
1

Solving graph isomorphism problem
in polynomial time

Yasunori Ohto

Abstract

We show that the graph isomorphism problem is solvable in polynomial time. First, we prove the theorem to
obtain the automorphisms of G using eigenvalue sets. Next, we construct an algorithm to determine whether two
given graphs Ga and Gb are isomorphic using this result. The computational complexity to detect whether the two
graphs are isomorphic is O(n6).

Index Terms

graph isomorphism problem, graph spectrum, polynomial time computation.

I. INTRODUCTION

The graph isomorphism problem [1] is to determine whether two given graphs are isomorphic. This
problem is one of the major problems in theoretical computer science, especially regarding the class of its
computational complexity [2]. There are practical algorithms that can determine whether two graphs are
isomorphic [3], [4], [5]. These methods can obtain correct results at a practical level. On the theoretical side,
a quasi-polynomial algorithm has been proposed [6], [7]. On the other hand, polynomial-time isomorphism
detection algorithms exist for special graphs [8], [9], [10].

The set of the eigenvalues of the adjacency matrix of a graph indicates the characteristics of the graph.
However, if the two sets of eigenvalues are the same, such graphs are called cospectral graphs[11], and
the graphs might not be isomorphic. Therefore, we cannot determine the isomorphism of two graphs
by whether their eigenvalue sets are only the same. When there two sets are the same, if we restrict
the multiplicities of the eigenvalues, we can determine whether the graphs are isomorphic in polynomial
time [12], [13]. However, it is unclear whether a polynomial-time algorithm exists for general graphs.

In this paper, we show that the graph isomorphism problem is solvable in polynomial time. First, we
define the following functions. Let S be a vertex-weighted graph. Let Vw0(S) be the set of vertices of S
with weight 0. Let Sg(S, v, w) be the vertex-weighted graph in which weight w ∈ N is given to vertex v
of S. Let Ev(S) be the set of eigenvalues of the adjacency matrix of S. Next, we prove Theorem I.1 to
obtain the automorphisms of S using eigenvalue sets.

Theorem I.1. Let Svi = Sg(S, vi, w) and Svj = Sg(S, vj, w) with vi, vj ∈ Vw0(S), vi ̸= vj and w > 0.
When Ev(Svi) = Ev(Svj), Svi and Svj are isomorphic.

Next, we construct an algorithm to determine whether two given graphs Ga and Gb are isomorphic
using this result. Write n for the number of vertices of these graphs. Let Sa0 = Ga and Sb0 = Gb.
Consider a vertex weight wi > 0 ̸∈ {wj|0 ≤ j < i}. Let Sai+1

be Sg(Sai , vai , wi) with vai ∈ Vw0(Sai).
Let Sbi+1

be Sg(Sbi , vbi , wi) with vbi ∈ Vw0(Sbi). Let Ev(Sai+1
) = Ev(Sbi+1

). Then, we check the vertex
mapping {vai 7→ vbi |0 ≤ i < n} to determine whether Ga and Gb are isomorphic. Note that we compare
the two eigenvalue sets without real number calculations by using Frobenius normal form [14], [15].
The computational complexity for determining whether the two graphs are isomorphic is O(n6), where
n represents the number of vertices in the graph.

This paper is organized as follows. Section II provides the proofs used to determine whether two graphs
are isomorphic. Section III presents an algorithm to solve this problem. Finally, Section IV presents a
conclusion regarding the result of this paper.

2

II. PROOF

In this section, we provide the proofs for the results of the determination of whether two given graphs
are isomorphic.

A. Preparation
We define the following functions, which will be used in the proofs and the methods. Suppose S is

a vertex-weighted graph. Let Vw0(S) be the set of vertices of S with weight 0. Let Sg(S, v, w) be the
vertex-weighted graph in which the weight w ∈ N is given to vertex v of S. Denote the adjacency matrix
of S by A(S). Let Ev(S) be the set (with multiplicities) of eigenvalues of A(S).

