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In classical mechanics, a new reformulation is presented, which is invariant
under transformations between inertial and non-inertial reference frames and
which can be applied in any reference frame without introducing fictitious
forces. Additionally, in this paper, we assume that all forces can obey or
disobey Newton’s third law.

Introduction

The new reformulation in classical mechanics presented in this paper is obtained starting
from an auxiliary system of particles ( called free-system ) that is used to obtain kinematic
magnitudes ( for example, inertial position, inertial velocity, etc. ) that are invariant under
transformations between inertial and non-inertial reference frames.

The inertial position ri, the inertial velocity vi and the inertial acceleration ai of a particle i
relative to a reference frame S ( inertial or non-inertial ) are given by:

ri
.= (∼ri ) = (~ri − ~R)

vi
.= d(∼ri )/dt = (~vi − ~V )− ~ω × (~ri − ~R)

ai
.= d2(∼ri )/dt2 = (~ai − ~A)− 2 ~ω × (~vi − ~V ) + ~ω × [ ~ω × (~ri − ~R) ]− ~α× (~ri − ~R)

where ∼ri is the position vector of particle i relative to the auxiliary frame [~ri is the position
vector of particle i, ~R is the position vector of the center of mass of the free-system, and ~ω
is the angular velocity vector of the free-system] [ relative to the frame S] ( see Annex I )

The auxiliary frame is a reference frame fixed to the free-system (~ω = 0) whose origin always
coincides with the center of mass of the free-system (~R = ~V = ~A = 0)

Any reference frame S is an inertial frame when the angular velocity ~ω of the free-system and
the acceleration ~A of the center of mass of the free-system are equal to zero relative to S.

The New Dynamics

[ 1 ] A force is always caused by the interaction between two or more particles.

[ 2 ] The net force Fi acting on a particle i of mass mi produces an inertial acceleration ai

according to the following equation: [Fi = mi ai ]

[ 3 ] In this paper, we assume that all forces can obey or disobey Newton’s third law in its
weak form or in its strong form.
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The Equation of Motion

The net force Fi acting on a particle i of mass mi produces an inertial acceleration ai

according to the following equation:

Fi = mi ai

From the above equation it follows that the (ordinary) acceleration ~ai of particle i relative
to a reference frame S ( inertial or non-inertial ) is given by:

~ai = Fi/mi + ~A + 2 ~ω × (~vi − ~V )− ~ω × [ ~ω × (~ri − ~R) ] + ~α× (~ri − ~R)

where ~ri is the position vector of particle i, ~R is the position vector of the center of mass of
the free-system, and ~ω is the angular velocity vector of the free-system (see Annex I )

From the above equation it follows that particle i can have a non-zero acceleration even
if there is no force acting on particle i, and also that particle i can have zero acceleration
(state of rest or of uniform linear motion) even if there is an unbalanced net force acting
on particle i.

However, from the above equation it also follows that Newton’s first and second laws are
valid in any inertial reference frame, since the angular velocity ~ω of the free-system and
the acceleration ~A of the center of mass of the free-system are equal to zero relative to any
inertial reference frame.

In this paper, any reference frame S is an inertial frame when the angular velocity ~ω of
the free-system and the acceleration ~A of the center of mass of the free-system are equal to
zero relative to the frame S. Therefore, any reference frame S is a non-inertial frame when
the angular velocity ~ω of the free-system or the acceleration ~A of the center of mass of the
free-system are not equal to zero relative to the frame S.

However, since in classical mechanics any reference frame is actually an ideal rigid body then
any reference frame S is an inertial frame when the net force acting at each point of the
frame S is equal to zero. Therefore, any reference frame S is a non-inertial frame when the
net force acting at each point of the frame S is not equal to zero (see Annex IV )

On the other hand, the new reformulation of classical mechanics presented in this paper is
observationally equivalent to Newtonian mechanics.

However, non-inertial observers can use Newtonian mechanics only if they introduce fictitious
forces into Fi ( such as the centrifugal force, the Coriolis force, etc. )

Additionally, the new reformulation of classical mechanics presented in this paper is also
a relational reformulation of classical mechanics since it is obtained starting from relative
magnitudes (position, velocity and acceleration) between particles.

