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Detecting whether a graph has a fixed-point-free
automorphisms is in polynomial Time

Yasunori Ohto

Abstract

The problem of determining whether a graph has a fixed-point-free automorphism is NP-complete. We demon-
strate that the problem can be solved efficiently within polynomial time. First, we obtain the automorphisms of an
input graph G by using a spectral method. Next, we prove the Theorem used to detect whether there is a fixed-point
free automorphism in G. Next, we construct an algorithm to detect whether G has a fixed-point-free automorphism
using this result. The computational complexity of detecting whether a graph has a fixed-point-free automorphism
is O(n5). If fixed-point-free automorphism exist, the computational complexity of obtaining a fixed-point-free
automorphism is O(n6). Then, the complexity classes P and NP are the same.

Index Terms

fixed-point-free automorphism, graph spectrum, polynomial time computation, NP-complete problem.

I. INTRODUCTION

The P versus NP problem [1], [2] is one of the major problems in theoretical computer science. An
answer to this problem would determine whether problems that can be verified in polynomial time can
also be solved in polynomial time. Attempts have been made to prove that P is not equal to NP. However,
it has been shown that this cannot be proven or is difficult to prove using the methods of relativizing
proofs [3], natural proofs [4], and algebrizing proofs [5]. On the other hand, many attempts have been
made to show the lower bound of the computational complexity of NP problems [6], [7], mainly by
pruning unnecessary branches [8]. Some attempts have been made to obtain the average computational
complexity as polynomial time [9]. It has also been shown that by restricting the inputs, the computational
complexity can be achieved polynomial time [10]. However, it is still unclear whether P and NP are equal.
In contrast, we will show a lower bound on the computational complexity of an NP-complete problem
without limitation by introducing a spectral method to handle multiple states at once.

If a problem is NP and all other NP problems are polynomial-time reducible to it, the problem is
NP-complete [11]. If one of the NP-complete problems can be solved in polynomial time, the complexity
classes P and NP are the same. The problem of determining whether a given graph has a fixed-point-
free automorphism is NP-complete [12]. In this paper, we show that it is solvable in polynomial time.
After obtaining all automorphisms containing a transposition of two vertices, G has a fixed-free-point
automorphism if, and only if, these automorphisms transpose all vertices. Then, we show that this
algorithm can be solved in polynomial time. Note that we compare the two eigenvalue sets without
real number calculations by using Frobenius normal form [13], [14]. The computational complexity of
detecting whether a graph has a fixed-point-free automorphism is O(n5). If fixed-point-free automorphism
exists, the computational complexity of obtaining a fixed-point-free automorphism is O(n6). Since one of
the NP-complete problems is solvable in polynomial time, the complexity classes P and NP are the same.

This paper is organized as follows. Section II provides the proofs used to determine whether a given
graph has a fixed-point-free automorphism. Section III presents an algorithm to solve this problem.
Section IV presents a discussion of this result. Finally, Section V presents a conclusion regarding the
result of this paper.
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II. PROOF

In this section, we provide a proof for detecting whether a given graph has a fixed-point-free automor-
phism in polynomial time.

First, we show that we can obtain all automorphisms by composition using automorphisms of order two.
Next, we show that we can obtain the automorphisms containing transposing two vertices by comparing
the eigenvalue set of the adjacency matrix of a vertex-weighted graph by weighting it to a vertex. Next,
we show that there is a fixed-point-free automorphism exists if and only if, for any vertex va there is a
vertex vb ̸= va such that automorphisms that contain transposing two vertices va and vb.

A. Fixed-point-free automorphism
We define the fixed-point-free automorphism as follow.

Definition II.1. Suppose that a graph G = (E, V ) has an automorphism. Let ψ be the automorphic
transformation. A fixed-point-free automorphism is an automorphism such that ψ(v) ̸= v at all vertices
v ∈ V .

B. Preparation
We define the following functions, which will be used in the proofs and the methods. Suppose S is

a vertex-weighted graph. Let Vw0(S) be the set of vertices of S with weight 0. Let Sg(S, v, w) be the
vertex-weighted graph in which the weight w ∈ N is given to vertex v of S. Denote the adjacency matrix
of S by A(S). Let Ev(S) be the set (with multiplicities) of eigenvalues of A(S).

C. Composition using automorphisms of order two
Let Aut(G) be the automorphism group of G. This subsection shows that we can obtain all automor-

phisms ψ ∈ Aut(G) by composition of automorphisms of order two.