B. Obtaining the automorphisms
Theorem I.1 and Corollary II.1 prove that it is possible to obtain the automorphisms of S using

eigenvalue sets.

Theorem I.1. Let Svi = Sg(S, vi, w) and Svj = Sg(S, vj, w) with vi, vj ∈ Vw0(S), vi ̸= vj and w > 0.
When Ev(Svi) = Ev(Svj), Svi and Svj are isomorphic.

Proof. We show that if Ev(Svi) = Ev(Svj), then Svi and Svj are not cospectral but isomorphic.
Let A(Svi) and A(Svj) be Avi and Avj , respectively. When there exists a permutation matrix P such

that Avi = P tAvjP , Svi and Svj are isomorphic. Denote the eigenfunctions of Avi and Avj by fvi and fvj ,
respectively. When fvi and fvj are the same, the eigenvalue sets of Avi and Avj are the same. Therefore,
we will prove that such a nontrivial permutation matrix exists when fvi − fvj = 0.

Without loss of generality, we may assume i = 1 and j = 2. We show the characteristic polynomials
fv1 and fv2 as below.

fv1 = |Av1 − λI|

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

w − λ a1,2 a1,3 a1,4 · · · a1,n
a2,1 −λ a2,3 a2,4 · · · a2,n
a3,1 a3,2 w3 − λ a3,4 · · · a3,n

a4,1 a4,2 a4,3
.

...
...

...
an,1 an,2 an,3 · · · · · · wn − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

fv2 = |Av2 − λI|

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ a1,2 a1,3 a1,4 · · · a1,n
a2,1 w − λ a2,3 a2,4 · · · a2,n
a3,1 a3,2 w3 − λ a3,4 · · · a3,n

a4,1 a4,2 a4,3
.

...
...

...
an,1 an,2 an,3 · · · · · · wn − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The weights of the vertices are w, w3, . . . wn, all of which are integers. Then,

fv1 − fv2 = w

∣∣∣∣∣∣∣∣∣∣∣

0 a2,3 a2,4 · · · a2,n
a3,2 w3 − λ a3,4 · · · a3,n

a4,2 a4,3
. . . a3,n

...
...

an,2 an,3 · · · · · · wn − λ

∣∣∣∣∣∣∣∣∣∣∣
− w

∣∣∣∣∣∣∣∣∣∣∣

0 a1,3 a1,4 · · · a1,n
a3,1 w3 − λ a3,4 · · · a3,n

a4,1 a4,3
. . . a3,n

...
...

an,1 an,3 · · · · · · wn − λ

∣∣∣∣∣∣∣∣∣∣∣
= 0.

(1)

3

If n = 2, fv1 and fv2 are the same. Hence, in this case, Sv1 and Sv2 are isomorphic.
We treat the case of n = 3 as follows. Equation 1 becomes

fv1 − fv2 = w

∣∣∣∣ 0 a2,3
a3,2 w3 − λ

∣∣∣∣− w

∣∣∣∣ 0 a1,3
a3,1 w3 − λ

∣∣∣∣
= w(a2,3a3,2 − a1,3a3,1)

= 0.

So, when a2,3 = a1,3, fv1 and fv2 are the same. For this case, then, Sv1 and Sv2 are isomorphic.
Let n > 3. Suppose the matrix A′ is as follows.

A′ =


w3 a3,4 · · · a3,n

a4,3
. . . a3,n

...
an,3 · · · · · · wn

 .

Let vertex u1 = (a1,3, a1,4, . . . , a1,n)
t and u2 = (a2,3, a2,4, . . . , a2,n)

t. Then, Equation 1 becomes as
follows.

fv1 − fv2 = w

∣∣∣∣ 0 ut
2

u2 A′ − λI

∣∣∣∣− w

∣∣∣∣ 0 ut
1

u1 A′ − λI

∣∣∣∣
= 0.

