683, 2049

13 24 86
385, 15, 45, 46, 137, 139, 417, 16, 47,
141, 142, 425, 427, 1281, 1345, 151, 453,
454, 1361, 152, 455, 1365, 1366, 4097

14 31 117

769, 10, 29, 30, 89, 91, 273, 277, 278,
833, 31, 93, 94, 281, 283, 849, 853,
854, 2561, 2689, 301, 302, 905, 907, 2721,
303, 909, 910, 2729, 2731, 8193

15 39 156

1537, 19, 57, 20, 59, 177, 181, 182, 545, 553, 555,
1665, 61, 62, 185, 187, 561, 565, 566, 1697, 1705,
1707, 5121, 5377, 601, 603, 1809, 1813, 1814, 5441,
202, 605, 606, 1817, 1819, 5457, 5461, 5462, 16385

16 50 206

3073, 37, 38, 113, 39, 117, 118, 353, 361, 363, 1089,
1105, 370, 1109, 1110, 3329, 121, 123, 369, 373, 374,
1121, 1129, 1131, 3393, 3409, 1138, 3413, 3414,
10241, 10753, 1201, 402, 1205, 1206, 3617, 3625,
3627, 10881, 403, 1209, 404, 1211, 3633, 3637,
3638, 10913, 10921, 10923, 32769

Table 2: Tree growth data

The table above shows the leaf count in each step with new branches
approaching a size 1

3
of the previous leaf count.
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H L Count T Size Rate H L Count T Size Rate
1 1 1 30 2829 11301 33.317
2 1 2 0 31 3765 15066 33.085
3 1 3 0 32 5014 20080 33.1739
4 1 4 0 33 6682 26762 33.266
5 2 6 100 34 8902 35664 33.223
6 3 9 50 35 11878 47542 33.430
7 4 13 33.333 36 15844 63386 33.389
8 5 18 25 37 21122 84508 33.312
9 6 24 20 38 28150 112658 33.273
10 8 32 33.333 39 37536 150194 33.342
11 12 44 50 40 50067 200261 33.383
12 18 62 50 41 66763 267024 33.347
13 24 86 33.333 42 89009 356033 33.320
14 31 117 29.166 43 118631 474664 33.279
15 39 156 25.806 44 158171 632835 33.330
16 50 206 28.205 45 210939 843774 33.361
17 68 274 36 46 281334 1125108 33.372
18 91 365 33.823 47 375129 1500237 33.339
19 120 485 31.868 48 500106 2000343 33.315
20 159 644 32.5 49 666725 2667068 33.316
21 211 855 32.704 50 888947 3556015 33.330
22 282 1137 33.649 51 1185305 4741320 33.338
23 381 1518 35.106 52 1580518 6321838 33.342
24 505 2023 32.545 53 2107346 8429184 33.332
25 665 2688 31.683 54 2809845 11239029 33.335
26 885 3573 33.082 55 3746399 14985428 33.331
27 1187 4760 34.124 56 4995078 19980506 33.330
28 1590 6350 33.951 57 6660211 26640717 33.335
29 2122 8472 33.459

Table 3: Growth Rate of Leaf Count with Heights

The table above shows the leaf count and tree size at each height with
their corresponding rate of expansion. The average expansion rate remains
close to 1

3
as the tree grows.

17



3.4.3 Average Stopping Time

f(n) =

{
3n+ 1 if n ≡ 1 (mod 2)
n
2

if n ≡ 0 (mod 2)

Average stopping time of this sequence is 3.49269.

f(n) =

{
3n+1

2
if n ≡ 1 (mod 2)

n
2

if n ≡ 0 (mod 2)

Average stopping time of this sequence is 3.49269.

3.4.4 Ratio of Stopping Time

The ratio of stopping time to log2(n) is bounded. Specifically, this ratio
is less than 10 for large starting numbers (more than 8 digits). For such
large numbers, the ratio is bounded and typically less than 6. For a starting
number 2p and stopping time t, the ratio ranges from 3.67 to 5.15.

p 187 188 189 190 191 192 193 194 195 196 197

t 693 690 753 753 753 749 994 994 994 994 747

t/p 3.71 3.67 3.98 3.96 3.94 3.90 5.15 5.12 5.10 5.07 3.79

Table 4: Ratio of stopping time t to log2(n)

3.4.5 Ratio of Iteration Time

The ratio of iteration time to reach 1 (T ) to log2(n) is bounded. Specifically,
this ratio is less than 15 and tends to approximately 8.9 for most high-
iteration cases involving large numbers.

p 115543 200000 200001 200002 200003 200004 200005

T 1001348 1728481 1728482 1728483 1728484 1728485 1728486

T/p 8.66645 8.64240 8.64236 8.64232 8.64229 8.64225 8.64221

Table 5: Ratio of iteration time T to log2(n)
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3.5 Stopping Time Iteration Groups

When we group numbers by iteration, some numbers have the same number
of stopping times and are grouped by 2tk+ c. If the iterations of c’s stopping
time is t and 2t > c, then all numbers formed by 2tk + c have stopping time
t.

t 4 7 5 7 5 59 56 8 54 7 54 51 8 45 8

c 4 8 12 16 24 28 32 40 48 60 64 72 80 92 96

Table 6: Stopping Time Iteration Groups

For corresponding values t to c, 2tk + c has the same stopping time of t.
For example:

• The stopping time t of 25k + 12 is 5,

• The stopping time t of 27k + 16 is 7,

• The stopping time t of 25k + 24 is 5,

• The stopping time t of 259k + 28 is 59.

Riho Terras (1976) showed that almost all initial values (more than
99.99%) eventually become a value less than n. This is 100 times the sum of
the reciprocals of stopping times grouped: 100×

∑
1/2t.

3.6 Huge Iteration if There Exist Non-Trivial Cycle

If there is a non-trivial cycle, the number of iterations is very large, nearly
equal to the starting number, and it is relatively easy to get large starting
numbers. The sequence oscillates up and down while eventually returning to
the starting number or the smallest number in the cycle.