Corollary II.1. There are certain automorphisms ψ1, ψ2, . . . , ψm ∈ Aut(G = (V,E)) of order two, and
we can explain ψ = ψmψm−1 · · ·ψ1.

Proof. Permuting vertices of ψ which consists of transposition (automorphism of order two) and cycling
(automorphism of order above two). Let σ1 · · ·σr ∈ V . Suppose that a composition of automorphisms has
a cycle ψc = (σ1 · · ·σr) of order r. There is a bijection σi → σi+1 with 0 < i < r and a bijection σr → σ1
exists. Thus, there exist two transpositions. One is the automorphism ψ1,2 containing the transposition
of σ1 and σ2. And the other is the automorphism ψ2,r containing the transposition of σ2 and σr. So,
we obtain ψc by applying ψ2,r following ψ1,2. Thus, we can reduce all cycling to the composition of
transpositions.

Example II.2. Suppose a cycle ψc5 = (σ1, · · · , σ5) of order 5. The automorphism contains the transposi-
tion ψ1,2 = ((σ1, σ2), (σ3, σ5)) and ψ2,5 = ((σ2, σ5), (σ3, σ4)). Thus, we obtain ψc5 = (((σ1, σ2), (σ3, σ5)),
((σ2, σ5), (σ3, σ4))).

Example II.3. Suppose a cycle ψc6(σ1, · · · , σ6) of order 6. The automorphism contains the transposition
ψ1,2 = ((σ1, σ2), (σ3, σ6), (σ4, σ5)) and ψ2,6 = ((σ2, σ6), (σ3, σ5)). Thus, we obtain ψc6 = (((σ1, σ2),
(σ3, σ6), (σ4, σ5)), ((σ2, σ6), (σ3, σ5))).

Figure 2 shows an example of obtaining a cyclic automorphism by compositions of automorphisms of
order two.
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D. Obtaining the automorphisms that contain transposing two vertices
This subsection shows that we can obtain the automorphisms containing transposing two vertices by

comparing the eigenvalue set of the adjacency matrix of a vertex-weighted graph by weighting it to a
vertex.

An automorphism of order two contains transposing two vertices. So, we remove fixed points by
compositions of automorphisms that contain transposing two vertices. Thus, we use Theorem II.4 and
Corollary II.5 [15] to obtain the automorphisms that contain transposing two vertices of an input graph
G using eigenvalue sets.

Theorem II.4. Let Svi = Sg(S, vi, w) and Svj = Sg(S, vj, w) with vi, vj ∈ Vw0(S), vi ̸= vj and w > 0.
When Ev(Svi) = Ev(Svj), Svi and Svj are isomorphic.

The following proof is reproduced from the reference [15].

Proof. We show that if Ev(Svi) = Ev(Svj), then Svi and Svj are not cospectral but isomorphic.
Let A(Svi) and A(Svj) be Avi and Avj , respectively. When there exists a permutation matrix P such

that Avi = P tAvjP , Svi and Svj are isomorphic. Denote the eigenfunctions of Avi and Avj by fvi and fvj ,
respectively. When fvi and fvj are the same, the eigenvalue sets of Avi and Avj are the same. Therefore,
we will prove that such a nontrivial permutation matrix exists when fvi − fvj = 0.

Without loss of generality, we may assume i = 1 and j = 2. We show the characteristic polynomials
fv1 and fv2 as below.

fv1 = |Av1 − λI|

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

w − λ a1,2 a1,3 a1,4 · · · a1,n
a2,1 −λ a2,3 a2,4 · · · a2,n
a3,1 a3,2 w3 − λ a3,4 · · · a3,n

a4,1 a4,2 a4,3
. . . ...

...
...

... . . . ...
an,1 an,2 an,3 · · · · · · wn − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

fv2 = |Av2 − λI|

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ a1,2 a1,3 a1,4 · · · a1,n
a2,1 w − λ a2,3 a2,4 · · · a2,n
a3,1 a3,2 w3 − λ a3,4 · · · a3,n

a4,1 a4,2 a4,3
. . . ...

...
...