In order for fv1 and fv2 to be the same, it is necessary that fv1 − fv2 = 0 for all λ. So, we assume
|A′ − λI| ≠ 0. Then,

fv1 − fv2 = w|A′ − λI||0− ut
2(A

′ − λI)−1u2|
− w|A′ − λI||0− ut

1(A
′ − λI)−1u1|

= w|A′ − λI|(u2 − u1)
t(A′ − λI)−1(u2 − u1)

= 0.

When u1 = u2, fv1 and fv2 are the same. In this case, then, Sv1 and Sv2 are isomorphic.
Let u2 ̸= u1. When (u2−u1)

t(A′−λI)−1(u2−u1) = 0, u2−u1 and (A′−λI)−1(u2−u1) are orthogonal.
So,

(u2 − u1)
t(A′ − λI)(u2 − u1) = ut

2A
′u2 − ut

1A
′u1 − ut

2λIu2 + ut
1λIu1

= 0.

In order for fv1 and fv2 to be the same, it is necessary that fv1 − fv2 = 0 for all λ. So, the number of
elements with value 1 in u2 and u1 is the same.

Since u2 − u1 and (A′ − λI)(u2 − u1) are orthogonal,

(u2 − u1)
tA′(u2 − u1) = (u2 − u1)

tP ′tA′P ′(u2 − u1)

= (u1 − u2)
tP ′tA′P ′(u1 − u2)

= 0

with P ′ a liner operator. When A1 and A2 have the same eigenvalue set, there exists a set of nontrivial
permutation matrices {P ′|P ′tA′P ′ = A′∧ (u2−u1) = P ′(u1−u2))}. So, Sv1 and Sv2 are isomorphic.

Corollary II.1. Let Svi = Sg(S, vi, w) and Svj = Sg(S, vj, w) with vi, vj ∈ Vw0(S), vi ̸= vj and w > 0.
If Ev(Svi) ̸= Ev(Svj), then Svi and Svj are not isomorphic.

Proof. By applying a permutation matrix P , P tA(Svj)P is not equal to A(Svi). So, there is no bijection
between Svi and Svj . Therefore, Svi and Svj are not isomorphic.

4

C. Obtaining vertex mapping and detecting whether two graphs are isomorphic
Corollaries II.2 and II.3 prove that it is possible to obtain vertex mapping and detect whether two graphs

are isomorphic.
Isomorphism does not exist when the same eigenvalue set does not exist.

Corollary II.2. Suppose Sai and Sbi are vertex-weighted graphs. Let Ev(Sai) = Ev(Sbi). Let vai ∈
Vw0(Sai) and w > 0. When Ev(Sg(Sai , vai , w)) ̸= Ev(Sg(Sbi , vbi , w)) for any vbi ∈ Vw0(Sbi), Sai and Sbi

are not isomorphic.

Proof. By applying a permutation matrix P , P tA(Sg(Sbi , vbi , w))P is not equal to A(Sg(Sai , vai , w)) for
any vai ∈ Vw0(Sai) and vbi ∈ Vw0(Sbi). So, there is no bijection between Sg(Sai , vai , w) and Sg(Sbi , vbi , w).
Therefore, Sai and Sbi are not isomorphic.

When isomorphism exists, this relationship keeps even if the weighting of vertices is removed.

Corollary II.3. Suppose Sai and Sbi are vertex-weighted graphs. Let Ev(Sai) = Ev(Sbi) and w > 0.
Let Sai+1

= Sg(Sai , vai , w) with vai ∈ Vw0(Sai). Let Sbi+1
= Sg(Sbi , vbi , w) with vbi ∈ Vw0(Sbi). Let

Ev(Sai+1
) = Ev(Sbi+1

). Now, Sai+1
and Sbi+1

are isomorphic if, and only if, Sai and Sbi are isomorphic.

Proof. Let Va be the set of vertices of Sai+1
and Vb that of Sbi+1

. When Sai+1
and Sbi+1

are not isomorphic,
there if no bijection Va → Vb.

When Sai+1
and Sbi+1

are isomorphic, there exists a bijection Va → Vb. From Theorem I.1 and
Corollary II.1, for any vai and vbi such that Ev(Sai+1

) = Ev(Sbi+1
) , Sai and Sbi are isomorphic.