The iteration sequence can be described as:

n,
3n

2
,
9n

4
,
27n

8
,
27n+ 8

16
,
81n+ 24

32
,
81n+ 56

64
,
243n+ 168

128
, . . . ,

3un+ c

2t

Where:

n =
3un+ c

2t − 3u
=

c

2t − 3u
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Here, c is a partial geometric series with ratio r = 3
4
:

g1 = 22 · 3(u−2), 23 · 3(u−3), 24 · 3(u−4), . . . , 2i · 3(u−i)

For c, it satisfies:

3u < c < 3(u+1) or 2(t+1) < c < 2(t+3)

The maximum value of c is given by:

n <
3(u+1)

2t − 3u
or nmax =

3(u+1)

2t − 3u

t = ⌈u · log2 3⌉
and the difference ⌈u · log2 3⌉ − u · log2 3 is very small to get big starting
number n, too 2t−3u small. Therefore, starting numbers n with high powers
of 2 are less likely occure non-trivial cycles.

Here is the data for various values:

p log3(c) t · log2 3 log2(c) t log2(nt) u
4004 3352.8402 3351.4988 5314.1259 5312 4003.2093 3351
4124 3266.5908 3265.0615 5177.424 5175 4123.9026 3265
4244 3294.6855 3293.4533 5221.953 5220 4243.2815 3293
4364 3548.7111 3547.0871 5624.574 5622 4363.862 3547
4484 3574.6895 3573.5861 5665.7488 5664 4483.071 3573
4604 3579.7600 3578.0026 5673.7854 5671 4603.9958 3578
4724 3736.5523 3735.1041 5922.2952 5920 4723.8349 3735
4844 3821.6234 3820.2797 6057.1297 6055 4843.5568 3820
4964 4108.7147 4107.3527 6512.1587 6510 4963.441 4107
5084 4093.6378 4092.2104 6488.2624 6486 5083.6665 4092
5204 4235.6435 4234.1696 6713.3361 6711 5203.7312 4234
5324 4388.6924 4387.4855 6955.9129 6954 5323.2305 4387
5444 4417.8300 4416.5083 7002.0948 7000 5443.1944 4416
5564 4437.6055 4436.0671 7033.4384 7031 5563.8937 4436
5684 4510.6267 4509.2549 7149.1742 7147 5683.5959 4509
5804 4722.8123 4721.2473 7485.4804 7483 5803.6080 4721
5924 4787.6952 4786.2331 7588.3173 7586 5923.6305 4786

Table 7: Analysis of Stopping Time and Starting Number
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If there exist non-trivial cycle

When n = 2p and 2t < c < 2(t+1), if 2p is very high, a non-trivial loop is less
likely to occur because n = c

2t−3u
< 2. Therefore, the most expected starting

number n for a non-trivial cycle of c(n) is 8k + 4 or a number with only a
few powers of 2 greater than one.

When evaluating the starting number n with possible stopping time t,
the formula used is:

n =
c

2t − 3u

To check if we can get big starting number with given stopping time.

• For the first row:

n =
33352.8402

33351.4988 − 33351
=

31.8402

30.4988 − 30
≈ 10.347 ≈ 10

This value is already known as c(n).

• For the second row:

n =
33266.5908

33265.0615 − 33265
=

31.5908

30.0615 − 30
≈ 82.135 ≈ 82

This value is also already known as c(n).

• For the sixth row:

n =
33579.7600

33578.0026 − 33578
=

31.7600

30.0026 − 30
≈ 2417.103 ≈ 2417

This value is known as c(n).

This shows that when t · log2 3−u approaches 0, it is crucial to check the
results.

From computer searches, the maximum value of n is less than 3t. For
a 20-digit number, if it is not a known c(n) and is looped, it must have at
least 19 digits in the number of iterations. Analysis suggests that a number
of height c(h) is expected to be around 45 digits.
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3.7 Bigger Stopping Time Relatively

The shortest stopping time is known to be 1 for all odd numbers n, which
follows the sequence n+1

2
. Additionally, the stopping time for numbers of the

form 4k + 2 is 2, and for numbers of the form 6k + 3 or 3k + 2, the stopping
time is also determined by specific rules. However, the challenge is to find
numbers with very large stopping times.

Finding Huge Stopping Times

To find large stopping times, we start by considering powers of 2, 2k are
known to have high stopping times. If a sequence reaches 2k before the
stopping time, it can achieve relatively higher stopping times. For instance,
sequences that follow the pattern

4k → 4k → 4k → 2k → 2k

demonstrate this phenomenon, as they lead to higher stopping times.
This approach highlights that large iterations can be achieved when the se-
quence reaches 2k before the stopping time.

Bound on Stopping Time Ratio

Despite these higher stopping times, the ratio of stopping time t to log2(n) re-
mains bounded. Specifically, this ratio is observed to be around 3.85 for such
sequences, indicating that while stopping times can be large, their growth is
relatively controlled when compared to the logarithm of the starting number.
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4 Proofs

4.1 Proof1 Contradiction in Tree Size Density

As we have established in Section 3.4 regarding the balance of branches in
the inverse tree map of the Collatz sequence, and observed in Section 3.5.1
regarding the constant growth of this inverse tree map, we can now determine
the density of non-Collatz sequences relative to Collatz sequences.

Consider 280 as the first non-Collatz number. We approach the problem
using two methods to compare the tree size of the inverse tree map for Collatz
and non-Collatz sequences:

1. First Method: Grow the tree until the largest leaf of the Collatz
inverse tree exceeds 280, which occurs at height 81, with a leaf count
greater than 6.6× 109. At this height, the largest leaf is 280 + 1. This
minimum leaf count allows comparison with non-Collatz sequences be-
cause 280 - 6.6 × 109 nodes are traced back, making the tree denser,
whereas 280 will never trace a number smaller than itself. If 350 < 280

is a leaf at height 81, it will generate many more leaves less than 280

at different heights. Therefore, the density of the Collatz inverse tree
map is much greater than 6.6×109 times the density of the non-Collatz
inverse tree.

