
Orbital Dynamics of Timespace:  

Deriving Einstein’s mass-energy and Field Equations 

Benjamin K. Lesel 

Abstract: While General Relativity has strong mathematical underpinnings that predict much of our 

spacetime observations, convincing physical understandings of these principles are vague and 

unconvincing. Herein we explore the physical assumption that the primary element of relativity is an 

orbit, which can take place either in time (space-time) or outside of time (time-space) and we use this 

assumption to derive Einstein’s most famous relativity equations from this first principle. Herein we 

explore the origin of mass, and how gravity, time and light are intimately connected aspects of a 

universal orbit. 
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Introduction: The key assumption in this paradigm which differs from that of mainstream physics is that 

time is principally a spatial dimension rather than durational. This doesn’t change any of the other 

physical assumptions of mainstream physics and durational time is locally a successful approximation for 

much of our worldly encounters (such as all kinetics equations). However, consider that in a more 

ultimate reality, time as durational does not exist. In this postulation, time as we experience it is the 

result of observable periodic motion within our universe which gives rise to the perception of duration 

to observers within it. This periodic motion is mathematically shown to be resulting from orbiting bodies 

with acceleration and velocity components which can be observed on a local and universal level.  In a 

prior publication, dark energy equations and constants are derived by recognizing time as a spatial 

dimension and identifying the universal orbital acceleration as Hubble’s constant.1 In another previous 

publications, time dilation was derived algebraically assuming time as a spatial dimension with the 

speed of light as the orbital velocity component.2 

In this publication we set out to demonstrate how the nature of time is one of periodicity that can be 

modeled through orbital mechanics. We utilize orbital mechanics to show how time as a spatial 

dimension can be thought of as the distance to light barriers which result from orbital acceleration. 

Using these assumptions, we show the physical origin of Einstein’s famous mass-energy equation. We 

expound on the implications of orbital velocity approaching light speed and how this influences the 

probabilistic character of orbital dynamics to be that of a 3D spherical orbit (rather than simply a 2D 

circular orbit).  This probabilistic 3D spherical character can be said to be the representation of 

timespace, where all possible microstate paths in time are considered simultaneously in space. We 

discuss the mathematics of the orbital timespace character and derive Einstein’s field equations using 

simple algebra from those assumptions.



Physical Assumptions, Explanations and Mathematics: 

Orbits and Time Spatial Dimensions: 

In a previous publication, we showed how our universe can be organized into spacetime and timespace 

orbitals using the concept of time as a spatial dimension and 

quantum degrees of freedom for orbits which were shown 

to mathematically influence each other to give rise to the 

phenomenon known as dark energy.1 Herein we will 

describe how the time orbit concept can be generalized to 

give rise to gravitational field equations. 

Let us begin with a system with mass, msys, gravitationally 

attracted to a field with mass, mfld, such that they form a 

stable orbit at an average distance, r, depicted in Figure 1. 

For convenience we will be showing all equations from the 

perspective of msys, however, all equations are symmetrical 

with regards to mfld. 

The force on the system in orbit, Forb, experienced by the 

system can be described by a series of equalities below in 

equations (1), (2), (3), and (4): 

Forb = msys
iasys           (1) 

Forb = msys
ivsys

2/rsys          (2) 

Forb = msys
gmfld

gG/r2           (3) 

Forb = Eorb/r           (4) 

The superscripts msys
i (mfld

i) and msys
g (mfld

g) represent the inertial and gravitational masses, respectively. 

These are differentiated because of quantized inertia at slow accelerations and are represented by 

equation (5) below.3 

msys
g = (1 + Ho’/asys)msys

i = Փsysmsys
i        (5) 

Note that Ho’ is Hubble’s constant as an acceleration based on lambda CMB (representing the 

acceleration constant at the universe’s conception). This relationship is important on galactic and 

universal scales. For now we will condense the difference between inertial and gravitational mass into a 

universal acceleration variable, Փ. 