... . . . ...
an,1 an,2 an,3 · · · · · · wn − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The weights of the vertices are w, w3, . . . , wn, all of which are integers. Then,

fv1 − fv2 = w

∣∣∣∣∣∣∣∣∣∣∣

0 a2,3 a2,4 · · · a2,n
a3,2 w3 − λ a3,4 · · · a3,n

a4,2 a4,3
. . . a3,n

...
... . . . ...

an,2 an,3 · · · · · · wn − λ

∣∣∣∣∣∣∣∣∣∣∣
− w

∣∣∣∣∣∣∣∣∣∣∣

0 a1,3 a1,4 · · · a1,n
a3,1 w3 − λ a3,4 · · · a3,n

a4,1 a4,3
. . . a3,n

...
... . . . ...

an,1 an,3 · · · · · · wn − λ

∣∣∣∣∣∣∣∣∣∣∣
= 0.

(1)

If n = 2, fv1 and fv2 are the same. Hence, in this case, Sv1 and Sv2 are isomorphic.
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We treat the case of n = 3 as follows. Equation 1 becomes

fv1 − fv2 = w

∣∣∣∣ 0 a2,3
a3,2 w3 − λ

∣∣∣∣− w ∣∣∣∣ 0 a1,3
a3,1 w3 − λ

∣∣∣∣
= w(a2,3a3,2 − a1,3a3,1)
= 0.

So, when a2,3 = a1,3, fv1 and fv2 are the same. For this case, then, Sv1 and Sv2 are isomorphic.
Let n > 3. Suppose the matrix A′ is as follows.

A′ =


w3 a3,4 · · · a3,n

a4,3
. . . a3,n

... . . . ...
an,3 · · · · · · wn

 .

Let vertex u1 = (a1,3, a1,4, . . . , a1,n)
t and u2 = (a2,3, a2,4, . . . , a2,n)

t. Then, Equation 1 becomes as
follows.

fv1 − fv2 = w

∣∣∣∣ 0 ut2
u2 A′ − λI

∣∣∣∣− w ∣∣∣∣ 0 ut1
u1 A′ − λI

∣∣∣∣
= 0.

In order for fv1 and fv2 to be the same, it is necessary that fv1 − fv2 = 0 for all λ. So, we assume
|A′ − λI| ≠ 0. Then,

fv1 − fv2 = w|A′ − λI||0− ut2(A′ − λI)−1u2|
− w|A′ − λI||0− ut1(A′ − λI)−1u1|

= w|A′ − λI|(u2 − u1)t(A′ − λI)−1(u2 − u1)
= 0.

When u1 = u2, fv1 and fv2 are the same. In this case, then, Sv1 and Sv2 are isomorphic.
Let u2 ̸= u1. When (u2−u1)t(A′−λI)−1(u2−u1) = 0, u2−u1 and (A′−λI)−1(u2−u1) are orthogonal.

So,

(u2 − u1)t(A′ − λI)(u2 − u1) = ut2A
′u2 − ut1A′u1 − ut2λIu2 + ut1λIu1

= 0.

In order for fv1 and fv2 to be the same, it is necessary that fv1 − fv2 = 0 for all λ. So, the number of
elements with value 1 in u2 and u1 is the same.

Since u2 − u1 and (A′ − λI)(u2 − u1) are orthogonal,

(u2 − u1)tA′(u2 − u1) = (u2 − u1)tP ′tA′P ′(u2 − u1)
= (u1 − u2)tP ′tA′P ′(u1 − u2)
= 0

with P ′ a liner operator. When A1 and A2 have the same eigenvalue set, there exists a set of nontrivial
permutation matrices {P ′|P ′tA′P ′ = A′∧ (u2−u1) = P ′(u1−u2))}. So, Sv1 and Sv2 are isomorphic.

Corollary II.5. Let Svi = Sg(S, vi, w) and Svj = Sg(S, vj, w) with vi, vj ∈ Vw0(S), vi ̸= vj and w > 0.
If Ev(Svi) ̸= Ev(Svj), then Svi and Svj are not isomorphic.

The following proof is reproduced from the reference [15].

Proof. By applying a permutation matrix P , P tA(Svj)P is not equal to A(Svi). So, there is no bijection
between Svi and Svj . Therefore, Svi and Svj are not isomorphic.
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Thus, since Theorem II.4 and Corollary II.5, when Ev(Svi) = Ev(Svj) if, and only if, there is an
automorphism in G that contains the transposition of vi and vj . Function 2 obtains all automorphisms in
G. And figure 1 shows an example of obtaining all automorphisms in G that contains the transposition
of two vertices.