2. Second Method: Count all leaves less than 280 exactly using com-
puter code, which may take months on a PC. Nonetheless, the min-
imum leaf count of 6.6 × 109 is significant enough to demonstrate a
contradiction.

This contradiction is grounded in the selective mapping discussed in prop-
erty 3.2. Let

f(n) =

{
2n
3

if n ≡ 0 (mod 3),

2n− 1 ∀n (n ∈ N),

representing the inverse tree map of the Collatz sequence. If 2p is the
first non-Collatz number and g(n) = f(n) / p when f(n) ≡ 0 (mod p), then
the first non-Collatz number maps to 2. The numbers 2, 3, 4, 6, and 9
are known nodes of the non-Collatz inverse tree from the beginning, which
makes it denser than the Collatz inverse tree with only the known root 1.
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If 2p is a non-Collatz number, then 4p is also a node of the non-Collatz
sequence. Therefore, numbers 2, 3, 4, 6, and 9 are part of the non-Collatz
sequence after mapping. Beyond this cycling or infinitely diverging makes
denser non-Collatz inverse tree than collatz Inverse tree after mapping.

Thus, there is a significant contradiction in the density relationship be-
tween the inverse trees of Collatz and non-Collatz sequences. This suggests
that non-Collatz sequences do not exist, thereby supporting the Collatz con-
jecture.

Note: To apply the tree balance test, numbers less than the square of
the product of the coefficients of all conditions must be tested. Significant
contradictions arise after considering the product of coefficients, with growth
rates becoming constant. After the square of this product for large numbers
all expected constants become stable.

4.2 Proof2 Qodaa Ratio Test

The Qodaa Ratio Test is a method of analyzing the product of coefficients
of cases with their occurrences as power of a Kaakuma sequence. Kaakuma
sequence is a sequence of integers that fluctuating up and down based on
conditions and it is equated with two or more well defined conditions. The
Kaakuma sequence is a broad generalization of the Collatz sequence. The
Qodaa Ratio Test helps in determining the exact limit coefficients where
diverging occurs by examining the ratio of products of numerators to de-
nominators with their occurrences.

f(n) =


3n+ 1 if n ≡ 1 (mod 2)
3n−2

4
if n ≡ 2 (mod 4)

n
4

if n ≡ 0 (mod 4)

Case1 2k+1 it is half of natural numbers, it generates only one-fourth of
natural numbers of case2 and one-fourth of natural numbers of case3 with
ratio case2:case3=1/4:1/4=1:1.
Case2 4k+2 it is one-fourth of natural numbers, it generates half of natural
numbers of case1, one-fourth of natural numbers of case2 and one-fourth
of natural numbers of case3 with ratio case1:case2:case3=1/2:14:1/4=2:1:1
based on their fractions of natural numbers and Case3 4k it is one-fourth
of natural numbers, it generates in the same with case2 When we calculate
them by in-out rule they may have different occurrences amount of cases
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relatively. The occurrences amount of each case is used as the power of cases
in product of coefficients.
Before starting we need to realize some points on Qodaa ratio as much as
Qodaa Ratio Test is efficient and simple to apply.

• If cases do not have proportional chances of generating other cases,
then the tree size of branches on the inverse tree map of the Kaakuma
sequence is not applicable and nearly constant growth of leaves is not
valid. Proportional cases generation validates tree size balance and vice
versa.

• If cases do not have proportional chances of generating cases, then the
generating amount must be negligible to avoid overload of tree size.

• The occurrences of cases, number of iterations, and occurrence of values
are not random, even if they cannot be precisely determined. It is pos-
sible to infer them from behaviors discussed in Sections 3.3 (Successive
Case Division) and 3.6 (Stopping Time Iteration Group).

• Even if occurrences are probabilistic, values like 3/4 must be interpreted
and defined carefully, particularly as probabilistic value approach zero.

• if we force to vary natural law of generating of cases proportionally it is
impossible to set rule when altered by successive partition or selective
mapping .

f(n) =



k1n+c1
b1

Case 1
k2n+c2

b2
Case 2

k3n+c3
b3

Case 3
...

...
kin+ci

bi
Case i

Qodaa Ratio Test states that if∏
kpi
i <

∏
bpii ,

then the sequence either never diverges to infinity or does not have a large
non-trivial cycle based on

∏
kpi
i . When applying the in-out rule, these cases
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may have different occurrences. The occurrences of each case are used as the
power of cases in the product of coefficients. Kaakuma sequences have many
categories. Among them, we can check simple, complex, and complicated
Kaakuma sequences only for positive integers.

4.2.1 Simple Kaakuma Sequence

In a simple Kaakuma sequence, each case generates all cases, and we can
simply take the ratio of the cases’ fractions of natural numbers to determine
the occurrences of each case relatively. This will be consistent with the rule
of in and out.

Example 1: Base Two

f(n) =

{
kn+c
2

if n ≡ 1 (mod 2)
n
2

if n ≡ 0 (mod 2)

Case 1: n ≡ 1 (mod 2) is half of the natural numbers, and Case 2: n ≡ 0
(mod 2) is also half of the natural numbers.

The ratio of Case 1 to Case 2 is 1/2 : 1/2 = 1 : 1 . From the Qodaa ratio
test rule: (

k

2

)1

×
(
1

2

)1

< 1 =⇒ k

4
< 1 =⇒ k < 4

The sequence f(n) with k = 3:

f(n) =

{
3n+1

2
if n ≡ 1 (mod 2)

n
2

if n ≡ 0 (mod 2)

converges to 1 for all n ∈ N with a Qodaa ratio 3/4.

Example 2: Base Three

f(n) =


kn+c
3

if n ≡ 2 (mod 3)
n+2
3

if n ≡ 1 (mod 3)
n
3

if n ≡ 0 (mod 3)

The ratio is 1/3 :1/3 : 1/3 = 1 : 1 : 1. by using Qodaa ratio rule:
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(
k

3

)1

×
(
1

3

)1

×
(
1

3

)1

< 1 =⇒ k/27 < 1 =⇒ k < 27

With k = 26:

f(n) =


26n−25

3
if n ≡ 2 (mod 3)

n+2
3

if n ≡ 1 (mod 3)
n
3

if n ≡ 0 (mod 3)

converges to 1 for all n ∈ N with a Qodaa ratio of 26/27.

