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Abstract

In this series, we show a road map to prove the existence of φ4 quantum field theory
over 4-d spacetime. We suggest a new axiomatic approach on constructive quantum
field theory via condensed mathematics. The goal is to extend this new approach to
cover the mathematical viability of field theories of standard model and beyond.

III. Reminder of CQFT

1 Lattice regularization

Let’s give a mathematically rigorous meaning to Schwinger functions,1

Sn(x1, x2, · · · , xn) ≡ 〈φ(x1)φ(x2) · · ·φ(xn)〉

=

∫

Dφ φ(x1)φ(x2) · · ·φ(xn) e
−S[φ]

∫

Dφ e−S[φ]

Note that x ∈ X = R
4, and φ is a real scalar field over X. Feynman’s path integral

formalism starts from slicing time into infinitesimal. Each infinitesimal change in time
gives the measure

Dφ =
∏

x

dφ(x)

This measure can be legitimately defined over finite lattice Λ. Now the coordinates
for Λ is (Z1a,Z2a,Z3a,Z4a) with Zµ ≪ ∞, µ ∈ {1, 2, 3, 4}. Let’s abbreviate this as
z ∈ Λ = Z

4
a. A lattice action should be defined over this discrete spacetime. With

1We omit time ordering convention for a while. It is O.K. since our theory is only bosonic fields.
We need the notation right when we generalize it to fermionic fields.
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a given action, lattice version of correlators is established. Then the construction of
continuum QFT is by taking the limit a → 0.

Let us remind this process by showing how 2-point functions, or propagators,
〈φ(x1)φ(x2)〉latt is defined. General case can be achieved via Wick’s theorem. The
goal is to construct 〈φ(x1)φ(x2)〉cont at the end of this note. Our approach is to define
a 〈φ(x1)φ(x2)〉cond, which gives both 〈φ(x1)φ(x2)〉latt and 〈φ(x1)φ(x2)〉cont at its certain
limit. So this note is for laying the background of the analytic definition of φ4

cond-theory.
Then we will change the gear to define it from the perspective of algebraic geometry.

In the last note, we introduced propagator of a free particle by Green’s function
solution, such that

G(x, y) =
1

(2π)4

∫

eik(x−y)

k2 +m2
d4k

This solution is available with the measure defined on points of spacetime.2 However,
when the measure is over field operators, such as φ on spacetime, then the solution is
not followed by the classical method. Instead, one requires to slice the spacetime into
lattice then define the measure of field configurations rigorously.3 Physically, lattice
spacetime cuts down momentum space, so that the integration over field configuration
space is not out of control.

We defined generating functional

Z[J ] ≡
∫

Dφ e−(S[φ]+
∫
dx J(x)φ(x))

with a free action by

S =

∫

d4xLfree, Lfree =
1

2
∂µφ∂µφ− 1

2
m2

Bφ
2

Then the propagator is

〈φ(x1)φ(x2)〉cont =
1

Z[0]

(

δ2Z[J ]

δJ(x1)δJ(x2)

)

J=0

Let’s call this propagator 〈φ(x1)φ(x2)〉cont, for it is defined over continuum spacetime.
As it was remarked shortly, in order to evaluate the integral of generating functional
one requires to regularize the integral. So we change the starting point as follows.

x ∈ X = R
4 → za ∈ Λ = Z

4
a, with z finite.

φ(x) → φ(za)

∂µ → φ(za+µa)−φ(za)
a

, with µ in Euclidean 4-directional vectors.

2Or equivalently, 4-momentum space.
3Regularization is a whole packages to define and solve the integral of generating functional. There

is other methods such as dimensional regularization or Pauli-Villars regularization. For our purpose,
we just treat lattice regularization as ‘the’ regularization.
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∫

Dφ(x) →
∫
∏

z dφ(za)

S =
∫

d4xL → Slatt = a4
∑

z Llatt

With this starting point, the generating functional is

Z[J ]latt ≡
∫

∏

z

dφ(za) e−(S[φ]latt+
∑

z J(za)φ(za))