However, as already stated above, the new reformulation of classical mechanics presented in
this paper is observationally equivalent to Newtonian mechanics.
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The Definitions

For a system of N particles, the following definitions are applicable:

Mass M .=
∑N

i mi

Position CM 1 ~Rcm
.= M−1

∑N

i mi ~ri

Velocity CM 1 ~Vcm
.= M−1

∑N

i mi ~vi

Acceleration CM 1 ~Acm
.= M−1

∑N

i mi ~ai

Position CM 2 Rcm
.= M−1

∑N

i mi ri

Velocity CM 2 Vcm
.= M−1

∑N

i mi vi

Acceleration CM 2 Acm
.= M−1

∑N

i mi ai

Linear Momentum 1 P1
.=

∑N

i mi vi

Angular Momentum 1 L1
.=

∑N

i mi

[
ri × vi

]
Angular Momentum 2 L2

.=
∑N

i mi

[
(ri −Rcm)× (vi −Vcm)

]
Work 1 W1

.=
∑N

i

∫ 2

1
Fi · dri = ∆ K1

Kinetic Energy 1 ∆ K1
.=

∑N

i ∆ 1/2 mi (vi)2

Potential Energy 1 ∆ U1
.= −

∑N

i

∫ 2

1
Fi · dri

Mechanical Energy 1 E1
.= K1 + U1

Lagrangian 1 L1
.= K1 −U1

Work 2 W2
.=

∑N

i

∫ 2

1
Fi · d(ri −Rcm) = ∆ K2

Kinetic Energy 2 ∆ K2
.=

∑N

i ∆ 1/2 mi (vi −Vcm)2

Potential Energy 2 ∆ U2
.= −

∑N

i

∫ 2

1
Fi · d(ri −Rcm)

Mechanical Energy 2 E2
.= K2 + U2

Lagrangian 2 L2
.= K2 −U2
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Work 3 W3
.=

∑N

i ∆ 1/2 Fi · ri = ∆ K3

Kinetic Energy 3 ∆ K3
.=

∑N

i ∆ 1/2 mi ai · ri

Potential Energy 3 ∆ U3
.= −

∑N

i ∆ 1/2 Fi · ri

Mechanical Energy 3 E3
.= K3 + U3

Work 4 W4
.=

∑N

i ∆ 1/2 Fi · (ri −Rcm) = ∆ K4

Kinetic Energy 4 ∆ K4
.=

∑N

i ∆ 1/2 mi

[
(ai −Acm) · (ri −Rcm)

]
Potential Energy 4 ∆ U4

.= −
∑N

i ∆ 1/2 Fi · (ri −Rcm)

Mechanical Energy 4 E4
.= K4 + U4

Work 5 W5
.=

∑N

i

[ ∫ 2

1
Fi · d(~ri − ~R) + ∆ 1/2 Fi · (~ri − ~R)

]
= ∆ K5

Kinetic Energy 5 ∆ K5
.=

∑N

i ∆ 1/2 mi

[
(~vi − ~V )2 + (~ai − ~A) · (~ri − ~R)

]
Potential Energy 5 ∆ U5

.= −
∑N

i

[ ∫ 2

1
Fi · d(~ri − ~R) + ∆ 1/2 Fi · (~ri − ~R)

]
Mechanical Energy 5 E5

.= K5 + U5

Work 6 W6
.=

∑N

i

[ ∫ 2

1
Fi · d(~ri − ~Rcm) + ∆ 1/2 Fi · (~ri − ~Rcm)

]
= ∆ K6

Kinetic Energy 6 ∆ K6
.=

∑N

i ∆ 1/2 mi

[
(~vi − ~Vcm)2 + (~ai − ~Acm) · (~ri − ~Rcm)

]
Potential Energy 6 ∆ U6

.= −
∑N

i

[ ∫ 2

1
Fi · d(~ri − ~Rcm) + ∆ 1/2 Fi · (~ri − ~Rcm)

]
Mechanical Energy 6 E6

.= K6 + U6

The Relations

From the above definitions, the following relations can be obtained (see Annex II )