E. Detecting whether there is a fixed-point-free automorphism
This subsection shows that there is a fixed-point-free automorphism exists if and only if, for any vertex

va there is a vertex vb ̸= va such that automorphisms that contain transposing two vertices va and vb.
Lemma II.6 and Theorem II.7 prove that it is possible to detect whether there is a fixed-point-free

automorphism in G.
1) Composition of automorphisms does not increase the fixed points: We prove that the composition

of automorphisms does not increase the fixed points.

Lemma II.6. Suppose that a graph G = (E, V ) has nontrivial automorphisms ψa, ψb ∈ Aut(G), where
ψa ̸= ψb. Let ψa have fixed points Vfixed,ψa = {v|ψa(v) = v, v ∈ V }. Suppose, ψb has the vertex
transposition ψb(va) = vb and ψb(vb) = va, va ∈ Vfixed,ψa . When we apply ψb following ψa, the set of
fixed points becomes Vfixed,ψa ∩ Vfixed,ψb

.

Proof. Suppose ψa : Va,s 7→ Va,d with (Va,s ∪ Va,d) ⊕ Vfixed,ψa = V . When we apply ψb following ψa,
we obtain ψb ◦ ψa such that Va,s ∪ Vfixed,ψa 7→ Va,s ∪ Vfixed,ψa and Va,d ∪ Vfixed,ψa 7→ Va,d ∪ Vfixed,ψa , so
the vertices belonging to Va,s and Va,d are not returned to the original points by ψb. The automorphic
transformation ψb maps at least one vertex v to another. Then, v becomes not a fixed point.

Figure 2 shows an example of fixed points being reduced by using composition of automorphisms.
2) Detecting whether there is a fixed-point-free automorphism: We prove how to detect whether there

is a fixed-point-free automorphism.

Theorem II.7. We obtain the vertex sets Vλ ⊂ V with the same λv = Ev(Sg(S, v, w)), v ∈ V , w > 0.
Vλvi > 1 for all vertex sets of λvi if, and only if, G has a fixed-point-free automorphism.

Proof. From Lemma II.6, applying the composition of automorphic transformations to G does not increase
the size of the set of fixed points. Suppose that the set of fixed points Vfixed exists after applying
the composition of the automorphism ψ1 · · ·ψi to G. We can reduce the size of Vfixed by applying
an automorphism ψi+1 that contains the transposition of v ∈ Vfixed and another vertex.

When Vλvi > 1 for all vertex sets, there exists ψ such that ψ(v) ̸= v at every vertex v. On the other
hand, suppose there is a set of vertices such that |Vλvj | = 1. There is no ψ such that ψ(v) ̸= v at v ∈ Vλvj .
Then, v becomes a fixed point.

Function 3 detects whether a graph G has a fixed-point-free automorphism in h. And figure 1 shows
an example of detecting a fixed point for the graph G = (V,E).

III. ALGORITHM

This section presents a polynomial-time algorithm to determine whether a graph has a fixed-point-free
automorphism and shows to be able to obtain a fixed-point-free automorphism in polynomial time if it
exists. We assume that the number of vertices of the graph is n.

First, we show that how to compare the sets of eigenvalues without real number calculations. Next, we
show how to obtain a fixed-point-free automorphism.
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Algorithm 1 Obtaining a fixed-point-free automorphism in G if it exists.
1: function OBTAIN A FIXED-POINT-FREE AUTOMORPHISM IF IT IS EXISTS(G = (V,E))
2: h← OBTAIN AUTOMORPHISMS(G)
3: if IS FIXED-POINT-FREE AUTOMORPHISM EXISTS(h) then
4: return OBTAIN A FIXED POINT FREE AUTOMORPHISM(G,h)
5: else
6: return null
7: end if
8: end function

Algorithm 2 Obtaining all automorphisms in G = (V,E).
1: function OBTAIN AUTOMORPHISMS(G = (V,E))
2: S ← G with all vertex weights are 0
3: w ← 2|V |
4: clear hash h
5: for each v ∈ V do
6: λ← Ev(Sg(S, v, w))
7: if h(λ) = ∅ then
8: h(λ)← {v}
9: else

10: h(λ)← h(λ) ∪ {v}
11: end if
12: end for
13: return h
14: end function

A. Comparing the sets of eigenvalues
This subsection shows that how to compare the sets of eigenvalues without real number calculations.
Since the elements of an adjacency matrix of a vertex-weighted graph are all integers, the coefficients

of the eigenequation of this matrix are all integers. We use the set of coefficients of the eigenequation
of the adjacency matrix of a vertex-weighted graph instead of its set of eigenvalues. We calculate the
Frobenius normal form to obtain the set of coefficients without real number calculations. Then, we compare
the coefficients to determine whether the sets of eigenvalues are the same. The amount of computation
required to convert an adjacency matrix into the Frobenius normal form is O(n4).