And the propagator is

〈φ(z1a)φ(z2a)〉latt =
∫
∏

z dφ(za)φ(z1a)φ(z2a)e
−S[φ]latt

∫
∏

z dφ(za)e
−S[φ]latt

, z1, z2 ∈ Z
4
fin

2 Dimensional analysis

In physics, the numbers that one deals with has physical dimension. So that the
numbers in mass, energy or length have different dimensions. For example, by path
integral formalism

〈xf , tf |x0, t0〉 =
∫ xf

x0

d3x e
i
~

∫
dtL

Since the dimension of the Planck constant is equal to the dimension of the action,
the exponential is dimensionless. So the integral has the dimension of length, which
gives the physical meaning of expectation value of disposition.4 By setting ~ = c = 1,
one also transforms the dimension of the given system. In this setting, one can only
consider dimensions in a single parametrization. Let’s use length based unit such that

[L] = [M−1] = 1, [L−1] = [M ] = −1

Parameters and operators of equations have units such as

[x] = [dx] = 1, [p] = [m] = [∂x] = [φ] = −1, [λ] = 0

With this setting, the exponetial is again dimensionless. And the φ4 coupling λ becomes
dimensionless. From this dimensionless parameter λ one can perturb the solution for
φ4 interacting theory.

The physical meaning of Schwinger function is the probability amplitudes of events.
Observationally, what one calculates is dimensionless numbers. So Schwinger function
should be dimensionless. But from the equation,

〈φ(x1)φ(x2)〉 =
∫

Dφ φ(x1)φ(x2) e
−S[φ]

∫

Dφ e−S[φ]

4Probability is dimensionless. And disposition is dimensional in length. For example, [〈x〉] =
[
∑

x
p(x) · x] = [p(x)] + [x] = [x] = [L].
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[〈φ(x1)φ(x2)〉] = −2

This can be remedied by reparametrizing φ and other operators. It is done by
making field operators and mass term to be dimensionless from the start. From the
definition of free lattice action

S[φ]latt =
a4

2

∑

z1,z2

φ(z1a)(�latt −m2
B)φ(z2a), � = ∂µ∂

µ

The action is dimensionless. By distributing a to each terms, one gets

S[φ]latt =
1

2

∑

z1,z2

aφ(z1a)(a
2
�latt − a2m2

B)aφ(z2a)

Then one can redefine every components as

φ̂(za) = aφ(za), ∂̂ = a∂, �̂latt = a2�latt, m̂B = amB

[φ̂(za)] = [∂̂] = [�̂latt] = [m̂B] = 0

So the Slatt over this reparametrization becomes,

S[φ̂]latt =
1

2

∑

z1,z2

φ̂(z1a)(�̂latt − m̂2
B)φ̂(z2a)

Now every components of generating functional is dimensionless so the dimensionless
lattice propagator is

〈φ̂(z1a), φ̂(z2a)〉latt =
∫
∏

z dφ̂(za)φ̂(z1a)φ̂(z2a)e
−S[φ̂]latt

∫
∏

z dφ̂(za)e
−S[φ̂]latt

, z1, z2 ∈ Z
4
fin

[〈φ̂(z1a), φ̂(z2a)〉latt] = 0

Now, let’s see how to construct 〈φ(x1), φ(x2)〉cont from 〈φ̂(z1a), φ̂(z2a)〉latt.

3 Gaussian integral

Gaussian integral has n-dimensional general solution when the integral has the form,

∫

dnx e−
1

2
(xiMxj)+Nixi =

√

(2π)n

detM
e

1

2
N†M−1N

From lattice action Slatt, the kernel K = (�̂latt− m̂2
B) can be rewritten as the following

steps,

∂̂µφ̂(za) =
∑

µ

φ̂(za+ µa)− φ̂(za)
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∂̂µ∂̂µφ̂(za) =
∑

µ

φ̂(za+ 2µa)− φ̂(za+ µa)− φ̂(za+ µa) + φ̂(za)

Since S[φ̂] is the sum over all z, one can reparametrize it to get

∑

z

∂̂µ∂̂µφ̂(za) =
∑

z,µ

φ̂(za+ µa) + 2φ̂(za)− φ̂(za− µa)