K1 = K2 + 1/2 M V2
cm

K3 = K4 + 1/2 M Acm ·Rcm

K5 = K6 + 1/2 M
[
(~Vcm − ~V )2 + (~Acm − ~A) · (~Rcm − ~R)

]
K5 = K1 + K3 & U5 = U1 + U3 & E5 = E1 + E3

K6 = K2 + K4 & U6 = U2 + U4 & E6 = E2 + E4
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The Conservation Laws

The linear momentum [P1 ] of an isolated system of N particles remains constant if the
internal forces obey Newton’s third law in its weak form.

P1 = constant
[

d(P1)/dt =
∑N

i mi ai =
∑N

i Fi = 0
]

The angular momentum [L1 ] of an isolated system of N particles remains constant if the
internal forces obey Newton’s third law in its strong form.

L1 = constant
[

d(L1)/dt =
∑N

i mi

[
ri × ai

]
=

∑N

i ri × Fi = 0
]

The angular momentum [L2 ] of an isolated system of N particles remains constant if the
internal forces obey Newton’s third law in its strong form.

L2 = constant
[

d(L2)/dt =
∑N

i mi

[
(ri −Rcm)× (ai −Acm)

]
=∑N

i mi

[
(ri −Rcm)× ai

]
=

∑N

i (ri −Rcm)× Fi = 0
]

The mechanical energy [ E1 ] and the mechanical energy [ E2 ] of a system of N particles
remain constant if the system is only subject to conservative forces.

E1 = constant
[

∆ E1 = ∆ K1 + ∆ U1 = 0
]

E2 = constant
[

∆ E2 = ∆ K2 + ∆ U2 = 0
]

The mechanical energy [ E3 ] and the mechanical energy [ E4 ] of a system of N particles
are always zero ( and therefore they always remain constant )

E3 = constant
[

E3 =
∑N

i
1/2

[
mi ai · ri − Fi · ri

]
= 0

]
E4 = constant

[
E4 =

∑N

i
1/2

[
mi ai · (ri −Rcm)− Fi · (ri −Rcm)

]
= 0

]
∑N

i
1/2 mi

[
(ai−Acm) · (ri−Rcm)

]
=

∑N

i
1/2 mi ai · (ri−Rcm)

The mechanical energy [ E5 ] and the mechanical energy [ E6 ] of a system of N particles
remain constant if the system is only subject to conservative forces.

E5 = constant
[

∆ E5 = ∆ K5 + ∆ U5 = 0
]

E6 = constant
[

∆ E6 = ∆ K6 + ∆ U6 = 0
]
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General Observations

All the equations of this paper can be applied in any inertial reference frame and also in any
non-inertial reference frame.

Therefore, the new reformulation of classical mechanics presented in this paper is totally in
accordance with the general principle of relativity.

Additionally, inertial reference frames and non-inertial reference frames must not introduce
fictitious forces into Fi ( such as the centrifugal force, the Coriolis force, etc. )

In this paper, the magnitudes [m, r, v, a, M, R, V, A, F, P1, L1, L2, W1, K1, U1, E1, L1,
W2, K2, U2, E2, L2, W3, K3, U3, E3, W4, K4, U4, E4, W5, K5, U5, E5, W6, K6, U6 and E6 ]
are invariant under transformations between inertial and non-inertial reference frames.

The mechanical energy E3 of a system of particles is always zero [ E3 = K3 + U3 = 0 ]

Therefore, the mechanical energy E5 of a system of particles is always equal to the mechanical
energy E1 of the system of particles [ E5 = E1 ]

The mechanical energy E4 of a system of particles is always zero [ E4 = K4 + U4 = 0 ]

Therefore, the mechanical energy E6 of a system of particles is always equal to the mechanical
energy E2 of the system of particles [ E6 = E2 ]

If the potential energy U1 of a system of particles is a homogeneous function of degree k
then the potential energy U3 and the potential energy U5 of the system of particles are
given by: [ U3 = ( k