Example 3: Base Four

f(n) =


255n−261

4
if n ≡ 3 (mod 4)

n+2
4

if n ≡ 2 (mod 4)
n+3
4

if n ≡ 1 (mod 4)
n
4

if n ≡ 0 (mod 4)

converges to 1 for all n ∈ N with a Qodaa ratio of 255/256 = 0.996.
Compare this with the original Collatz sequence after the first successive

division:

f(n) =


9n
4

if n ≡ 0 (mod 4)
3n+2

4
if n ≡ 2 (mod 4)

3n+3
4

if n ≡ 3 (mod 4)
n+3
4

if n ≡ 1 (mod 4)

converges to 2 for all n ∈ N with a Qodaa ratio of 81/256 = 0.3045.
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Example 4: Base Eight

f(n) =



16777215n−116440489
8

if n ≡ 7 (mod 8)
n+2
8

if n ≡ 6 (mod 8)
n+3
8

if n ≡ 5 (mod 8)
n+4
8

if n ≡ 4 (mod 8)
n+5
8

if n ≡ 3 (mod 8)
n+6
8

if n ≡ 2 (mod 8)
n+7
8

if n ≡ 1 (mod 8)
n
8

if n ≡ 0 (mod 8)

converges to 1 for all n ∈ N with a Qodaa ratio of 16777215/16777216 =
0.99999994.

Compare this with the original Collatz sequence after the second division:

f(n) =



27n
8

if n ≡ 0 (mod 8)
9n+4

8
if n ≡ 4 (mod 8)

9n+6
8

if n ≡ 2 (mod 8)
3n+6

8
if n ≡ 6 (mod 8)

9n+9
8

if n ≡ 7 (mod 8)
3n+7

8
if n ≡ 3 (mod 8)

3n+9
8

if n ≡ 5 (mod 8)
n+7
8

if n ≡ 1 (mod 8)

converges to 2 for all n ∈ N with a Qodaa ratio of 0.0317.

Example 5: Base Five

f(n) =



3124n−3131
5

if n ≡ 4 (mod 5)
n+2
5

if n ≡ 3 (mod 5)
n+3
5

if n ≡ 2 (mod 5)
n+4
5

if n ≡ 1 (mod 5)
n
5

if n ≡ 0 (mod 5)

This sequence converges to 1 for all n ∈ N with a Qodaa ratio of 0.99968.
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Example 6: Base Six

f(n) =



46655n−46657
6

if n ≡ 5 (mod 6)
n+2
6

if n ≡ 4 (mod 6)
n+3
6

if n ≡ 3 (mod 6)
n+4
6

if n ≡ 2 (mod 6)
n+5
6

if n ≡ 1 (mod 6)
n
6

if n ≡ 0 (mod 6)

This sequence converges to 1 for all n ∈ N with a Qodaa ratio of 0.999978.

Example 7: Base Seven

f(n) =



823542n−4200008
7

if n ≡ 6 (mod 7)
n+2
7

if n ≡ 5 (mod 7)
n+3
7

if n ≡ 4 (mod 7)
n+4
7

if n ≡ 3 (mod 7)
n+5
7

if n ≡ 2 (mod 7)
n+6
7

if n ≡ 1 (mod 7)
n
7

if n ≡ 0 (mod 7)

This sequence converges to 1 for all n ∈ N with a Qodaa ratio of 0.999998.

Example 8: Base Two with Sub-Cases

f(n) =


n
2

if n ≡ 0 (mod 2)
kn+c
4

if n ≡ 3 (mod 4)
n+3
4

if n ≡ 1 (mod 4)

The cases share a ratio of 1/2 : 1/4 : 1/4 = 2 : 1 : 1. The Qodaa ratio is:(
1

2

)2

×
(
k

4

)1

×
(
1

4

)1

=
k

64

We can use the Qodaa Ratio Test to determine the values of k. For the
condition k/64 < 1, we have 1 < k < 64 for positive integer values of k.
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Produced
Generates After solved

sum Simplified
A B C A B C

a 2a 2b 2c 4c 2c 2c 8c 2
b a b c 2c c c 4c 1
c a b c 2c c c 4c 1

Tabular Analysis of occurrences using in = out rule

When we equate the generating and generated values of each case using the
in-out rule:

a = b+ c 3b = a+ c 3c = a+ b b = c a = 2c

f(n) =


n
2

if n ≡ 0 (mod 2)
63n−59

4
if n ≡ 1 (mod 4)

n+1
4

if n ≡ 3 (mod 4)

This sequence converges to 1 for all n ∈ N with a Qodaa ratio of 63
64
.

Example 9:

f(n) =


n
2

if n ≡ 0 (mod 2)
n+1
4

if n ≡ 3 (mod 4)
n+7
8

if n ≡ 1 (mod 8)
kn+c
8

if n ≡ 5 (mod 8)

The ratio of cases is 1/2 : 1/4 : 1/8 : 1/8, which simplifies to 4 : 2 : 1 : 1.
The occurrences ratio yields:(

1

2

)4

×
(
1

4

)2

×
(
1

8

)1

×
(
k

8

)1

=
k

16384

For positive integer values, 1 < k < 16384.

f(n) =


n
2

if n ≡ 0 (mod 2)
n+1
4

if n ≡ 3 (mod 4)
n+7
8

if n ≡ 1 (mod 8)
16383n−81907

8
if n ≡ 5 (mod 8)
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This sequence converges to 1 for all n ∈ N with a Qodaa ratio of 0.999939.

when we set k in case2:

If we set k in line 2, the product of coefficient values differs due to the
difference in power:

f(n) =


n
2

if n ≡ 0 (mod 2)
kn+c
4

if n ≡ 3 (mod 4)
n+7
8

if n ≡ 1 (mod 8)
n+3
8

if n ≡ 5 (mod 8)