With mass term combined, lattice action becomes

S[φ̂]latt =
∑

z,µ

φ̂(za)
(

φ̂(za+ µa) + 2φ̂(za)− φ̂(za− µa)
)

− m̂2
Bφ̂(za)

One can rewrite this in a matrix kernel Kz1,z2 as

Kz1,z2 = −
∑

µ

(δz1,z2+µa + δz1,z2−µa − 2δz1,z2) + m̂2
Bδz1,z2

By writing action with this matrix kernel,

Slatt =
1

2

∑

z1,z2

φ̂(z1a)Kz1,z2φ̂(z2a)

One has the solution of latticed generating functional,

Z[J ]latt =

∫

∏

z

dφ̂(za) e−( 1
2

∑
z1,z2

φ̂(z1a)Kz1,z2
φ̂(z2a)+

∑
z J(za)φ̂(za))

=

√

1

detK
e

1

2

∑
z1,z2

J(z1)K
−1
z1,z2

J(z2)

With this solution, the lattice propagator is

〈φ̂(z1)φ̂(z2)〉latt =
1

Z[0]

(

δ2Z[J ]

δJ(z1)δJ(z2)

)

J=0

= K−1
z1,z2

Now, in order to get K−1
z1,z2

,

∑

z

Kz1,zK
−1
z,z2

= δz1,z2

δz1,z2 is via Fourier transformation to dimensionless momentum space k̂µ = akµ,
5

δz1,z2 =

∫ π

−π

d4k̂

(2π)4
eik̂·(z1−z2)

5Note that the range of integration is restricted by [−π, π]. Because the position is latticed, Fourier

transform is as follows, f(na) =
∫ π

a

−

π

a

f̃a(k) e
ikna.

5



Then applying this to the Kz1,z2 to get

Kz1,z2 =

∫ π

−π

d4k̂

(2π)4

(

4
∑

µ

sin
k̂µ

2
+ m̂2

B

)

eik̂·(z1−z2)

In the end, the solution of lattice propagator becomes

〈φ̂(z1a)φ̂(z2a)〉latt = K−1
z1,z2

=

∫ π

−π

d4k̂

(2π)4
eik̂·(z1−z2)

4
∑

µ sin
k̂µ
2
+ m̂2

B

4 Propagator construction from lattice to continuum

Now let’s check how lattice propagator transform after continuum limit is taken. To
remove spacetime lattice one changes back to the limit such as

φ̂ → aφ, za → x, k̂ → ak, m̂B → amB,

lattice propagator approximates to

〈φ̂(z1a)φ̂(z2a)〉latt ≈ a2
∫ π

a

−π
a

d4k

(2π)4
eik·(x−y)

k2 +M2

It becomes continuum propagator at a → 0 limit

〈φ̂(z1a)φ̂(z2a)〉latt ≈ a2 〈φ(x1)φ(x2)〉cont
So that the continuum propagator is constructed via lattice propagator such that

〈φ(x1)φ(x2)〉cont =
∫ ∞

−∞

d4k

(2π)4
eik(x−y)

k2 +m2

Note that removing the gap of lattice makes the range of integral to [−∞,∞], and the
dependency of a is not there in this solution.

From the last note, the propagator of free particle is Green’s function solution such
that,

(�+m2)G(x, y) = δ(x− y)

the propagator of continuum spacetime in momentum space is

〈φ(x1)φ(x2)〉cont = G(x, y) =

∫ ∞

−∞

d4k

(2π)4
eik(x−y)

k2 +m2

which is the same result from lattice construction. So in this simple scalar field propa-
gators, continuum QFT is constructible from the lattice QFT.6

6The observable is actually dimensionless number such as the ratio 〈φ(x1)φ(x2)〉cont /µ2. Lattice

version is 〈φ̂(z1)φ̂(z2)〉cont /µ̂2, and it is independent on µ̂ if it is sufficienty small.
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5 Construction of φ4 interacting theory

So far the theory has no interaction terms, so that the probability amplitudes can
be summed by propagators only. And the existence is guaranteed by the existence of
propagators. Fields or particles in the nature interact each other, so the Lagrangian is
required to contain such interacting terms. We study the Lagrangian with φ4 interacting
term, and call it just simply φ4-theory from now on.