2 ) U1 ] and [ U5 = (1+ k
2 ) U1 ]

If the potential energy U2 of a system of particles is a homogeneous function of degree k
then the potential energy U4 and the potential energy U6 of the system of particles are
given by: [ U4 = ( k

2 ) U2 ] and [ U6 = (1+ k
2 ) U2 ]

If the potential energy U1 of a system of particles is a homogeneous function of degree k
and if the kinetic energy K5 of the system of particles is equal to zero, then we obtain:
[ K1 = −K3 = U3 = ( k

2 )U1 = ( k
2+k ) E1 ]

If the potential energy U2 of a system of particles is a homogeneous function of degree k
and if the kinetic energy K6 of the system of particles is equal to zero, then we obtain:
[ K2 = −K4 = U4 = ( k

2 )U2 = ( k
2+k ) E2 ]

If the potential energy U1 of a system of particles is a homogeneous function of degree k
and if the average kinetic energy 〈K5〉 of the system of particles is equal to zero, then we
obtain: [ 〈K1〉 = −〈K3〉 = 〈U3〉 = ( k

2 ) 〈U1〉 = ( k
2+k ) 〈E1〉 ]

If the potential energy U2 of a system of particles is a homogeneous function of degree k
and if the average kinetic energy 〈K6〉 of the system of particles is equal to zero, then we
obtain: [ 〈K2〉 = −〈K4〉 = 〈U4〉 = ( k

2 ) 〈U2〉 = ( k
2+k ) 〈E2〉 ]

The average kinetic energy 〈K5〉 and the average kinetic energy 〈K6〉 of a system of particles
with bounded motion are related to the virial theorem.
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The average kinetic energy 〈K5〉 and the average kinetic energy 〈K6〉 of a system of particles
with bounded motion ( in 〈K5〉 relative to ~R and in 〈K6〉 relative to ~Rcm ) are always zero.

The kinetic energy K5 and the kinetic energy K6 of a system of N particles can also
be expressed as follows : [ K5 =

∑N

i
1/2 mi ( ṙi ṙi + r̈i ri ) ] where ri

.= |~ri − ~R | and
[ K6 =

∑N

i<j
1/2 mi mj M−1( ṙij ṙij + r̈ij rij ) ] where rij

.= | ~ri − ~rj | Note 1

(PN
i<j

.
=
PN

i=1
PN

j>i

)
The kinetic energy K5 and the kinetic energy K6 of a system of N particles can also
be expressed as follows : [ K5 =

∑N

i
1/2 mi ( τ̈i ) ] where τi

.= 1/2 (~ri − ~R) · (~ri − ~R) and
[ K6 =

∑N

j>i
1/2 mi mj M−1( τ̈ij ) ] where τij

.= 1/2 (~ri − ~rj) · (~ri − ~rj) Note 2

(PN
j>i

.
=
PN

i=1
PN

j>i

)
The kinetic energy K6 is the only kinetic energy that can be expressed without the necessity
of introducing any magnitude that is related to the free-system [ such as: r, v, a, ~ω, ~R, etc. ]

In an isolated system of particles, the potential energy U2 is equal to the potential energy
U1 if the internal forces obey Newton’s third law in its weak form [U2 = U1 ]

In an isolated system of particles, the potential energy U4 is equal to the potential energy
U3 if the internal forces obey Newton’s third law in its weak form [U4 = U3 ]

In an isolated system of particles, the potential energy U6 is equal to the potential energy
U5 if the internal forces obey Newton’s third law in its weak form [U6 = U5 ]

A reference frame S is a special non-rotating frame when the angular velocity ~ω of the
free-system relative to S is equal to zero, and the reference frame S is also an inertial frame
when the acceleration ~A of the center of mass of the free-system relative to S is equal to zero.

If the origin of a special non-rotating frame S [ ~ω = 0 ] always coincides with the center of
mass of the free-system [ ~R = ~V = ~A = 0 ] then relative to S: [ ri = ~ri, vi = ~vi and ai = ~ai ]
Therefore, it is easy to see that inertial magnitudes and ordinary magnitudes are always
the same in the reference frame S.