Newton’s law of motion equalities, asys, vsys and rsys are the orbital acceleration, orbital velocity, and 

distance to the center of the orbit (center of mass for the msys + mfld orbit), respectively, for the system 

of mass, msys. In the Newton’s law of gravity portion, G is the gravitation constant, and r is the average 

distance between msys and mfld.  

These terms also exist for the field side of the equation with the same relationships to each other and 

mfld. The relationship between r, rsys and rfld which can also be seen in Figure 1, are simply additive in (6): 

 
Figure 1: Standard orbit in 3D 
spacetime with sub-light speed orbital 
velocity. 
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r = rsys
 + rfld           (6) 

Going forward, as we explore the nature of orbital effects on light barriers and spacetime curvature, it 

will be helpful to isolate terms for asys. To do this, we set equations (1) and (2) equal to each other and 

cancel msys
i to generate (7): 

asys = vsys
2/rsys            (7) 

If we use (5) to convert msys
g to msys

i in equation (3), we can set (3) equal to (1) and cancel the msys
i term 

to generate (8): 

asys = Փsysmfld
gG/r2          (8) 

It is important to consider here that acceleration in our spacetime produces light barriers which must be 

included in these descriptions moving forward for a fuller understanding of the physics herein.  

Firstly, it’s worth considering relativistic effects durational time, τ, compared with ‘normal’ time, to, as 

was derived in our previous publication2 on time dilation in (9): 

τ = to√[1 – (v2/c2)]          (9) 

Now let’s consider durational time as equivalent to the distance to a light horizon, th, which can be 

converted to a time spatial dimension (aka, distance to a light horizon), dt, by multiplying by the speed 

of light, c, in (10): 

dtsys = cthsys           (10) 

Now for systems within spacetime (with vsys < c), we can combine (9) and (10) with the understanding 

that th = τ in (11): 

dtsys = cτsys = cto√[1 – (v2/c2)] = ctoγ = Stsysγ       (11) 

Note that Stsys is the sub lightspeed velocity independent aspect of the time spatial dimension reflecting 

the distance to a light horizon of an object at rest in spacetime (but as we will learn later, orbiting at 

light speed in timespace), thus does not dilate as spacetime velocity reaches light speed. The term, γ, is 

a convenient shorthand for the relativistic speed portion of time dilation. 

Next, if we consider the time it takes light to reach the light horizon from a system accelerating away 

from it, we get (12): 

to
sys = c/asys           (12) 

Note that normal time is used here because acceleration does not dilate as velocity approaches light 

speed. Combining (11) and (12) yields an acceleration equation in terms of the system’s velocity 

independent distance to a light horizon (13): 

asys = c2/Stsys           (13) 

Time Spatial Dimension Relationship to E=mc2:  



As we will explore more within this 

paper, light horizons (and the time 

spatial dimensions) are intimately 

connected to the concept of mass. 

Combining (1), (4) and (13) gives us a 

relationship of mass and the time 

spatial dimension to energy in (14): 

Eorb = msys
ic2r/Stsys  (14) 

Now to further simplify the above into 

its recognized form, we must set up 

the proper conditions. First, by 

combining (7) and (13) we get the 

relationship of Stsys and rsys in (15): 

Stsys = rsysc2/vsys
2   (15) 

Next, note that when vsys = c, Stsys = rsys. We can now recognize the relationship of rsys and r in the two 

most common orbit cases of associated masses. As is depicted in Figure 2, if msys = mfld, r = 2rsys = 2rfld; If 

msys << mfld, rsys >> rfld, and r ≈ rsys. For this case, we will assume that baryon mass is generated by a light 

speed orbit where msys << mfld and therefore r ≈ rsys. This being the case for all mass generation in our 

universe as determined previously by the universal orbit.1 With these specifications in mind combining 

(14) and (15) gives us the familiar equation4 (16): 

Eorb = msys
ic2           (16) 

Thus, the origin of the mass-energy equation appears to be resulting from a light speed orbit giving rise 

to mass. Now a natural question that arises from these assumptions and this equation is where is this 

orbit taking place that gives rise to baryon mass? If we take our acceleration term as Ho(CMB) = 66 m/s2 

(the minimum acceleration possible in spacetime3) in (13), we find that Stsys = r = 1.402x1026 m = Rh, the 

distance to our universe’s light horizon for an object with no velocity in spacetime from our previous 

publication.1 Thus, baryon mass in this case would be the result of an orbit taking place at the light 

barrier of our universe (edge of spacetime) with orbital velocity of c in timespace and orbital 

acceleration of Hubble constant, Ho. 

