An Elementary Solution of the Navier-
Stokes Existence and Smoothness

Masatoshi Ohrui (KEEEZ)

( MasatoshiOhrui1993@gmail.com )

Abstract
This is an elementary argment in the sense that there are no long or complicated calculations, and

the theory of evolution equations is not used at all. Our initial values can be taken arbitrary large,
our solutions are time global and physically suitable.

Introduction
The existence of the solutions is actually known. For example, Fujita-Kato Theory, Shibata Theory:
Zhang [30], Charve-Danchin [31], Shibata-Miura [32]. The semi-group theory or apriori estimates
are in these theories, but these are not elementary. The initial values can be taken arbitrary large in
the Leray-Hopf's weak solutions, but the uniqueness and smoothness are unresolved. Semi-group
theory or apriori estimates are not used in the proof of existence of the Leray-Hopf's weak
solutions (for example, Wasao SIBAGAKI, Hisako RIKIMARU [29]), but it is not elementary, too. We
define new weak solutions with uniqueness and smoothness, without semi-group theory or apriori
estimates. The initial values mast be small in the Fujita-Kato theory or Shibata theory to show the
solutions are time global, but our initial values can be taken arbitrary large and our solutions are
time global. We apply locally solvability of the partial differential oparators with constant
coefficients. The policy is, to let L be the heat operator 815 — A in the initial value problem of the

Navier-Stokes equations on Q

Ou—Au=f—Vp—(u-V)u

divu =0

u(0,2) = a(z),

to erase the pressure P , to approximate the nonlinear term (u . V)u by a sequence of smooth

functions, to use the locally solvability for the difference between the external force f and the
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approximation term, and to show that the limit in the Sobolev space is the solution. Our
solutions are physically suitable: f = U, f — P;a — u,a — P are continuous, and

[Definition of symbols]

For convenience, we write the index of the component of the vectors in the upper right corner.
"Function space" and "space" are abbreviations for "linear topological space" (of functions or
distributions), other than pressure  are R?’ -valued. The absolute value of the functions in the
norm of normal function space is interpreted as the length of the number vector (the absolute
value of Rg ) in the norm of the space of the ]R3 -value functions. We write the space of the real
numeric functions and the space of the R?’ -value functions in the same symbol to make symbols
simple. For any positive number & , let B5(0, 0) be the § -neighborhood of point (0, 0) . Let |2
be ) 's Lebesgue measure. Let X be the characteristic function on () . For any natural number
m > max{0+4/1,0+4/2} =4,p=1,2,1et V"?(Q) = {u € C*°(R x R?) :
|w||wme @) < 00,divu = 0}, W7P(2) be the Sobolev space defined by V"*P({2) 's

—ma e lwme )
completion by norm of WP () = ng’p(ﬂ) . Let D(2) be the space of the test
functions ( C§°(€2) as a set), let D, (£2) be the space of the test functions that the divergence is

0 for spatial variables (see [Supplement 1]). Let P : LZ(Q) — Lg(Q) = m”’\m(m be
the projection. Let Ck’E (ﬁ) be the Holder space. Let

(w, ) = (W, )i

= [o > Z ) w (t, )" (t, z)dtdz

= [, w( @(t, x)dtdx

(w = (wl,w2,w3),s0 = (¢, %, ¢%)) .

In general, if for two Banach spaces X, Y | there exists a linear Hausdorff space Z such that
X,Y C Z ,then X NY is aBanach space with norms given by ||u||x + ||u||y or

max{||u x, [ully}  max{[lu|x, [ully} < [lullx + [Jully <2max{[[u|x, |ully}
so these are equivalent. We put

X = (V2 WML () 1 W (9),

X'= N s W™HQ) N W™2(Q).

We define forany u € X ,

lullx = > ms m l[ullwmy@nmwme(a) .

foranyu € X',

lullx =30 i lullwma@)awme) -

For a constant M > 0, let S be a subset of X :

S ={uec X :||u||x < M}.Letthe fundamental solution of Oy — A be E . That s, in the
sence that Rg -valued distribution,
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(8, — A)E(t, ) = 8(t,z) = 5(t) ® 8(z) .

Here,
_ =7
Ei(t,z) = \/4%36  (t>0) .
0 (t <0)
(END)

Existence of elementary weak solutions

[Assumptions]

Let the domain {2 be a bounded open set contained in R X R?’ , have smooth boundary, and
satisfy (0,0) € €. We assume that for any multi-index a , do, = sup{|((¢, ) —
(t',2')° : (t, ), (t',z') € Q} > 1. Letthe external force f : R x R? — R satisfies
feSand|f|lx < M.