To determine the limit of k using Qodaa ratio rule:

(
1

2

)4

×
(
k

4

)2

×
(
1

8

)1

×
(
1

8

)1

=
k2

16384
=⇒ 1 < k < 128

f(n) =


n
2

if n ≡ 0 (mod 2)
127n−369

4
if n ≡ 3 (mod 4)

n+7
8

if n ≡ 1 (mod 8)
n+3
8

if n ≡ 5 (mod 8)

This sequence converges to 1 for all n ∈ N with a Qodaa ratio of 127/128.
when we set k in case1:

f(n) =


kn+c
2

if n ≡ 0 (mod 2)
n+1
4

if n ≡ 3 (mod 4)
n+7
8

if n ≡ 1 (mod 8)
n+3
8

if n ≡ 5 (mod 8)

Using Qodaa ratio rule

(
k

2

)4

×
(
1

4

)2

×
(
1

8

)1

×
(
1

8

)1

=
k4

16384
=⇒ 1 < k <

√
128
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f(n) =


11n−2

2
if n ≡ 0 (mod 2)

n+1
4

if n ≡ 3 (mod 4)
n+7
8

if n ≡ 1 (mod 8)
n+3
8

if n ≡ 5 (mod 8)

The sequence converges to 1 for all n ∈ N with a Qodaa ratio of 11/
√
128.

Example 10

f(n) =



n
2

if n ≡ 0 (mod 2)
n−1
8

if n ≡ 1 (mod 8)
n−3
8

if n ≡ 3 (mod 8)
n+3
8

if n ≡ 5 (mod 8)
kn+c
8

if n ≡ 7 (mod 8)

With ratio 1/2 : 1/8 : 1/8 : 1/8 : 1/8 = 4 : 1 : 1 : 1 : 1:(
1

2

)4

×
(
1

8

)1

×
(
1

8

)1

×
(
1

8

)1

×
(
k

8

)1

=
k

65536
=⇒ 1 < k < 65536

when we substitute k

f(n) =



n
2

if n ≡ 0 (mod 2)
n−1
8

if n ≡ 1 (mod 8)
n−3
8

if n ≡ 3 (mod 8)
n+1
8

if n ≡ 7 (mod 8)
65535n−327667

8
if n ≡ 5 (mod 8)

Converges to 0 for all n ∈ N, with QR = 65535/65536.
When shifting the coefficient in the first line:(

k

2

)4

×
(
1

8

)1

×
(
1

8

)1

×
(
1

8

)1

×
(
1

8

)1

< 1 =⇒ 1 < k < 16
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f(n) =



15n−28
2

if n ≡ 0 (mod 2)
n+7
8

if n ≡ 1 (mod 8)
n+5
8

if n ≡ 3 (mod 8)
n+3
8

if n ≡ 5 (mod 8)
n+1
8

if n ≡ 7 (mod 8)

Converges to 1 for all n ∈ N, with QR = 15/16.

Example 11

f(n) =



n
2

if n ≡ 0 (mod 2)
n+1
4

if n ≡ 3 (mod 4)
n+7
8

if n ≡ 1 (mod 8)
n+11
16

if n ≡ 5 (mod 16)
kn+c
16

if n ≡ 13 (mod 16)

With ratio 1/2 : 1/4 : 1/8 : 1/16 : k/16 = 8 : 4 : 2 : 1 : 1:(
1

2

)8

×
(
1

4

)4

×
(
1

8

)2

×
(

1

16

)1

×
(

k

16

)1

< 1 =⇒ 1 < k < 230

f(n) =



n
2

if n ≡ 0 (mod 2)
n+1
4

if n ≡ 3 (mod 4)
n+7
8

if n ≡ 1 (mod 8)
n+11
16

if n ≡ 5 (mod 16)
230n−n−13×230+45

16
if n ≡ 13 (mod 16)

Converges to 1 for all n ∈ N, with QR = 230−1
230

.
When shifting k in line 3:(

1

2

)8

×
(
1

4

)4

×
(
k

8

)2

×
(

1

16

)1

×
(

k

16

)1

< 1 =⇒ 1 < k < 215
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f(n) =



n
2

if n ≡ 0 (mod 2)
n+1
4

if n ≡ 3 (mod 4)
32767n−32751

8
if n ≡ 1 (mod 8)

n+11
16

if n ≡ 5 (mod 16)
n+3
16

if n ≡ 13 (mod 16)

Converges to 1 for all n ∈ N.
When shifting k in line 2:(

1

2

)8

×
(
k

4

)4

×
(
1

8

)2

×
(

1

16

)1

×
(

k

16

)1

< 1 =⇒ 1 < k < 215/2

f(n) =



n
2

if n ≡ 0 (mod 2)
181n−535

4
if n ≡ 3 (mod 4)

n+7
8

if n ≡ 1 (mod 8)
n+11
16

if n ≡ 5 (mod 16)
n+3
16

if n ≡ 13 (mod 16)

Converges to 1 for all n ∈ N.
When shifting k in line 1:

(
k

2

)8

×
(
1

4

)4

×
(
1

8

)2

×
(

1

16

)1

×
(

k

16

)1

< 1⇒ 1 < k < 215/4

f(n) =



13n−4
2

if n ≡ 0 (mod 2)
n+1
4

if n ≡ 3 (mod 4)
n+7
8

if n ≡ 1 (mod 8)
n+11
16

if n ≡ 5 (mod 16)
n+3
16

if n ≡ 13 (mod 16)

Converges to 1 for all n ∈ N.

4.2.2 Complex Kaakuma Sequence

In a complex Kaakuma sequence, at least one case is never generated by
one or more cases. To analyze limit of converging values complex Kaakuma
sequence, we use a tabular format to get the relative occurrence of each case.
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Example 12

f(n) =

{
3n+ 1 if n ≡ 1 (mod 2)
n
2

if n ≡ 0 (mod 2)

(original Collatz sequence)
We organize and represent each line of conditions or cases with capital

letters A,B,C to show producing amounts and small letters a, b, c to show
produced amounts with their order.