This paper does not contradict Newton’s first and second laws since these two laws are valid
in all inertial reference frames. The equation [ Fi = mi ai ] is a simple reformulation of
Newton’s second law.

Finally, in this paper, the equation [ Fi = mi ai ] is valid in all reference frames ( inertial
or non-inertial ) even if all forces always disobey Newton’s third law in its strong form and
in its weak form.
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Annex I

The Free-System

The free-system is a system of N particles that must always be free of internal and external
forces, that must be three-dimensional, and that the relative distances between the N particles
must be constant.

The position ~R, the velocity ~V and the acceleration ~A of the center of mass of the free-system
relative to a reference frame S (and the angular velocity ~ω and the angular acceleration ~α
of the free-system relative to the reference frame S) are given by:

M .=
∑N

i mi

~R .= M−1
∑N

i mi ~ri

~V .= M−1
∑N

i mi ~vi

~A .= M−1
∑N

i mi ~ai

~ω
.= I−1
↔
· ~L

~α
.= d(~ω)/dt

I
↔ .=

∑N

i mi [ |~ri − ~R |2 1
↔
− (~ri − ~R)⊗ (~ri − ~R) ]

~L .=
∑N

i mi (~ri − ~R)× (~vi − ~V )

where M is the mass of the free-system, I
↔

is the inertia tensor of the free-system (relative
to ~R) and ~L is the angular momentum of the free-system relative to the reference frame S.

The Transformations

The transformations of position, velocity and acceleration of a particle i between a reference
frame S and another reference frame S’, are given by:

(~ri − ~R) = ri = ri
′

(~ri
′ − ~R′) = ri

′ = ri

(~vi − ~V )− ~ω × (~ri − ~R) = vi = vi
′

(~vi
′ − ~V ′)− ~ω ′ × (~ri

′ − ~R′) = vi
′ = vi

(~ai − ~A)− 2 ~ω × (~vi − ~V ) + ~ω × [ ~ω × (~ri − ~R) ]− ~α× (~ri − ~R) = ai = ai
′

(~ai
′ − ~A′)− 2 ~ω ′ × (~vi

′ − ~V ′) + ~ω ′ × [ ~ω ′ × (~ri
′ − ~R′) ]− ~α′ × (~ri

′ − ~R′) = ai
′ = ai
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Annex II

The Relations

In a system of particles, these relations can be obtained ( The magnitudes Rcm, Vcm, Acm,
~Rcm, ~Vcm and ~Acm can be replaced by the magnitudes R, V, A, ~R, ~V and ~A, or by the
magnitudes rj , vj , aj , ~rj , ~vj and ~aj , respectively. On the other hand, R = V = A = 0 )

ri = (~ri − ~R)

Rcm = (~Rcm − ~R)

−→ (ri −Rcm) = (~ri − ~Rcm)

vi = (~vi − ~V )− ~ω × (~ri − ~R)

Vcm = (~Vcm − ~V )− ~ω × (~Rcm − ~R)

−→ (vi −Vcm) = (~vi − ~Vcm)− ~ω × (~ri − ~Rcm)

(vi −Vcm) · (vi −Vcm) =
[
(~vi − ~Vcm)− ~ω× (~ri − ~Rcm)

]
·
[
(~vi − ~Vcm)− ~ω× (~ri − ~Rcm)

]
=

(~vi−~Vcm) · (~vi−~Vcm)−2 (~vi−~Vcm) ·
[
~ω× (~ri− ~Rcm)

]
+

[
~ω× (~ri− ~Rcm)

]
·
[
~ω× (~ri− ~Rcm)

]
=

(~vi−~Vcm) · (~vi−~Vcm)+2 (~ri− ~Rcm) ·
[
~ω× (~vi−~Vcm)

]
+

[
~ω× (~ri− ~Rcm)

]
·
[
~ω× (~ri− ~Rcm)

]
=

(~vi−~Vcm) ·(~vi−~Vcm)+
[
2 ~ω×(~vi−~Vcm)

]
·(~ri− ~Rcm)+

[
~ω×(~ri− ~Rcm)