Let the set of initial values be

A={u(0,"):ue S ut,z)= [ pEy) xelt—sz—y)(Pflt—sz—

y) — P((u- V)u)(t — s,z — y))dsdy}.
(END)

[Locally solvability of linear partial differential operator with constant coefficients]

Let the fundamental solution of linear partial differential operator with constant coefficients L on
RY be E . E € D' satisfies LE = 6 .For f € Llloc , one of the weak solutions of the
equaton Lu = fonQ € RV isu = E * xqf € D'(Q).

(END)

[Proof]
Forany ¢ € D(Q),

<L(E * XQf)a 90>

= +(Exxqf,Ly)

= +(E(x), (xa(y)f(y), Lo(z +y)>>
= =(xa(z)f(z), (E(y), Le(z + y)))
= (xa(z)f(z), (LE(y), p(z + v)))
= (LE(z), (xa(y)f(y), p(z + y)))
= (xe(W)f(y),e(y)) = (f,¥) .

(END)
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[Proposition]
A # ().Leta € A . Then there are weak solutions u, P of the initial value problem on {2 :

Ou—Au=f—-Vp—(u-V)u
divu =0
u(o’ x) - a(:l}),

in the sence that, u € S, p € L2 (Q)/{p":p' ~q <= V(p' —q) =0} andu, p

satisfy for any ¢ € D,(12),

(Ou+ (u-V)u—Au+ Vp — f,p) =0,
forany ¢ € D(Q),

(divu, @) = — 327 (uf,00¢) = 0.

if f #0then A Z0,u #0;if f =0then A = {0}, u = 0. u,p are measurable
functions on R x R3 | so u, P are time global and limy | 0%u(t,z) =0.
(END)

We proof it later by Banach's fixed point theorem.

[Smoothness of elementary weak solutions]
Solution (u, ) are C'™ -functions.

[Proof of smoothness]
M can be arbitrarily large, so the embedding theorem into Holder space,
it N> m —4/p > 0then W™P(Q) C C"4/P)=15(Q) fore € (0,1) *, in the sence of

existence of suitable representative elements, u is C'°° -function.

f issmoothand Qyu + (u - V)u — Au — f = —Vp . Because — V' is smooth, so P is
also smooth.
(END)

[ X, X' are norm spaces]
||w|| x is finity.
[Proof]
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By Sobolev embedding theorem, 0“w is bounded. From Taylor's formula, |0%u(t, z)| <
Co = C, = 0(a!) (Ja| = o0) .Infact, dy = sup{|((t,z) — (¢, z'))%| :
(t,z), (t',z") € Q} > 1 and

im0 Cody/a! < c,

therefore

C, < ca! follows.

(END)

[Completeness]

X, X' are Banach spaces. xq € X, xq € X' so X, X' # {0}.
(END)

[Proof]
Let {un} be a Cauchy sequence in X . Then, foranym > 5, {un} is a Caucy sequence of
WmL(Q) N W) . W™ Q) N W2(Q) is a Banach space, so {1y, } converges. Let
the limitbe . w € X . For any positive number € , there exists a natural number IV such that if
£,n > N then
lwe —un||x < €.
From using Fatou's lemma for counting measure,
lu — un| x
_ oo 1
=D s mp 1t — n|[wmi@)nwnz(q)

o0 T e
=> s — liminf/ |we — wn||wmi@)nwm2(q)

o s s 1

< Hminfroo Y s =5 [|Ue — Un |l @)nwme(q)
<eg.
(END)

[Separation of product and absorption of differential]
Constants C'7, Co > 0 exist such that

Jaivt |, < Ol o

(separation of product)

holds for any u,v € X', and

10zl x < Callulx

(absorption of differential)

holds forany u € X .