III. ALGORITHM

In this section, we present a polynomial-time algorithm to determine whether two graphs Ga and Gb

are isomorphic. We assume that the number of vertices of the graphs is n.

A. Comparing the sets of eigenvalues
This subsection shows that how to compare the sets of eigenvalues without real number calculations.
Since the elements of an adjacency matrix of a vertex-weighted graph are all integers, the coefficients

of the eigenequation of this matrix are all integers. We calculate the Frobenius normal form to obtain the
coefficients of the eigenequation of the adjacency matrix of a vertex-weighted graph without real number
calculations. Then, we compare the coefficients to determine whether the eigenvalue sets are the same.
The amount of computation required to convert an adjacency matrix into the Frobenius normal form is
O(n4). The amount of computation to compare the coefficients of the two characteristic equations is O(n).

B. Determining whether two graphs are isomorphic
This subsection determines whether two graphs Ga and Gb are isomorphic. We show the flow of the

algorithm below.

Let Sa0 = Ga and Sb0 = Gb. Consider a vertex weight wi > 0 ̸∈ {wj|0 ≤ j < i}. Let Sai+1
be

Sg(Sai , vai , wi) with vai ∈ Vw0(Sai). Let Sbi+1
be Sg(Sbi , vbi , wi) with vbi ∈ Vw0(Sbi). Let Ev(Sai+1

) =
Ev(Sbi+1

). Then, we check the vertex mapping {vai 7→ vbi |0 ≤ i < n} to determine whether Ga and Gb

are isomorphic.

Function 1 determines whether two graphs Ga and Gb are isomorphic. From Theorem I.1 and Corollar-
ies II.1, II.2, II.3, this function can detect whether two graphs are isomorphic. The amount of computation
of this function is O(n6).

Example III.1. Figure 1 shows that graphs Ga = (Va, Ea) and Gb = (Vb, Eb) as an example to determine
graph isomorphism. At first, we clear hash h. Let Sa0 = Ga and Sb0 = Gb. So, all vertices in Sa0 and

5

Algorithm 1 Determining whether two graphs Ga and Gb are isomorphic.
1: function IS ISOMORPHIC(Ga = (Va, Ea), Gb = (Vb, Eb))
2: Sa ← Ga with all vertex weights equal to 0
3: Sb ← Gb with all vertex weights equal to 0
4: if Ev(Sa) ̸= Ev(Sb) then
5: return FALSE
6: end if
7: w ← 2|Va|
8: clear hash h
9: for each va ∈ Va do

10: λ← Ev(Sg(Sa, va, w))
11: vb ← OBTAIN VERTEX(Sb, λ, w)
12: if vb = null then
13: return FALSE
14: end if
15: Sa ← Sg(Sa, va, w)
16: Sb ← Sg(Sb, vb, w)
17: w ← w + 2|Va|
18: h(va)← vb
19: end for
20: return TEST ISOMORPHIC(Ga, Gb, h)
21: end function

p1 p2

p3p4

p5 p6

p7p8

Ga Gb

Fig. 1. Graphs Ga and Gb as an example to determine graph isomorphism.