Our Lagrangian density becomes

L =
1

2
∂µφ∂µφ− 1

2
m2

Bφ
2 +

1

4!
λBφ

4

B is for bare. We want to emphasize that two constants can be variant up to scale
factor. But let’s suppose coupling constant λ is fixed for now, with λ ≪ 0. Then
perturbative expansion method can be used to approximate the solution of φ4-theory.7

For example propagator of φ4-theory is

〈φ(x1)φ(x2)〉cont =
∫

Dφ φ(x1)φ(x2) e
−S[φ]

∫

Dφ e−S[φ]

We now separate action as

S[φ] = S[φ]free + S[φ]int

Then taking power series over e−S[φ]int = e−
∫
d4x 1

4!
λφ(x)4 ,

〈φ(x1)φ(x2)〉cont =
∫

Dφ φ(x1)φ(x2) e
−S[φ]free(1−

∫

d4x λ
4!
φ(x)4 + · · · )

∫

Dφ e−S[φ]free(1−
∫

d4x λ
4!
φ(x)4 + · · · )

For physical reason, the operators should be in time order.8 And the creation and
annihilation operators of field component also should be in right order to make the
contribution not zero such as 〈0|a1a2 · · · a†1a†2|0〉. By Wick’s theorem, timely ordered
events with non-zero contributions are the same as the contributions out of contractions.
Contractions are the combinations of propagators that support the Feynman’s diagram
chasing method.

For example,

〈φ(x)φ(y)φ(z)φ(w)〉cont,free = Graph1 +Graph2 +Graph3

It has 3 contributions from the figure. And each contribution is the combinations of
propagators, so that

〈φ(x)φ(y)φ(z)φ(w)〉cont,free = G0(x, z)G0(y, x) +G0(x, y)G0(z, w) +G0(x, w)G0(y, z)

7For mathematical existence, there is divergence issues in perturbative integrals. We remind renor-
malization in the next section.

8It is by proper time. In our notation time ordering factor is omitted. Every operators inside the
braket should be considered as time ordered operators acting on the vacuum. 〈φ1φ2〉 = 〈Ω|T (φ1φ2)|Ω〉.
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Fig. 1

Subscript 0 is for propagators of free action. So let’s use the same notation for
correlators.

〈φ(x1)φ(x2) · · ·φ(xn)〉cont,free = 〈φ(x1)φ(x2) · · ·φ(xn)〉0
Now back to the the propagator of φ4-theory is

〈φ(x1)φ(x2)〉cont =

〈φ(x1)φ(x2)〉0 − λ
4!

∫

d4x 〈φ(x1)φ(x2)φ
4(x)〉0 + 1

2!
( λ
4!
)2
∫

d4xd4x′ 〈φ(x1)φ(x2)φ
4(x)φ4(x′)〉0 − · · ·

1− λ
4!

∫

d4x 〈φ4(x)〉0 + 1
2!
( λ
4!
)2
∫

d4xd4x′ 〈φ4(x)φ4(x′)〉0 − · · ·
Let’s show some components of the fraction, Via Wick’s theorem,

〈φ(x1)φ(x2)〉0 = G0(x1, x2) (1)

〈φ(x)φ(x)φ(x)φ(x)〉0 = 3

∫

d4xG0(x, x)G0(x, x) (2)

〈φ(x1)φ(x2)φ(x)φ(x)φ(x)φ(x)〉0 = 3

∫

d4xG2
0(x, x)G0(x1, x2) (3)

+ 12

∫

d4xG0(x1, x)G0(x, x)G0(x, x2) (4)

Note that coefficient in front of integral is about counting the number of possible con-
tractions. 3 for (2) is by choosing a φ(x), there is 3 possible choices to pick another
operator. Once two out of 4 fields are chosen, then last contraction is determined. For
6 particles, one creation can find 5 ways to annihilate. Then 4 particles remain 3 ways
to make, etc. So total 15 ways of contractions is possible. (3) has 4 fields of degree of
choices and a propagator, so the coefficient is 3. (4) has x1 to choose 4 out of x, then
3 remaining x to choose x2, so the coefficient is 12. This degree of choices gets bigger
as the perturbation is higher in degrees. So the perturbation itself cannot converge for
any λ, as it is. This should be resolved by the renormalization.