(END)
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[Proof]
For the binomial coefficients Cq, 3 , let
o = Zﬁga Cap - B
There is a continuous embedding X' C C*¢(§2) for any natural number k , because ||u,, —
uHX — 0
= ||un — uHWml (QNWm2(Q) — 0
= ||u, — uHCkg @ — 0, sothere exists a constant ¢ > 0 such that HuHCkE @ =
c||u||x . 1f|a] < Kk, by Leibniz' formula,
10% (w'v")|zre)
< CozHUZHckvs(ﬁ)Hleckvs(ﬁ)\ml/p
< cac |70tz [|0° | x
<c cl2‘ﬂ|1/p|]uiHXrHviﬂxf Therefore,
|0 (u' )HLp < ¢,C /2‘Q|1/pHquX,H,U ||x , so there exists a constant C; > 0 such
that
v’ flxr < Chllu’ [l [|v*||x -

Let {un} C X satisfies u,, — u, 8mj’u,n — U . From Holder's inequality, we have

(it — v, )|

< ||Ozitn — v|| o)l @l La(e)

—0(p=1= q=00,p=2 = g = 2) and the weak differentiation is continuous in
D (), 50 Opitty, — Opiuin DL (Q) . From

v=0uu€ X, {uecX:0u€c X} = X, theabsorption of differential is true by the
closed graph theorem.

Or

10l x = S 735 | asullwms @ywmaa)
0

<D w||U\|Wm+11(n)me+L2(Q)

< Co Yo s llullwma @) -
(END)

[Boundness of X 3 u +— E * (xqu) € X |

X>u— Ex (XQu) € X is a bounded operator, so constant 03 > () exists such that for
any u € X

| fewrs E(s,9)x0(t — 8,2 — y)u(t — s,z — y)dsdy| x

< Gslullx
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holds.
(END)

[Proof]

As a function of (S, y) , for any (t, :E) cQ,

supp(E'(s,y)xa(t — s,z —y)u'(t — s,z — y))

C —Q+ ()

={(5,y) ERxR3: (t —s,z—y) € Q}

is the translation of reverse of {2, so it is compact, and

|05 (B (s, y)xa(t — s,z — y)u'(t — s,z —y))| < E'(s,y) sup{|0F,u' (¢ —
s,x—y)|: (t,z) € N} < C’aEi(s, y) € L;,y(ﬂ) , S0 combine the theorem of
differentiation under the integral sign, Holder's inequality and continues embedding X C
L>(Q),

10°(E * (xau))|z2)

< [|E * (0" (xau))l| ()

< IE(s, )|z, (—0+ e 0%ult — 5,2 — Y) |22 (—a+ e 22,0

< sup{[| B[| 1 (~a+(t)) * (£ 2) € Q}H|O% | () Q"7

< sup{[| Ell (-t © (8, 2) € 23" 03" Jul x |2

< 0.

So we have

1E * (xou)||x < Cslu|x.
(END)

We take C' = maX{Cl, Cg, 03} . The separation of product, the absorption of differential, and
the boundness of X 2 u — E % (xqu) € X hold for C'.

We solve

N-S) Ou — Au=f — (u-V)u,

thatis, foranya € A, thereexistu € S, p € L%OC(Q)/{]J' : p’ ~ (] < V(p’ — q) =
0}, such that for any ¢ € D, (),

(Bu+ (u- V)u— Aut Vp— f,0) =0,

forany ¢ € D(),

(divu, ) = =37 (W, 8u¢p) = 0,

u(0,z) = a(z) .
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@ : 5 — S can be defined as

Plul(t, z)

- fo]R?’ E(Say)XQ(t — 5T — y)(Pf(t — 5T — y) o P((u ) V)u)(t — 5T
y))dsdy . We take a function sequence {u,} C Sasug : 2 — R3 andug € S ,ifn > 0
then Un+1(t, ) = P[u,] (¢, z)

= [exrs E(8,9)xa(t — 8,2 —y)(Pf(t — 8,2 — y) — P((un - V)ua)(t — 5,2 —
y))dsdy .If X is a complete metric space, then Sis complete because it is a closed subset that
is not empty, and if @ is a contraction mapping, according to the Banach's fixed point theorem, the

uniqueness and the existence of a fixed point of @ follows:
Some u € S exists uniquely and @[u] =1U.

Then, due to the unigueness of the fixed point in Banach's fixed point theorem, U is an unique
weak solution. If f % Othen A Z 0,u # 0. Let f = 0. From the properties of X ,ifu € X
andu(t, ) = [ ps E(8,9)xa(t — 8,2 —y)(Pf(t — s,z —y) — P((u-

V)u)(t — s,z — y))dsdy then ||ul|x < 3C?||ul|% . So, ifu # 0then 1 < 3C3||ul|x .
By C' = O(|€2]) (|€2] — 0) and the absolute continuity of Lebesgue integral, |Q2] — 0 =

C — 0, ||ullx — 0, therefore f =0 = A = {0},u = 0. u, p are measurable functions
onR x R3  so u, J are time global.

