A Proof of Fermat's Last Theorem by Relating to Two Polynomial Identity Conditions

Tae Beom Lee

Abstract

Fermat's Last Theorem(FLT) states that there is no natural number set $\{a, b, c, n\}$ which satisfies $a^{n}+b^{n}=c^{n}$ or $a^{n}=c^{n}-b^{n}$, when $n \geq 3$. In this thesis, we related LHS and RHS of $a^{n}=c^{n}-b^{n}$ to the constant terms of two monic polynomials $f(x)=x^{n}-a^{n}$ and $g(x)=x^{n}-\left(c^{n}-b^{n}\right)$. By doing so, conditions to satisfy the number identity, $a^{n}=c^{n}-$ b^{n}, are changed to conditions to satisfy the polynomial identity, $f(x)=g(x)$, which lead to a trivial solution, $a=c, b=0$, when $n \geq 3$.

1. Introduction

FLT was inferred in 1637 by Pierre de Fermat [1], and was proved by Andrew John Wiles in 1995 [2]. But the proof is not easy even for mathematicians, requiring more simple proof.

In this thesis, to change number identity to polynomial identity, we related LHS and RHS of $a^{n}=c^{n}-b^{n}$ to the constant terms of two monic polynomials. Let a, b, c, n be natural numbers, otherwise specified.

$$
\begin{align*}
& f(x)=x^{n}-a^{n} \tag{1.1}\\
& g(x)=x^{n}-\left(c^{n}-b^{n}\right) \tag{1.2}
\end{align*}
$$

We proved that the conditions to satisfy the polynomial identity, $f(x)=g(x)$, permit only a trivial solution, $a=c, b=0$, when $n \geq 3$.

2. Fatorings of Constant Terms

Lemma 2.1. Below (2.1) is the irreducible factoring of (1.1) over the complex field [3].

$$
\begin{align*}
& f(x)=x^{n}-a^{n}=\prod_{k=1}^{n}\left(x-a e^{\frac{2 k \pi i}{n}}\right) . \tag{2.1}\\
& -a^{n}=\prod_{k=1}^{n}\left(-a e^{\frac{2 k \pi i}{n}}\right) . \tag{2.2}
\end{align*}
$$

Proof. The n roots of (1.1) are $a e^{\frac{2 k \pi i}{n}}, 1 \leq k \leq n$, so, (2.1) is the irreducible factoring of (1.1) over the complex field. The constant term $-a^{n}$ is shown in (2.2).
Lemma 2.2. Below (2.3) is the irreducible factoring of $b^{n}-c^{n}$ over the complex field.

$$
\begin{equation*}
b^{n}-c^{n}=\prod_{k=1}^{n}\left(b-c e^{\frac{2 k \pi i}{n}}\right) \tag{2.3}
\end{equation*}
$$

Proof. The n roots of $b^{n}-c^{n}=0$, with respect to b, are $b=c e^{\frac{2 k \pi i}{n}, 1 \leq k \leq n \text {, so, (2.3) is }}$ the irreducible factoring of $b^{n}-c^{n}$ over the complex field.

When $n=1,2$, (2.2) and (2.3) have only integer factors. But, when $n \geq 3$, (2.2) and (2.3) have complex number factors, making situations quite different from when $n=1,2$.

3. Proof

Lemma 3.1. The solution which satisfies the polynomial identity $f(x)=g(x), n \geq 3$, is a trivial solution, $a=c, b=0$.

Proof. The constant terms of $f(x)$ and $g(x)$ are rewritten as follows..

$$
\begin{align*}
& -a^{n}=\prod_{k=1}^{n}\left(-a e^{\frac{2 k \pi i}{n}}\right) . \\
& -\left(c^{n}-b^{n}\right)=\prod_{k=1}^{n}\left\{-\left(c e^{\frac{2 k \pi i}{n}}-b\right)\right\} . \tag{3.1}
\end{align*}
$$

The polynomial $p(x)$ whose roots are all factors of (3.1) is (3.2).

$$
\begin{equation*}
p(x)=\prod_{k=1}^{n}\left\{x-\left(c e^{\frac{2 k \pi i}{n}}-b\right)\right\} . \tag{3.2}
\end{equation*}
$$

In graph view, $f(x)=g(x)$ means the $f(x)$ and $g(x)$ graphs overlap. By moving the $p(x)$ graph, we can easily make it overlap the $g(x)$ graph. But, by moving the $p(x)$ graph to overlap the $f(x)$ graph, the following three conditions should be satisfied.

$$
\begin{aligned}
& \prod_{k=1}^{n}\left(-a e^{\frac{2 k \pi i}{n}}\right)=\prod_{k=1}^{n}\left\{-\left(b-c e^{\frac{2 k \pi i}{n}}\right)\right\} . \\
& \left|a e^{\frac{2 k \pi i}{n}}\right|=\left|c e^{\frac{2 k \pi i}{n}}-b\right| \\
& \arg \left(a e^{\frac{2 k \pi i}{n}}\right)=\arg \left(c e^{\frac{2 k \pi i}{n}}-b\right) .
\end{aligned}
$$

The only case the above three conditions are satisfied is when $a e^{\frac{2 k \pi i}{n}}=c e^{\frac{2 k \pi i}{n}}-b, 1 \leq k \leq n$. By Euler's identity $e^{i x}=\cos x+i \sin x$ [4], we have

$$
a\left(\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}\right)=c\left(\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}\right)-b .
$$

The complex number identity states that if $x+i y=u+i v$, then, $x=u, y=v$ [5]. So,

$$
\begin{align*}
& \operatorname{asin} \frac{2 k \pi}{n}=c \sin \frac{2 k \pi}{n}, \\
& a=c, \tag{3.3}\\
& \operatorname{acos} \frac{2 k \pi}{n}=c \cos \frac{2 k \pi}{n}-b, \\
& b=0 . \tag{3.4}
\end{align*}
$$

(3.3) and (3.4) is a trivial solution, $a=c, b=0$.

4. Conclusion

In this thesis, we related LHS and RHS of $a^{n}=c^{n}-b^{n}$ to the constant terms of two monic polynomials $f(x)=x^{n}-a^{n}$ and $g(x)=x^{n}-\left(c^{n}-b^{n}\right)$. By doing so, FLT is simplified to the problem of finding conditions that will satisfy the polynomial identity, $f(x)=$ $g(x)$, when $n \geq 3$. To satisfy $f(x)=g(x)$, the corresponding factors of the two constant terms of $f(x)$ and $g(x)$ must be exactly same, resulting a trivial solution, $a=c, b=0$.

References

[1] https://en.wikipedia.org/wiki/Fermat\'s_Last_Theorem.
[2] Andrew John Wiles, Modular elliptic curves and Fermat's Last Theorem, Annals of Mathematics, 141 (1995), 443-551.
[3] https://en.wikipedia.org/wiki/Absolutely_irreducible
[4] https://en.wikipedia.org/wiki/Euler\'s_identity
[5] https://en.wikipedia.org/wiki/Complex_number