Produced
Produces Solved in Terms of b

Sum Simplified
A B A B

a b b b 1
b a b b b 2b 2

a = b, QR = 33 ×
(
1
2

)2
= 3

4

Example 13

f(n) =


3n+ 1 if n ≡ 0 (mod 2)
3n+1

2
if n ≡ 3 (mod 4)

n−1
4

if n ≡ 1 (mod 4)

Converges to 1 for all n ∈ N, with QR = 27
64
.

Generated
Generates Solved in Terms of c

Sum Simplified
A B C A B C

a 2c 2c 2c 1
b a b c c 2c c 4c 2
c a b c c 2c c 4c 2

2a = 2c, b = a+ c, 3c = a+ b, a = c, b = 2c, QR = 31×
(
3
2

)2× (
1
4

)2
= 27

64

Example 14

f(n) =


n
2

if n ≡ 0 (mod 2)
kn+c
4

if n ≡ 3 (mod 4)
n+1
2

if n ≡ 1 (mod 4)
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When we use the generating and generated of each case, in=out rule.

Produced
Produces Solved in Terms of a

Sum Simplified
A B C A B C

a 2a 2b 2a 2a 4a 1
b a b c a a 2a 4a 1
c a b c a a 2a 4a 1

2a = 2b, 3b = a+ c, c = a+ b→ a = b, c = 2a(
1

2

)1

×
(
k

4

)1

×
(
1

2

)1

=
k1

24
→ 1 < k1 < 24 → 1 < k < 24

Example 15

f(n) =


n
2

if n ≡ 0 (mod 2)
n+1
4

if n ≡ 3 (mod 4)
n+3
4

if n ≡ 1 (mod 8)
kn+c
8

if n ≡ 5 (mod 8)

Produced
Produces Solved in Terms of d

Sum Simplified
A B C D A B C D

a 4a 4b 4d 12d 8d 4d 24d 3
b 2a 2b 2c 2d 6d 4d 4d 2d 16d 2
c a b c d 3d 2d 2d d 8d 1
d a b c d 3d 2d 2d d 8d 1

a = b+ d, 3b = a+ c+ d, 3c = a+ b+ d, 7d = a+ b+ c, so c = 2d, b = 2d,
a = 3d

(
1

2

)3

×
(
1

4

)2

×
(
1

4

)1

×
(
k

8

)1

=
k1

212
→ 1 < k1 < 212 → 1 < k < 212

f(n) =


n
2

if n ≡ 0 (mod 2)
n+1
4

if n ≡ 3 (mod 4)
n+3
4

if n ≡ 1 (mod 8)
4095n−20459

8
if n ≡ 5 (mod 8)
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converges to 1 ∀n : n ∈ N, QR = 4095
4096

When we shift k in line 2:(
1

2

)3

×
(
k

4

)2

×
(
1

4

)1

×
(
1

8

)1

=
k2

212
→ 1 < k2 < 212 → 1 < k < 26

f(n) =


n
2

if n ≡ 0 (mod 2)
63n−181

4
if n ≡ 3 (mod 4)

n+3
4

if n ≡ 1 (mod 8)
n+3
8

if n ≡ 5 (mod 8)

converges to 1 ∀n : n ∈ N, QR = 63
64

When we shift k in line 1:(
k

2

)3

×
(
1

4

)2

×
(
1

4

)1

×
(
1

8

)1

=
k3

212
→ 1 < k3 < 212 → 1 < k < 24

f(n) =


15n−4

2
if n ≡ 0 (mod 2)

n+1
4

if n ≡ 3 (mod 4)
n+3
4

if n ≡ 1 (mod 8)
n+3
8

if n ≡ 5 (mod 8)

converges to 1 ∀n : n ∈ N, QR = 15/16

Example 16

f(n) =


n
2

if n ≡ 0 (mod 2)
n−1
2

if n ≡ 3 (mod 4)
n+1
2

if n ≡ 1 (mod 8)
kn+c
8

if n ≡ 5 (mod 8)

Produced
Produces Solved in Terms of d

Sum Simplified
A B C D A B C D

a 4a 4d 4d 4d 8d 1
b 2a 2b 2d 2d 4d 2d 8d 1
c a b c d d 2d 4d d 8d 1
d a b c d d 2d 4d d 8d 1
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a = d, b = a+ d, b = 2d, c = a+ b+ d, c = 2b, 7d = a+ b+ c

From these equations, we find:

c = 4d, b = 2d, a = d

(
1

2

)1

×
(
1

2

)1

×
(
1

2

)1

×
(
k

8

)1

=
k

23

k

23
=

k

8
=

k1

26

1 < k1 < 26 → 1 < k < 26

f(n) =


n
2

if n ≡ 0 (mod 2)
n−1
2

if n ≡ 3 (mod 4)
n+1
2

if n ≡ 1 (mod 8)
55n+197

8
if n ≡ 5 (mod 8)

The function f(n) converges to 1 for all n ∈ N, and QR = 55
64
.

Example 17

f(n) =



n
2

if n ≡ 0 (mod 2)
n−1
2

if n ≡ 3 (mod 8)
n−5
2

if n ≡ 7 (mod 8)
n+1
2

if n ≡ 1 (mod 8)
kn+c
8

if n ≡ 5 (mod 8)

Produced
Produces Solved in Terms of e

Sum Simplified
A B C D E A B C D E

a 4a 4e 4e 4e 8e 4
b a e e e 2e 1
c a e e e 2e 1
d a b c d e e e e 4e e 8e 4
e a b c d e e e e 4e e 8e 4
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a = e, 2b = a+ e, 2c = a+ e, d = a+ b+ c+ e, 7e = a+ b+ c+ d

a = b = c = e, d = 4e(
1

2

)4

×
(
1

2

)1

×
(
1

2

)1

×
(
1

2

)4

×
(
k

8

)4

=
k4

222

1 < k4 < 222 → 1 < k < 25.5

f(n) =



n
2

if n ≡ 0 (mod 2)
n−1
2

if n ≡ 3 (mod 8)
n−5
2

if n ≡ 7 (mod 8)
n+1
2

if n ≡ 1 (mod 8)
45n−33

8
if n ≡ 5 (mod 8)

Converges to 1 for all n ∈ N, QR = 45/32
√
2.