[Proof of the possibility that @ can be defined as a contraction mapping]

u€S=||Ex(xa(Pf—P((u-V)u)))|x < oo
holds. Therefore

| Plull|x < M.

[Pl =1,s0

Ixe(Pf = P((u-V)u))|x

< fllx + |[ut0pu + u?0pu + uPd,sul| x
< M?+3C*M?* < 0.

If

| 2]l x

< CM? +3C°M?

< M,Mmustbe0(1+302)M <1.
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(END)

@ : S — S may be Lipschitz continuous: there may be a constant L > 0 such that

| fioms B(s,9)xalt — 5,2 — ) (P((v- V)0)(t — 8,2 —y) — P((u- V)u)(t -
s, @ —y))dsdy| x

< Lfju —vfx .

If the Lipschitz continuity established,

| 2[u] — lv]||x

< frps B(s,9)xa(t — 5,2 = y)(P((v- V)v)(t — 5,2 —y) — P((u-
Viu)(t — s,z — y))dsdy||x

< Liju —v|x

follows. Here,

[ @ may be a contraction mapping]

L <1
holds.

[Proof of Lipschitz continuity]

(v- V) (t—s z—y)— (u-V)u(t —s,z—y)

- Zg 1( ( Opiv(t — 8,2 —y) — Opiu(t — s, — y)) + (vjawju(t -8z —y)) —
(w Opiu(t — 5,2 — y))) , so we have

| frsrs E(5,9)xa(t — s,z —y)(P((v- V)v)(t — s,z —y) — P((u- V)u)(t -
s,x —y))dsdyl|x

< C?[|v|| x max;([|8piv — Bpiul| x) 4+ C2||v — ul| x max;([|dmul x)

< C*Mljo — ullx + C*M{v — ulx

= 2C°M|ju — v||x.

Therefore, Lipschitz continuity follows for L = 2C°3 M
(END)
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[Proof of the possibility that @ is a contraction mapping]

From the above argment

| Jorms E(s,9)xa(t — s,z — y)(P((v- V)v(t — s,z —y)) — P((u- V)u)(t -
s,x —y))dsdyl|x

< 2C°M|u —v||x

and

20°M < 1.
(END)

[Solvability of the Navier-Stokes equations]
The fixed point & of @ : S — S is the solution of (N-S)".

[proof]

u satisfies div « = 0 in the sense of a distribution belonging to 'D'(Q) . That is, for any ¢ €
. 3 ;

D(Q) 1 <d1V u, (P> - = Zj:l <’LLJ, amf 90> =0.

In fact, for any u € WP (£2) there exists a Cauchy sequence {u,, } C V"P(£2) , by the

integration by parts and Holder's inequality, we have

0=— Zj‘:l <’Ll,%, axj 90>
— = Zj’:l <U']7 O (P> :

Forany ¢ € D,;(Q),

div(go) = 0, so by the integration by parts
(Vp, 90>

= [o 21 (VD)'(¢, )" (¢, z)dtdx
= — [ 0(t, z)div(p)(t, z)dtdx = 0.

Therefore, boundness of u, 8mju by Sobolev embedding theorem and |Q‘ < OO, we have (u
V)u c L2(Q) , S0 by Helmholtz decomposition,

ifwelet f = Pf + Vf, (u-V)u= P((u-V)u) + Vu

then forany ¢ € D,(£2),

(f,0) = (Pf,0), ((u-V)u,0) = (P((u-V)u),p), hence we solve

N-S) Qu — Au = f — (u-V)uin D, (Q).
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By the locally solvability, the solution of the approximate equation on §2

(N-S)" Oyvy, — Avy, = Pf — P((up, - V)uy)
satisfies

U = Unt1 = Ex xo(Pf — P((uy - V)uy,)) .

Therefore, the solution of (N-S)"' satisfies

Uni1(t, @) = [ ps E(s,y)x(t — s,z —y)(Pf(t — s,z —y) — P((un -
V)u,)(t — s,z — y))dsdy.