]
·
[
~ω×(~ri− ~Rcm)

]
=

(~vi − ~Vcm)2 +
[
2 ~ω × (~vi − ~Vcm)

]
· (~ri − ~Rcm) +

[
~ω × (~ri − ~Rcm)

]2
(ai − Acm) · (ri − Rcm) =

{
(~ai − ~Acm) − 2 ~ω× (~vi − ~Vcm) + ~ω× [ ~ω× (~ri − ~Rcm) ] −

~α× (~ri − ~Rcm)
}
· (~ri − ~Rcm) = (~ai − ~Acm) · (~ri − ~Rcm)−

[
2 ~ω × (~vi − ~Vcm)

]
· (~ri − ~Rcm) +

{
~ω× [ ~ω×(~ri− ~Rcm) ]

}
·(~ri− ~Rcm)−

[
~α×(~ri− ~Rcm)

]
·(~ri− ~Rcm) = (~ai−~Acm) ·(~ri− ~Rcm) −

[
2 ~ω × (~vi − ~Vcm)

]
· (~ri − ~Rcm) +

{ [
~ω · (~ri − ~Rcm)

]
~ω − ( ~ω · ~ω ) (~ri − ~Rcm)

}
· (~ri − ~Rcm) =

(~ai− ~Acm) · (~ri− ~Rcm)−
[
2 ~ω× (~vi−~Vcm)

]
· (~ri− ~Rcm)+

[
~ω · (~ri− ~Rcm)

]2− ( ~ω )2 (~ri− ~Rcm)2

−→ (vi −Vcm)2 + (ai −Acm) · (ri −Rcm) = (~vi − ~Vcm)2 + (~ai − ~Acm) · (~ri − ~Rcm)
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Annex III

The Magnitudes

The magnitudes L2, W2, K2, U2, W4, K4, U4, W6, K6 and U6 of a system of N particles can
also be expressed as follows:

L2 =
∑N

j>i mi mj M−1
[
(ri − rj)× (vi − vj)

]
W2 =

∑N

j>i mi mj M−1
[ ∫ 2

1
(Fi/mi − Fj/mj) · d(ri − rj)

]
∆ K2 =

∑N

j>i ∆ 1/2 mi mj M−1 (vi − vj)2 = W2

∆ U2 = −
∑N

j>i mi mj M−1
[ ∫ 2

1
(Fi/mi − Fj/mj) · d(ri − rj)

]
W4 =

∑N

j>i ∆ 1/2 mi mj M−1
[
(Fi/mi − Fj/mj) · (ri − rj)

]
∆ K4 =

∑N

j>i ∆ 1/2 mi mj M−1
[
(ai − aj) · (ri − rj)

]
= W4

∆ U4 = −
∑N

j>i ∆ 1/2 mi mj M−1
[
(Fi/mi − Fj/mj) · (ri − rj)

]
W6 =

∑N

j>i mi mj M−1
[ ∫ 2

1
(Fi/mi−Fj/mj) ·d(~ri−~rj)+∆ 1/2 (Fi/mi−Fj/mj) · (~ri−~rj)

]
∆ K6 =

∑N

j>i ∆ 1/2 mi mj M−1
[
(~vi − ~vj)2 + (~ai − ~aj) · (~ri − ~rj)

]
= W6

∆ U6 = −
∑N

j>i mi mj M−1
[ ∫ 2

1
(Fi/mi−Fj/mj)·d(~ri−~rj)+∆ 1/2 (Fi/mi−Fj/mj)·(~ri−~rj)

]
The magnitudes W(1 to 6) and U(1 to 6) of an isolated system of N particles, whose internal
forces obey Newton’s third law in its weak form, can be reduced to:

W1 = W2 =
∑N

i

∫ 2

1
Fi · d~ri

∆ U1 = ∆ U2 = −
∑N

i

∫ 2

1
Fi · d~ri

W3 = W4 =
∑N

i ∆ 1/2 Fi · ~ri

∆ U3 = ∆ U4 = −
∑N

i ∆ 1/2 Fi · ~ri

W5 = W6 =
∑N

i

[ ∫ 2

1
Fi · d~ri + ∆ 1/2 Fi · ~ri

]
∆ U5 = ∆ U6 = −

∑N

i

[ ∫ 2

1
Fi · d~ri + ∆ 1/2 Fi · ~ri

]
10



Annex IV

Frames and Forces

Diagram of net forces acting on a reference frame S, when the reference frame S is a linearly
non-accelerated and non-rotating frame relative to an inertial frame (9 points)
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Diagram of net forces acting on a reference frame S, when the reference frame S is a linearly
accelerated and non-rotating frame relative to an inertial frame (9 points)
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Diagram of net forces acting on a reference frame S, when the reference frame S is a linearly
non-accelerated and rotating frame relative to an inertial frame (9 points)
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Introduction

The new reformulation in classical mechanics presented in this paper is obtained starting
from an auxiliary system of particles ( called free-system ) that is used to obtain kinematic
magnitudes ( for example, inertial position, inertial velocity, etc. ) that are invariant under
transformations between inertial and non-inertial reference frames.

The inertial position ri, the inertial velocity vi and the inertial acceleration ai of a particle i
relative to a reference frame S ( inertial or non-inertial ) are given by:

ri
.= (∼ri ) = (~ri − ~R)

vi
.= d(∼ri )/dt = (~vi − ~V )− ~ω × (~ri − ~R)

ai
.= d2(∼ri )/dt2 = (~ai − ~A)− 2 ~ω × (~vi − ~V ) + ~ω × [ ~ω × (~ri − ~R) ]− ~α× (~ri − ~R)

where ∼
ri is the position vector of particle i relative to the auxiliary frame [~ri is the position

vector of particle i, ~R is the position vector of the center of mass of the free-system, and ~ω
is the angular velocity vector of the free-system] [ relative to the frame S] ( see Annex I )

The auxiliary frame is a reference frame fixed to the free-system (~ω = 0) whose origin always
coincides with the center of mass of the free-system (~R = ~V = ~A = 0)

Any reference frame S is an inertial frame when the angular velocity ~ω of the free-system and
the acceleration ~A of the center of mass of the free-system are equal to zero relative to S.

The New Dynamics

[ 1 ] A force is always caused by the interaction between two or more particles.

[ 2 ] The total force Ti acting on a particle i is always zero [Ti = 0 ]

[ 3 ] In this paper, we assume that all dynamic forces ( all non-kinetic forces ) can obey or
disobey Newton’s third law in its weak form or in its strong form.
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The Kinetic Forces

The kinetic force Ka
ij exerted on a particle i of mass mi by another particle j of mass mj ,

caused by the interaction between particle i and particle j, is given by:

Ka
ij = − mi mj

M
(ai − aj)

where ai is the inertial acceleration of particle i, aj is the inertial acceleration of particle j,
and M (=

PAll

i mi ) is the mass of the Universe.

The kinetic force Ku
i exerted on a particle i of mass mi by the center of mass of the Universe,

caused by the interaction between particle i and the Universe, is given by:

Ku
i = − mi Acm

where Acm (= M−1PAll

i mi ai ) is the inertial acceleration of the center of mass of the
Universe.

From the above equations it follows that the net kinetic force Ki (=
PAll

j Ka
ij + Ku

i ) acting
on a particle i of mass mi is given by:

Ki = − mi ai

where ai is the inertial acceleration of particle i.

If all dynamic forces always obey Newton’s third law in its weak form then the inertial
acceleration of the center of mass of the Universe Acm is always zero.

On the other hand, the kinetic force Ka always obey Newton’s third law in its weak form or
in its strong form.

The [ 2 ] Principle

The second principle of the new dynamics establishes that the total force Ti acting on a
particle i is always zero.

Ti = 0

If the total force Ti is divided into the following two parts: the net kinetic force Ki and the
net dynamic force Fi (

∑
of gravitational forces, electrostatic forces, etc. ) then we have:

Ki + Fi = 0

Now, substituting Ki (= − mi ai ) and rearranging, we finally obtain:

Fi = mi ai

This equation ( similar to Newton’s second law ) will be used throughout this paper.