Example 18

f(n) =


n
2

if n ≡ 0 (mod 2)
n+1
4

if n ≡ 3 (mod 4)
kn+c
2

if n ≡ 1 (mod 4)

Generated
Generates Solved in Terms of a

Sum Simplified
A B C A B C

a 2a 2b 0 2a 2a 0 4a 2
b a b c a a 2a 4a 2
c a b 0 a a 0 2a 1

a = b, 3b = a+ c, c = a+ b, c = 2a = 2b

(
1

2

)2

×
(
1

4

)2

×
(
k

2

)1

< 1 =⇒ 1 < k < 27

f(n) =


n
2

if n ≡ 0 (mod 2)
n+1
4

if n ≡ 3 (mod 4)
126n−120

2
if n ≡ 1 (mod 4)

Converges to 1 for all n ∈ N, QR = 63
64
.
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Example 19

f(n) =
{

3n+3·2i−1−3
2i

if n = 2ik + 2i−1 + 1 for i ≥ 1

where i ranges from 1 to ∞.

Converges to 3 for all n ∈ N with n > 1 and QR→ 0.

4.2.3 Complicated Kaakuma Sequence

Equations with partially generating cases are impossible to apply the Qodaa
ratio test directly. This highlights the elegance of the Qodaa ratio test and
its insightful application to any well-stated Kaakuma sequence.

If it is not done with care and attention, it will be full of subtle errors.

Example 20

f(n) =


n
2

if n ≡ 0 (mod 2)
n
3

if n ≡ 3 (mod 6)
kn+1

2
if n ≡ 1 (mod 6) or n ≡ 5 (mod 6)

Case3 generates 6k, 6k+1, 6k+3 and 6k+4 that is 2/3 of case1, case2 and
1/2 of case3. The occurrences of a case also partially differ, to avoid subtle
errors we have to dismantle all cases.

f(n) =



kn+1
2

if n ≡ 1 (mod 6)
n
2

if n ≡ 2 (mod 6)
n
3

if n ≡ 3 (mod 6)
n
2

if n ≡ 4 (mod 6)
kn+1

2
if n ≡ 5 (mod 6)

n
2

if n ≡ 0 (mod 6)

ed
Produces Solved in Terms of b

Sum Simplified
A B C D E F A B C D E F

a a b c 3b b 2b 6b 3
b d 2b 2b 1
c c e f 2b 2b 2b 6b 3
d a b 3b b 4b 2
e c d 2b 2b 4b 2
f e f 2b 2b 4b 2
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a = b+ c d = 2b 2c = e+ f 2d = a+ b 2e = c+ d

f = e a = 3b c = d = e− f = 2b(
k

2

)3

×
(
1

2

)1

×
(
1

3

)3

×
(
1

2

)2

×
(
k

2

)2

×
(
1

2

)2

< 1

k5 < 210 × 33 =⇒ k < 7.7327

f(n) =


n
2

if n ≡ 0 (mod 2)
n
3

if n ≡ 3 (mod 6)
7n+1

2
if n ≡ 1 (mod 6) or n ≡ 5 (mod 6)

Converges to 1 with QR = 0.905.
When coefficient sample is 6k + 5 it alter generating cases.

f(n) =



kn+1
2

if n ≡ 1 (mod 6)
n
2

if n ≡ 2 (mod 6)
n
3

if n ≡ 3 (mod 6)
n
2

if n ≡ 4 (mod 6)
kn+1

2
if n ≡ 5 (mod 6)

n
2

if n ≡ 0 (mod 6)

For the coefficient, we can use 5 instead of 6p+5 to get generating sample.
Note that A and E vary depending on what they generate:

ed
Produces Solved in Terms of b

Sum Simplified
A B C D E F A B C D E F

a b c e b 4b 3b 8b 4
b d 2b 2b 1
c a c f 4b 4b 4b 12b 6
d b e b 3b 4b 2
e c d 4b 2b 6b 3
f a f 4b 4b 8b 4

2a = b+ c+ e 2b = d 2c = a+ f 2d = b+ e 2e = c+ d

f = a a = c = f = 4b d = 2b e = 3b(
k

2

)4

×
(
1

2

)1

×
(
1

3

)6

×
(
1

2

)2

×
(
k

2

)3

×
(
1

2

)4

< 1
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=⇒ k7 < 214 × 36 =⇒ k < 10.257

f(n) =


n
2

if n ≡ 0 (mod 2),
n
3

if n ≡ 3 (mod 6),
5n+1

2
if n ≡ 1 (mod 6) or n ≡ 5 (mod 6).

Converges to 1 with QR = 0.48747

Example 21:

f(n) =


n
2

if n ≡ 0 (mod 2) —3/6,
n
3

if n ≡ 3 (mod 6) —1/6,
kn+3

2
if n ≡ 1 (mod 6) or n ≡ 5 (mod 6) —2/6.

f(n) =



kn+3
2

if n ≡ 1 (mod 6) —A(c,f),
n
2

if n ≡ 2 (mod 6) —B(a,d),
n
3

if n ≡ 3 (mod 6) —C(a,c,e),
n
2

if n ≡ 4 (mod 6) —D(b,e),
kn+3

2
if n ≡ 5 (mod 6) —E(c,f),

n
2

if n ≡ 0 (mod 6) —F(c,f).