B. Obtaining a fixed-point-free automorphism
This subsection shows how to obtain a fixed-point-free automorphism.
1) Flow of the algorithm: Function 1 obtains all fixed-point-free automorphism in G. First, we obtain

the automorphisms in G by using Function 2. Next, we check whether a fixed-point-free automorphism
exists by using Function 3. If it exists, we obtain a fixed point free automorphism by using Function 4.

2) Obtaining all automorphisms: Function 2 obtains all automorphisms in G. By adding a weight w > 0
to a vertex, we obtain a set of vertices Vλ with the same eigenvalue set. Thus, we obtain automorphisms
of G from Theorem II.4 and Corollary II.5. The computational complexity of this function is O(n5).

3) Detecting whether there is a fixed-point-free automorphism: Function 3 detects whether a graph
G has a fixed-point-free automorphism in h. We check if the size of the vertex set Vλ is 1 or above to
determine whether there is a fixed-point-free automorphism based on Theorem II.7. The computational
complexity of this function is O(n).

Example III.1. Figure 1 shows an example of detecting a fixed point for the graph G = (V,E). Let the
vertex weighted graph S = G. We identify the sets of vertices Vλ ⊂ V that share the same eigenvalue
λv = Ev(Sg(S, v, w)), where v is a vertex in the graph and w is a positive weight. Then, we obtain
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Algorithm 3 Detecting whether a graph G has a fixed-point-free automorphism in h.
1: function IS FIXED-POINT-FREE AUTOMORPHISM EXISTS(h)
2: for each T ∈ h do
3: if |T | = 1 then
4: return FALSE
5: end if
6: end for
7: return TRUE
8: end function

p1 p2

p3p4

p5

Fig. 1. An example of detecting a fixed point.

Vλ1 = {p1, p3}, Vλ2 = {p2, p4} and Vλ3 = {p5}. Thus, since |Vλ3| = 1, G has no fixed-point-free
automorphism.

Since Vλ1 = {p1, p3}, there exists an automorphic transformation ψ1 that contains the transposition
of vertices p1 and p3. When we apply ψ1, vertices p2, p4 and p5 become fixed points. Now, since Vλ2 =
{p2, p4}, there exists an automorphic transformation ψ2 that contains the transposition of vertices p2 and
p4. Thus, applying ψ2 after ψ1 leaves p5 as a fixed point. Since Vλ3 = {p5}, there is no automorphic
transformation that involves the transposition of vertex p5 and another vertex. Therefore, vertex p5 remains
as a fixed point.

Function 4 obtains a fixed-point-free automorphism. First, we set all vertices of V as fixed points Vc.
Next, we obtain the sets of transposition of two vertices from h by using Function 5. Then, we obtain
a fixed-point-free automorphism by greedily obtaining transposition by using Function 6 until there are
no fixed points left. The call to Function 6 is in a loop, however, the number of attempts to obtain the
transpositions between vertices is at most n2. Thus, the computational complexity of this function is
O(n6).

4) Obtaining a fixed-point-free automorphism if it exists: Function 5 obtain the set of transpositions
of two vertices from h. The computational complexity of this function is O(n2).

Function 6 obtains the transpositions from one of the fixed points. First, we set all vertices of V as

Algorithm 4 Obtaining a fixed-point-free automorphism.
1: function OBTAIN A FIXED POINT FREE AUTOMORPHISM(G = (V,E),h)
2: Q← OBTAIN THE SET OF TRANSPOSITIONS(h)
3: Vc ← V (fixed points)
4: clear R (return value)
5: while Vc ̸= ∅ do
6: (V ′

c , Q,R′)← OBTAIN TRANSPOSITIONS FROM A VERTEX(G,Q,v ∈ Vc)
7: Vc ← Vc ∩ V ′

c

8: push R′ to R
9: end while

10: return R
11: end function
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Algorithm 5 Obtaining the set of transpositions.
1: function OBTAIN THE SET OF TRANSPOSITIONS(h)
2: Q← ∅
3: for each T ∈ h do
4: for i← 1 to |T | − 1 do
5: vi ← i-th vertex in T
6: for j ← i+ 1 to |T | do
7: vj ← j-th vertex in T
8: Q← (vi, vj)
9: end for