Orbital Curvature and Light Horizons:  

Consider the aspects of light barriers which are depicted in Figure 3. One we will call the acceleration 

horizon and is a plane behind and perpendicular to the accelerating observer (existing for any 

accelerating body) where the closest point is directly behind the acceleration direction at St. Next, the 

light horizon, Lh, is formed within the orbit as a circle or ellipse in plane with the orbit and is formed 

from the moving acceleration horizon at its closest point. Note that light is perceived as moving within 

the acceleration horizon plane at each point along the light horizon. 

The light horizon circumference, Lh, is related to the distance to the light horizon, St, by (17): 

Lhsys = 2πStsys           (17) 

 

Figure 2: The two most common forms of orbits. The more 

commonly seen case is the left-hand side where msys << mfld 

and rsys ≈ r. The right-hand case where msys = mfld occurs in 

previous publications on the universal level and 

occasionally in spacetime. 
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Note that St is used here rather than dt because although Lh 

scales with orbital acceleration, it does not dilate as v 

approaches c.  

Returning to our acceleration terms, if we want to derive 

relativistic field equations akin to that of Einstein’s,5 we can 

convert to a principal 1D curvature term, ksys, which 

describes the principal curvature at the light horizon. 

Curvature is related to the speed of light squared by (18): 

ksys
ac = asys

ac/ch
bcch

ab     (18) 

By applying (18) to equations (7), (8) and (13) we get 1D 

spacetime curvature equations (19), (20) and (21), 

respectively: 

ksys
ac = vsys

ca2/ch
abch

bcrsys
ac     (19) 

ksys
ac = Փsys

acmfld
gG/ch

bcch
ab(rSTac)2         (20) 

ksys
ac = 1/Stsys

ac           (21) 

The superscripts “a”, “b” and “c” represent arbitrary relative directions (such as x, y, z) in a 3D space. 

Here we assume the orbit is arbitrarily taking place in the “ac” plane (as in Figure 3). Note that within 

these terms, the Gaussian curvature, orbital acceleration, and orbital distance are always orthogonal to 

orbital velocity at any given position while remaining in the “ac” plane. As discussed earlier, the 

acceleration horizon surface is in the plane orthogonal to the acceleration direction (“ab” in this 

example) and thus the direction of light speed travel at the horizon reflects this in the denominator. 

Gravity generating orbits via Timespace Orbital Gaussian Curvature: 

Now we consider how to generate the 2D manifold curvature term, resulting from a 3D probability orbit 

which is related to mass generation. The 2D Gaussian curvature which can be thought of as the degree 

an orbit gains the timespace character of the light horizon (which gives the orbit a probabilistic 3D 

spherical quality rather than a 2D circular spacetime quality), Kabc, for an approximately circular orbit is 

(22): 

Kabc(spherical) = ksys
acksys

bc = ksys
2          (22) 

Taking the simple 1D curvature relationship of (19) we get (23): 

Kabc(spherical) = vsys
4/c4rsys

2         (23) 

Note that 2D curvature, Kabc (spherical), grows very slowly until orbital velocity approach light speed 

where the orbit approaches the acceleration horizon and takes on more of its timespace character 

becoming a probabilistic spherical orbit rather than circular as depicted graphically and pictorially in 

Figure 4. 

This relationship gives rise to the spacetime and timespace orbitals described in our previous publication 

on the Geometry of Time and Space when vsys = c.1 

 

Figure 3: Visualization of acceleration 

horizon and light horizon generated 

from the acceleration of orbiting 

bodies. 
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Deriving Einstein’s Field Equations using Timespace Orbital Gaussian curvature: 

Now we will substitute forms of ksys into (22) to yield an equation similar to Einstein’s field equations. 