Sb0 have weights of 0. Next, let w0 = 2|Va|. Let Sa1 = Sg(Sa0 , p1, w0). Obtain the vertex v0 ∈ Vw0(Sb0)
such that Ev(Sg(Sb0 , v0, w0)) = Ev(Sa1). Vertices p5, . . . , p8 satisfy this condition. Since Theorem I.1 and
Corollary II.1, we can select a vertex from any of them. So, we select p5, then, let Sb1 = Sg(Sb0 , p5, w0)
and h(p1) = p5. Next, let w1 = w0+2|Va|. Let Sa2 = Sg(Sa1 , p2, w1). Obtain the vertex v1 ∈ Vw0(Sb1) such
that Ev(Sg(Sb1 , v1, w1)) = Ev(Sa2). Vertices p6 and p7 satisfy this condition. We can select a vertex from
any of them. So, we select p6, then, let Sb2 = Sg(Sb1 , p6, w1) and h(p2) = p6. Next, let w2 = w1+2|Va|. Let
Sa3 = Sg(Sa2 , p3, w2). Obtain the vertex v2 ∈ Vw0(Sb2) such that Ev(Sg(Sb2 , v2, w2)) = Ev(Sa3). Vertex
p8 satisfies this condition. So, we use p8, then, let Sb3 = Sg(Sb2 , p8, w2) and h(p3) = p8. Next, let w3 =
w2 + 2|Va|. Let Sa4 = Sg(Sa3 , p4, w3). Obtain the vertex v3 ∈ Vw0(Sb3) such that Ev(Sg(Sb3 , v3, w3)) =
Ev(Sa4). Vertex p7 satisfies this condition. So, we use p7, then, let Sb4 = Sg(Sb3 , p7, w3) and let h(p4) = p7.
Finally, using the stack h that stored the map between vertices of Ga and Gb, we check whether a bijection
exists between Ga and Gb.

We show a function 2 to obtain a vertex v such that Ev(Sg(S, v, w)) = λ with v ∈ Vw0(S). So, the
amount of computation of this function is O(n5).

Function 3 determines whether a map va 7→ vb exists for the set of vertex pair (va, vb) of vertices

6

Algorithm 2 Obtaining a vertex v such that Ev(Sg(S, v, w)) = λ with v ∈ Vw0(S).
1: function OBTAIN VERTEX(S, λ, w)
2: for each v ∈ Vw0(S) do
3: if Ev(Sg(S, v, w)) = λ then
4: return v
5: end if
6: end for
7: return null
8: end function

Algorithm 3 Determining whether a map va 7→ vb exists for the set of vertex pair (va, vb) of vertices
va ∈ Va and vb ∈ Vb of two graphs Ga = (Va, Ea) and Gb = (Vb, Eb).

1: function TEST ISOMORPHIC(Ga = (Va, Ea), Gb = (Vb, Eb), h)
2: for i← 1 to |Va| − 1 do
3: vi ← i-th vertex in Va

4: for j ← i+ 1 to |Va| do
5: vj ← j-th vertex in Va

6: if (vi, vj) ∈ Ea then
7: if (h(vi), h(vj)) ̸∈ Eb then
8: return FALSE
9: end if

10: else
11: if (h(vi), h(vj)) ∈ Eb then
12: return FALSE
13: end if
14: end if
15: end for
16: end for
17: return TRUE
18: end function

va ∈ Va and vb ∈ Vb of two graphs Ga = (Va, Ea) and Gb = (Vb, Eb). The amount of computation of this
function is O(n2).

IV. CONCLUSION

In this paper, we have presented an algorithm to detect whether two given graphs are isomorphic. It
has polynomial time complexity. Note that this algorithm has a limitation in that it can only obtain one
of the isomorphisms.

APPENDIX A
DEFINITION

In this section, we give the definitions used in this paper.

Definition A.1. A graph G = (V,E) is a pair consisting of a non-empty finite vertex set V ̸= ∅ and
an edge set E that is a subset of V 2. The graph’s size is the number of its vertices 1 < n = |V |. The
number of vertices in a graph is assumed to be finite. In addition, we align the set V with {v1, . . . , vn}.
There is an edge between vertices va and vb when (va, vb) is an element of the set E. Also, edges have no
direction. Moreover, the graph has no multiple edges between a pair of vertices, and there are no loops
(i.e., (va, va) is never an edge).

7

Definition A.2. A vertex-weighted graph S = (V,E, z) is a graph with a function z : V → N that gives
the weights of the vertices. Then, a graph is a vertex-weighted graph in which the weights of all its
vertices are 0.

Definition A.3. The adjacency matrix A of a vertex-weighted graph S = (V,E, z) with n = |V | is an
n× n symmetric matrix that is given as follows. The entries ai,j , vi, vj ∈ V , 0 < i, j ≤ n of A satisfy: (vi, vj) ∈ E if ai,j = aj,i = 1,

(vi, vj) /∈ E if ai,j = aj,i = 0,
ai,i = z(vi).