10: end for
11: end for
12: return Q
13: end function

Algorithm 6 Obtaining the transpositions from a vertex.
1: function OBTAIN TRANSPOSITIONS FROM A VERTEX(G = (V,E),Q,v)
2: clear R′ (return value)
3: (V ′

c , w)← (V, 2|V |)
4: Sa ← G with all vertex weights are 0
5: obtain (va, vb) ∈ Q such that v = va or v = vb
6: push (va, vb) to R′

7: (Sa, Sb)← (Sg(Sa, va, w), Sg(Sa, vb, w))
8: (Va, Vb, V

′
c , w,Q)← ({va}, {vb}, V ′

c − {va, vb}, w + 2|V |, Q− {(va, vb), (vb, va)})
9: loop

10: (Va, Vb)← OBTAIN CONNECTED VERTICES(Va,Vb,V ′
c )

11: if Va = ∅ then
12: return (V ′

c ,Q,R′)
13: end if
14: (Sa, Sb, w,Q,R′)← OBTAIN VERTEX TRANSPOSITIONS(Va,Vb,Sa,Sb,w,Q,R′)
15: V ′

c ← V ′
c − (Va ∪ Vb)

16: end loop
17: end function

fixed points V ′
c within this function. Next, we obtain transpositions by using Function 7 and 8. The call

to Function 8 is in a loop, however, the number of attempts to obtain the transpositions between vertices
is at most n2. Thus, the computational complexity of this function is O(n6).

Function 7 obtains two set of vertices V ′
a and V ′

b . One vertex set V ′
a is adjacent to only vertices in

Va. The other vertex set V ′
b is adjacent to only vertices in Vb. Vertex transpositions between Va and Vb

are accompanied by the vertex transpositions between V ′
a and V ′

b . The computational complexity of this
function is O(n2).

Function 8 obtains the vertex transpositions between Va and Vb. Let λ = Ev(Sg(Sa, va, w) with va ∈ Va
and w > 0. Since Theorem II.4 and Corollary II.5, any vb ∈ Vb such that Ev(Sg(Sb, vb, w)) = λ is graph
isomorphism. So, we obtain the transposition between va and vb. Thus, by obtaining the correspondence
of vertices one by one, we can obtain the transpositions between vertices belonging to Va and vertices
belonging to Vb. The computational complexity of this function is O(n6).

Example III.2. Figure 2 shows an example of obtaining a fixed-point-free automorphism in G. First, we
set all vertices to fixed points and clear R and R′. Next, we obtain one vertex from fixed points. Suppose
we obtain p1. Next, we obtain the transposition of p1 and other vertex. So, suppose we obtain (p1, p2).
Then, we push (p1, p2) to R′. Next, we obtain the vertex transpositions accompanied by the previously
obtained vertex transposition. So, we obtain (p3, p5). We push (p3, p5) to R′. Now, R′ becomes ((p1, p2),
(p3, p5)). Since there is no other transposition, we push R′ to R and apply R′ to G. Then, fixed points
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Algorithm 7 Obtaining the set of vertices adjacent to the vertices in Va and the set of vertices adjacent
to the vertices in Vb.

1: function OBTAIN CONNECTED VERTICES(Va,Vb,V ′
c )

2: (V ′
a, V

′
b )← (∅, ∅)

3: for each v ∈ V ′
c do

4: for each va ∈ Va do
5: if (v, va) ∈ E then
6: V ′

a ← V ′
a ∪ {v}

7: break
8: end if
9: end for

10: for each vb ∈ Vb do
11: if (v, vb) ∈ E then
12: V ′

b ← V ′
b ∪ {v}

13: break
14: end if
15: end for
16: end for
17: Vd ← V ′

a ∩ V ′
b

18: return (V ′
a − Vd, V ′

b − Vd)
19: end function

Algorithm 8 Obtaining the vertex transpositions between Va and Vb.
1: function OBTAIN VERTEX TRANSPOSITIONS(Va,Vb,Sa = (V,E, z),Sb,w,Q,R′)
2: for each va ∈ Va do
3: λ← Ev(Sg(Sa, va, w))
4: for each vb ∈ Vb do
5: if Ev(Sg(Sb, vb, w)) = λ then
6: (Q,Vb)← (Q− {(va, vb), (vb, va)}, Vb − {vb})
7: (Sa, Sb, w)← (Sg(Sa, va, w), Sg(Sb, vb, w), w + 2|V |)
8: push (va, vb) to R′