Ount1(t, ) — Aupi1(t, x)

- <(6tE(t — 5T — y) o AE(t — 5T — y))7XQ(87y)(Pf(37y) o P((un )
V)un)(5,9)))

= (0(1)®d(2),xot —T,2 — 2)(Pf(t — 17,2 — 2) — P((up, - V)u,)(t — 7,2 —

2)))
= Pf(t,z) — P((un - V)un)(t, ).

Therefore, the above calculation and the continuity of the heat operator on D:,(Q) :

|(Optnt1 — Atpt1, ) — (Opu — Au, )| — 0, and from Holder's inequality, || P|| = 1,
and product of the functions L2(Q) X Lz(ﬂ) > (u,v) — uv € Lt (€2) is continuous (see
[Supplement 2])

Ifg )(t
((u V) )( z))) -
< [1((un - V)un)(t, 2)

hence

Ou — Au = Pf — P((u - V)u) holds, so we have

’U,(t, .’13) = foR:ﬂ E(say)XQ(t — 5T — y)(Pf(t — 5T — y) o P((u ) V)u)(t o
s,z —y))dsdy .

7x)
o(t, z)dtdz]|
= ((w- V)u)(t, )|l @l¢(t; )| () — 0 (n — 00),

U is a solution in the sence of distribution in D,’,(Q) of (N-S)'.

Forany U € D (),
"¢ € Dy(Q) = (U,p) =0
<= " there exists a distribution p such that U = Vp "
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by Helmholtz decomposition, therefore there exists P such that (9t’u, + (u . V)u — Au —
f = —Vp holds.
(END)

Properties of the solutions

[Continuity of f +— u, f +—> P ]

Let fn, £ € S, | fullx, | £l < M2, || fo — fllx — 0. Let the solutions be Uy, Py, for f;,
and a,, € A, let the solutions be u, p for f anda € A . Then

|un — u||x — 0,

d(pn,p) == [lun —ullx — 0.
(END)

[Proof]

Hun - UHX — “ foR?’ E(37y) XQ(t — 8T — y)(an(t — 5T — y) - P((’U,n ’
V)Un)(t — 5T — y))dey - foR3 E(S)y) XQ(t — 8T — y)(Pf(t — 5T —
y) — P((u- V)u)(t — s,z — y))dsdy||x

< C|fa— fllx +2C°M|ju, —ul x .

So

limsup,, . ||un — ul|x

< 2C°M limsup,, .. ||un — ulx .

limsup,, . ||un — ul|x <2M,

therefore

<0.

Hence

lim sup,, o, [[un — v x

= lim,, 00 ||un — ul|x = 0.

There exist the maps f = U, U — P so d(pn,p) = Hun — ’LL“X — 0.
(END)

[Continuity of @ — u,a +— P ]
Let the solutions be U, Vb, Pa, qb for a, b . If we define the metrics given by
dA(a,, b) = ||ua — UbHX, D(p, q) = Hua — vaX , then a — u, a — P are continuous.
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(END)

[Vanishing]
limt’|$‘_>oo 0%u(t,z) =0.
(END)

[Proof]
u is a measurable function on R x R3 , SO we can take the limits as ¢, |:I:| — 0.

0%u(t,z) = [ E(t—s,x —y)0*(Pf(s,y) — P((u- V)u)(s,y))dsdy, for any
to > 0,ift — s > ¢ty then

B <1/t

O*(Pf — P((u-V)u)) € X C C*(Q)

so limy 4|00 0“u(t, ) = 0 follows from the bounded convergence theorem.

(END)

From the properties of X and u = P[u]
lullx < ClIfllx +3C%|[ullk < M.
CM<C(1+3C*)M <1

so

Cllfllx <CM*< M.

Therefore, from

C| fllx + 3C?||ul|5 < M, we have

M-C
Jullx < /¥ < M.

Supplements

[Supplement 1]
As functions ¢ that divep = V - ¢ = 0, it is sufficient to take any ¢ € D(Q) and set to

@ = curly .

[Supplement 2]
Let Hun — u||L2(Q) — 0, H’Un — 'UHL2(Q) — 0 . By the triangle inequality, we have
|Hun”L2(Q) — H'U,HL2(Q)| < ”un — UHL2(Q) for any sufficientaly large 10 . On the other hand,
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|un || z20) < ||w|/z2() + 1. Therefore
(e UUHLI < HunllL2 Jl[on = vllz29) + vl 2 (@) lun — w220
< ([[ullz2(@) + 1)an —vllz2@) + [[vl[ 220 Hun — ullz2 () — 0.
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