Definition A.4. An isomorphism of graphs Ga = (Va, Ea) and Gb = (Vb, Eb) is a bijection between the
vertex sets of Ga and Gb f : Vb → Va such that two vertices vi and vj of Ga are adjacent in Ga if and
only if f(va) and f(vb) are adjacent in Gb.

REFERENCES

[1] M. Grohe and P. Schweitzer, “The graph isomorphism problem.” Commun. ACM, vol. 63, no. 11, pp. 128–134, 2020. [Online].
Available: http://dblp.uni-trier.de/db/journals/cacm/cacm63.html\#GroheS20

[2] S. Fortin, “The graph isomorphism problem,” Edmonton, Alberta, Canada, Tech. Rep., 1996. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:6986595

[3] B. McKay, “Practical graph isomorphism,” Congressus Numerantium, vol. 30, pp. 45–87, 1981.
[4] B. D. McKay and A. Piperno, “Practical graph isomorphism, ii,” Journal of Symbolic Computation, vol. 60, no. 0, pp. 94 – 112,

2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0747717113001193
[5] D. C. Schmidt and L. E. Druffel, “A fast backtracking algorithm to test directed graphs for isomorphism using distance matrices.” J.

ACM, vol. 23, no. 3, pp. 433–445, 1976. [Online]. Available: http://dblp.uni-trier.de/db/journals/jacm/jacm23.html\#SchmidtD76
[6] L. Babai, “Graph isomorphism in quasipolynomial time.” CoRR, vol. abs/1512.03547, 2015. [Online]. Available: http:

//dblp.uni-trier.de/db/journals/corr/corr1512.html\#Babai15
[7] ——, “Graph isomorphism in quasipolynomial time [extended abstract].” in STOC, D. Wichs and Y. Mansour, Eds. ACM, 2016, pp.

684–697. [Online]. Available: http://dblp.uni-trier.de/db/conf/stoc/stoc2016.html\#Babai16
[8] J. E. Hopcroft and J. K. Wong, “Linear time algorithm for isomorphism of planar graphs (preliminary report),” in STOC,

R. L. Constable, R. W. Ritchie, J. W. Carlyle, and M. A. Harrison, Eds. ACM, 1974, pp. 172–184. [Online]. Available:
http://dblp.uni-trier.de/db/conf/stoc/stoc74.html\#HopcroftW74

[9] G. S. Lueker and K. S. Booth, “A linear time algorithm for deciding interval graph isomorphism.” J. ACM, vol. 26, no. 2, pp.
183–195, 1979. [Online]. Available: http://dblp.uni-trier.de/db/journals/jacm/jacm26.html\#LuekerB79

[10] M. Muzychuk, “A solution of the isomorphism problem for circulant graphs,” Proceedings of the London Mathematical Society, vol. 88,
no. 1, pp. 1–41, 2004.

[11] F. Harary, C. King, A. Mowshowitz, and R. C. Read, “Cospectral graphs and digraphs,” Bulletin of the London Mathematical Society,
vol. 3, no. 3, pp. 321–328, 1971.

[12] F. T. Leighton and G. l. Miller, “Certificates for graphs with distinct eigen values,” 1979, orginal Manuscript.
[13] L. Babai, D. Y. Grigoryev, and D. M. Mount, “Isomorphism of graphs with bounded eigenvalue multiplicity,” in Proceedings of the

fourteenth annual ACM symposium on Theory of computing, 1982, pp. 310–324.
[14] J. A. Howell, “An algorithm for the exact reduction of a matrix to Frobenius form using modular arithmetic. I,” Mathematics of

Computation, vol. 27, no. 124, pp. 887–904, 1973.
[15] ——, “An algorithm for the exact reduction of a matrix to Frobenius form using modular arithmetic. II,” Mathematics of Computation,

vol. 27, no. 124, pp. 905–920, 1973.