Note that the denominator contains those terms without external lines. These are all
composed of bubbles. On the other hand, the numerator contains connected diagrams
and also disconnected diagrams with bubbles. In the end, the denominator cancels out
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(1) (2) (3) (4)

Fig. 2: Each diagram represents the integrals (1),(2),(3),(4).

all the disconnected part of numerators. So the calculation becomes the sum of all the
connected graphs. Feynman rules are the algorithm to trace the calculations up to the
degrees of λn terms. For calculational reason, momentum space perturbation is usually
used. And the Feynman rules for the momentum space diagrams is such that

• Input and output momentum vectors for each external lines.

• propagators for each internal lines.

• interacting contribution at a four point vertex with λ factor.

• the sum of the momentum at each vertex is conserved.

It is only simplified statements. One can add more details for calculational purpose.
But for our constructive purpose, we need to focus on the existence of propagators
in internal lines. These internal propagators can plague the theory very easily. For
example, for the graph of the Fig.2 (2), one writes the contribution as

−3
λ

4!

∫

d4xG0(x, x)G0(x, x) = −3
λ

4!

∫

d4x

∫
(

d4k

(2π)4
1

k2 +m2

)2

If d4x is over R4, then the integral is divergence. So d4x should be over finite volume
space Λ. Even with finite volume space, the total sum of contributions can be divergent
with big enough volume factor. This is IR divergence problem. Also the propagator
inside diverges with large k. It is required to cut off large momentum. This is UV
divergence problem. In order to evade these two divergent issue, one construct QFT
from a regularized spacetime. A lattice with finite volume can be one of it.

Regularizing spacetime is not enough to excise every infinite contributions of inter-
acting theory. There is another divergence factor at the higher degree of perturbations
by the permutations of choices on fields. One requires to excise every divergent contri-
butions by renormalizing fields, mass and coupling constant. One has to deal with three
types of divergences in interacting correlators. The existence of interacting theory can
be decided whether one can remove these pathologies. If it is possible then the theory
is called renormalizable.
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6 Renormalization

To give the correlators of φ4-theory legitimate meaning, renormalization is necessary
to clear the infinities out of perturbation theory. The contributions of perturbative
theory are graded by degrees of interactions. As noted, summing entire contributions
of every possible events gives many inifinite integrals. So one should excise singular
terms to get finite contributions of each degree of Feynman graphs. This can be done
by adding counter terms to the actions for deleting divergent terms.

Srenormalized = Sbare − Scounter

To motivate the process, let’s approach it from rescaling field parameters first,

φ =
√
Zφ̃

By replacing field operator with renormalized field operator
√
Zφ̃, the Lagrangian den-

sity becomes

LR =
Z

2
∂µφ̃∂µφ̃− Z

2
m2

Bφ̃
2 +

Z2

4!
λBφ̃

4

Note that, renormalizing factor Z can be defined by functions of lattice spacing a. So
the theory depends on the construction of lattice to continuum limit by letting a → 0.
Now by introducing renormalized parameters m,λ, the renormalized Lagrangian can
be written as

LR =

(

1

2
∂µφ̃∂µφ̃− 1

2
m2φ̃2

)

free

+

(

1

4!
λφ̃4 + (Z − 1)

1

2
∂µφ̃∂µφ̃− (m2

B −m2)
1

2
φ̃2 − (λB − λ)

1

4!
φ̃4

)

int

By this reformulation of Lagrangian density, one can trace the counter terms inside
interaction part. Perturbation can be performed over renormalized coupling constant.
The theory which can be constructed by renormalization procedure is called renormal-
izable. Renormalizability is the first step to construct the quantum field theory with
interactions. With extra axioms satisfied by the field theory, which is about making the
field theory relativistic and justified with observations, one can have the QFT existence.

In the next note, we will start to define condensed quantum field theory.
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