Generates After solved in terms of 1/e
Sum Simplified

A B C D E F A B C D E F
a b c 2 2 2
b d 0 0
c a c e f 1 2 1 2 6 6
d b 0 0
e c d 2 2 2
f a e f 1 1 2 4 4

2a=b+c 2b=d 2c=e+f 2d=b 2 e=c+d f=a+e b=0 d=0 a=e
c=2e f=2e

Note:- if a sequence is semi-cycled or a case is not generated it is not
considered as Kaakuma sequence
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Example 22

f(n) =



n
2

if n ≡ 0 (mod 2)
n+1
2

if n ≡ 7 (mod 8)
n+3
4

if n ≡ 5 (mod 8)
n+5
8

if n ≡ 3 (mod 8)

kn+ c if n ≡ 1 (mod 8)

We split cases that are partially generated to avoid complexity:

f(n) =



n
2

if n ≡ 2 (mod 4) – A(d, e, f, g)
n
4

if n ≡ 4 (mod 8) – B(d, e, f, g)
n
8

if n ≡ 0 (mod 8) – C(all)
n+1
2

if n ≡ 7 (mod 8) – D(b, c)
n+3
4

if n ≡ 5 (mod 8) – E(a, b, c)
n+5
8

if n ≡ 3 (mod 8) – F (all)

kn+ c if n ≡ 1 (mod 8) – G(c)

Generates After solving in terms of 1/ f
A B C D E F G A B C D E F G

a 2c 2e 2f 30/7 4 2
b c d e f 15/7 4 2 1
c c d e f g 15/7 4 2 1 8
d a b c f 18/7 16/7 15/7 1
e a b c f 18/7 16/7 15/7 1
f a b c f 8/7 16/7 15/7 1
g a b c f 18/7 16/7 15/7 1

sum 72/7 64/7 120/7 8 8 8 8
simplified 9 8 15 7 7 7 7

g = a+ b+ c+ f 7f = a+ b+ c 4e = a+ b+ c+ f

2d = a+ b+ c+ f 7c = d+ e+ f + g 4b = c+ d+ e+ f

2a = c+ e+ f

when we solve it in terms of f

g = 8f e = 2f d = 4f c = 15f/7 b = 16f/7 a = 18f/7
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(1/2)9 × (1/4)8 × (1/8)15 × (1/2)7 × (1/4)7 × (1/8)7 × k7 < 1

⇒ k7 < 2112 ⇒ k < 216

When we substitute k:

f(n) =



n
2

if n ≡ 0 (mod 2)
n+1
2

if n ≡ 7 (mod 8)
n+3
4

if n ≡ 5 (mod 8)
n+5
8

if n ≡ 3 (mod 8)

65535n− 65519 if n ≡ 1 (mod 8)

The sequence Converges to 1 for all n ∈ N, QR = 65535/65536.
Note: This is a complicated form a sequence in Example 10 where case2

and case5 generate case1 partially.
All these different types of examples show how Qodaa Ratio Test Works

even in complicated equations. Qodaa ratio test is simple and rigor to apply.
Beyond this there are some points to study in future like number of cycles,
interval of constants a sequence to converges, where diverging will start for
a diverging kaakuma sequence.

4.3 Proof 3: Computational Analysis

Even though computational analysis cannot serve as a rigorous proof of the
Collatz conjecture, it can provide convincing evidence until more rigorous
proofs, like Proof 1 and Proof 2, are available. In some challenging cases,
and based on their argument level, computational results must be considered,
at least to some extent.

4.3.1 Constants and Bounded Values

There are several distinct constants and bounded values observed in the
Collatz sequence as discussed in Behavior 3.5.

The average stopping time of the Collatz sequence is a constant, similar
to the constants π and e. The function f(n) is defined as:

f(n) =

{
3n+1

2
if n ≡ 1 (mod 2)

n
2

if n ≡ 0 (mod 2)
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The average stopping time of this sequence is approximately 3.49269. The
key point is that if the average stopping time is constant and consistent with
very small variation on both sides, it is almost impossible to divert from this
behavior after 1020 or 1040. If the Collatz conjecture were invalid, this would
imply that for 2120, the stopping time t would not align as:

(
2120−1∑
n=2

t)/(2120 − 1) = 3.49269

but:

(
2120∑
n=2

t)/2120 =∞

which is impossible.

4.3.2 Inverse Map of Collatz Sequence

The inverse map of the Collatz sequence covers all natural numbers starting
from root 1. During this process, its expansion rate is 33.33

4.3.3 Ratio of Stopping Time

The ratio of stopping time to log2(n) is bounded and less than 5.5. It is
also bounded and less than 5, and small numbers such as 28 and 32 can be
adjusted by translation. This can be verified by computer programs using
high-rate stopping time values like 2k. This constant is analogous to the ratio
of primes in natural numbers, π(x). For example:

2k
4× (26k − 1)

9

8× (218k − 1)

27

16× (254k − 1)

81

32× (2162k − 1)

243

4.3.4 Expected Huge Iterations

In the Collatz sequence, it is not surprising to encounter relatively high it-
eration numbers. As seen in Behavior 3.8, numbers with powers of 2 have
relatively high iterations, and numbers that reach powers of 2 before decreas-
ing from the starting numbers also have high iterations. Numbers less than
2200000 are expected to have relatively high iterations, and the constants are
kept as described in Behavior 3.5.3 and 3.5.4.
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4.3.5 Special and Extreme Contradiction in Cycle Case

In the cycle case, the number of iterations needed to create a cycle is n/10.
If 1020 is the first number to create a non-trivial cycle, it must have 1019

iterations to the minimum, as discussed in Behavior 3.7. This is contradictory
because, based on Analysis 3.5.2, it should only be up to 5.5 × 60 = 330 at
the maximum.

4.3.6 Collatz Sequence with Falling Values

If there exists a non-Collatz number, its sequence must include iteration
group numbers or falling values like 259k+28, 254k+64. These falling values
lead to other falling points and make the sequence excessively dense.

4.3.7 Infinite Paradigm-Shifting Kaakuma Sequence

An example of an infinite paradigm-shifting Kaakuma sequence is given by
65535n − 327667. As seen in Proof 1 Example 10 and Example 25, this
sequence has over 2 billion iterations and a height greater than 1080. It takes
15 days to complete iterations for a small number, 9757. This is a highly
paradigm-shifting example of a Kaakuma sequence, with many more such
cases existing.

Conclusion

The Collatz conjecture is considered true because of the following reasons:

1. Contradiction in tree size balance

2. Qodaa Ratio Test

3. Computational Analysis
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