9: break
10: end if
11: end for
12: end for
13: apply R′ to Sa and Sb

14: return (Sa,Sb,w,Q,R′)
15: end function

become {p4}.
Next, we clear R′. Next, we obtain one vertex from fixed points. Then, we obtain p4. Next, we obtain

the transposition of p4 and other vertex. So, suppose we obtain (p4, p5). Then, we push (p4, p5) to R′.
Next, we obtain the vertex transpositions accompanied by the previously obtained vertex transposition.
So, we obtain (p1, p3). We push (p1, p3) to R′. Now, R′ becomes ((p4, p5), (p1, p3)). Since there is no other
transposition, we push R′ to R and apply R′ to G.

The set of fixed points become an empty set. Thus, we obtain R = (((p1, p2), (p3, p5)), ((p4, p5), (p1, p3)))
as a fixed-point-free automorphism.

5) Computational complexity: The computational complexity for determining the presence of a fixed-
point-free automorphism in a graph is O(n5). If fixed-point-free automorphism exists, the computational
complexity of obtaining a fixed-point-free automorphism is O(n6).
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p2 p3

p1 p4

p5

p1 p5

p2 p4

p3

p3 p4

p2 p5

p1

(p1,p2),(p3,p5) (p4,p5),(p1,p3)

Fig. 2. An example of obtaining a fixed-point-free automorphism.

IV. DISCUSSION

We have shown how to detect whether an input graph G has a fixed-point-free automorphism in
polynomial time. After obtaining all automorphisms containing a transposition of two vertices, G has
a fixed-free-point automorphism if, and only if, these automorphisms transpose all vertices. Since one of
the NP-complete problems is solvable in polynomial time, the complexity classes P and NP are the same.

The method presented in this paper only shows a polynomial time complexity. Obtaining the Frobenius
normal form in O(n3) has been proposed [16]. Thus, the complexity of the algorithm proposed in this
paper may be O(n4). However, we think that the complexity will not be less than O(n4). Although the
method becomes in polynomial time by reducing it into other NP-complete problems in polynomial time,
we do not know a lower bound on the complexity for each problem. In addition, if an input size is not so
large, existing algorithms may be able to obtain the answer in less time than our proposed algorithm. We
believe that the method in this paper is not to collapse the security of cryptography immediately. We think
the computational complexity required for cryptography might not be a small order. For this reason, we
believe that the security of encryption can be ensured by giving a sufficient input size to the encryption
key.

V. CONCLUSION

In this paper, we have presented the theorems and an algorithm to detect whether a given graph G
has a fixed-point-free automorphism. It has polynomial time complexity. Since one of the NP-complete
problems is solvable in polynomial time, the complexity classes P and NP are the same.

APPENDIX A
DEFINITION

In this section, we give the definitions used in this paper.

Definition A.1. A graph G = (V,E) is a pair consisting of a non-empty finite vertex set V ̸= ∅ and
an edge set E that is a subset of V 2. The graph’s size is the number of its vertices 1 < n = |V |. The
number of vertices in a graph is assumed to be finite. In addition, we align the set V with {v1, . . . , vn}.
There is an edge between vertices va and vb when (va, vb) is an element of the set E. Also, edges have no
direction. Moreover, the graph has no multiple edges between a pair of vertices, and there are no loops
(i.e., (va, va) is never an edge).

Definition A.2. A vertex-weighted graph S = (V,E, z) is a graph with a function z : V → N that gives
the weights of the vertices. Then, a graph is a vertex-weighted graph in which the weights of all its
vertices are 0.

Definition A.3. The adjacency matrix A of a vertex-weighted graph S = (V,E, z) with n = |V | is an
n× n symmetric matrix that is given as follows. The entries ai,j , vi, vj ∈ V , 0 < i, j ≤ n of A satisfy: (vi, vj) ∈ E if ai,j = aj,i = 1,

(vi, vj) /∈ E if ai,j = aj,i = 0,
ai,i = z(vi).
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