Taking (19) and (20) as ksys terms and substituting them to (22) yielding (24): 

Kabc(spherical) = [vsys
2/rsysc2][Փsysmfld

gG/c2r2]       (24) 

Now because of the parameters we set with 

relative masses (msys << mfld), we can 

simplify and estimate rsys ≈ r. Substitution 

and distribution yields (25): 

Kabc = Փsysmfld
gvsys

2G/r3c4   (25) 

Now if we assume an acceleration field 

generated with volume from the center of 

orbit 2 with diameter r, we can imagine a 

sphere of Volume, V, equal to (4/3)πr3. If we 

substitute this into our equation, we get 

(26): 

Kabc = (4/3)πՓsysmfld
gvsys

2G/Vc4  (26) 

Now if we convert mass to energy using 

E=mc2, we can get (27): 

Kabc = (4/3)πՓsysEfld
abcGvsys/c6V  (27) 

Note that here I replaced the gravitational 

mass, mg, in the mass-energy equation even 

though technically, as we derived earlier in 

(16), inertial mass, mi, should be replaced 

and thus would consume the Փsys term via 

(5). The reason for this is that inertial mass 

and gravitational mass are historically 

believed to be equal according to the 

‘equivalence principle’ and thus historically 

the acceleration adjustment term, Փsys, would have been incorporated into the equation in a different 

way. Because we are aware of quantized inertia, we will keep this term in to show where the historical 

terms in Einstein’s field equation originated. 

Now if we will introduce an energy per volume term, Tfld = Efld/V, and substitute this into (27) we get 

(28): 

Kabc = (4/3)πՓsysTfld
abcGvsys2/c6         (28) 

From here, if we can substitute for Փsys as in (5) to yield (29):  

Kabc = (4/3)π(1 + Ho’/asys)Tfld
abcGvsys/c6        (29) 

 

 

Figure 4: Top: Two cases of light speed orbit 

approaching the light horizon. Left-hand-side: msys = 

mfld, thus overlapping the orbit with the light horizon, 

making 2St = r. Right-hand-side: msys << mfld, this orbit 

is still within spacetime with St = r. Bottom: Graph 

showing relationship between system orbital speed 

(as a fraction of light speed) and 2D curvature 

Gaussian relevance (aka mass generating curvature). 
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Now let’s return to our hypothesis about baryon mass and time being generated by a universal orbit 

between any arbitrary center of the universe and the light barrier. In this condition, baryon matter 

orbits the light horizon of our universe at the speed of light, c, and with orbital acceleration of Ho’ (CMB 

Hubble’s constant as discussed in a previous publication1). Thus vsys = c and asys = Ho’. By substituting this 

case for baryon matter into (29) we get the much simplified (30): 

Kabc = (8/3)πTfld
abcG/c4          (30) 

If we consider the sum of all 3 spatial variations in spacetime for the full field curvature we get (31): 

K = Kabc + Kbca + Kcab = (8/3)πTfld
abcG/c4 + (8/3)πTfld

bcaG/c4 + (8/3)πTfld
cabG/c4 = 8πGTfld/c4  (31) 

Note that (31) is in fact the familiar equation on the right side of Einstein Field equations often with the 

symbol к = 8πG/c4.5  

Conclusion: By looking at the basic physics of orbital motion and how orbital acceleration generates 

light barriers, we can make a mathematical and conceptual link between the motion of light, spacetime 

curvature, time and their relation to gravity geometrically. By applying the time spatial dimension to 

orbital energy, we were able to derive the mass-energy equation.  

Mass generation via spacetime curvature for basic orbitals that became more potent closer to light 

speed. Through utilizing certain equations for orbits and the Gaussian curvature equation, we have a 

comprehensive alternate route to the right-hand side of Einstein’s field equations as relating to the 

timespace orbital Gaussian curvature derived here from purely algebraic and geometric means.  
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