On the other hand, in this paper a system of particles is isolated when the system is free of
external dynamic forces.
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The Equation of Motion

The net dynamic force Fi acting on a particle i of mass mi is related to the inertial
acceleration ai of particle i according to the following equation:

Fi = mi ai

From the above equation it follows that the (ordinary) acceleration ~ai of particle i relative
to a reference frame S ( inertial or non-inertial ) is given by:

~ai = Fi/mi + ~A + 2 ~ω × (~vi − ~V )− ~ω × [ ~ω × (~ri − ~R) ] + ~α× (~ri − ~R)

where ~ri is the position vector of particle i, ~R is the position vector of the center of mass of
the free-system, and ~ω is the angular velocity vector of the free-system (see Annex I )

From the above equation it follows that particle i can have a non-zero acceleration even
if there is no dynamic force acting on particle i, and also that particle i can have zero
acceleration (state of rest or of uniform linear motion) even if there is an unbalanced net
dynamic force acting on particle i.

However, from the above equation it also follows that Newton’s first and second laws are
valid in any inertial reference frame, since the angular velocity ~ω of the free-system and
the acceleration ~A of the center of mass of the free-system are equal to zero relative to any
inertial reference frame.

In this paper, any reference frame S is an inertial frame when the angular velocity ~ω of
the free-system and the acceleration ~A of the center of mass of the free-system are equal to
zero relative to the frame S. Therefore, any reference frame S is a non-inertial frame when
the angular velocity ~ω of the free-system or the acceleration ~A of the center of mass of the
free-system are not equal to zero relative to the frame S.

However, since in classical mechanics any reference frame is actually an ideal rigid body then
any reference frame S is an inertial frame when the net dynamic force acting at each point of
the frame S is equal to zero. Therefore, any reference frame S is a non-inertial frame when
the net dynamic force acting at each point of the frame S is not equal to zero (see Annex IV )

On the other hand, the new reformulation of classical mechanics presented in this paper is
observationally equivalent to Newtonian mechanics.

However, non-inertial observers can use Newtonian mechanics only if they introduce fictitious
forces into Fi ( such as the centrifugal force, the Coriolis force, etc. )

Additionally, the new reformulation of classical mechanics presented in this paper is also
a relational reformulation of classical mechanics since it is obtained starting from relative
magnitudes (position, velocity and acceleration) between particles.

However, as already stated above, the new reformulation of classical mechanics presented in
this paper is observationally equivalent to Newtonian mechanics.
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The Definitions

For a system of N particles, the following definitions are applicable:

Mass M .=
∑N

i mi

Position CM 1 ~Rcm
.= M−1

∑N

i mi ~ri

Velocity CM 1 ~Vcm
.= M−1

∑N

i mi ~vi

Acceleration CM 1 ~Acm
.= M−1

∑N

i mi ~ai

Position CM 2 Rcm
.= M−1

∑N

i mi ri

Velocity CM 2 Vcm
.= M−1

∑N

i mi vi

Acceleration CM 2 Acm
.= M−1

∑N

i mi ai

Linear Momentum 1 P1
.=

∑N

i mi vi

Angular Momentum 1 L1
.=

∑N

i mi

[
ri × vi

]
Angular Momentum 2 L2

.=
∑N

i mi

[
(ri −Rcm)× (vi −Vcm)

]
Work 1 W1

.=
∑N

i

∫ 2

1
Fi · dri = ∆ K1

Kinetic Energy 1 ∆ K1
.=

∑N

i ∆ 1/2 mi (vi)2

Potential Energy 1 ∆ U1
.= −

∑N

i

∫ 2

1
Fi · dri

Mechanical Energy 1 E1
.= K1 + U1

Lagrangian 1 L1
.= K1 −U1

Work 2 W2
.=

∑N

i

∫ 2

1
Fi · d(ri −Rcm) = ∆ K2

Kinetic Energy 2 ∆ K2
.=

∑N

i ∆ 1/2 mi (vi −Vcm)2

Potential Energy 2 ∆ U2
.= −

∑N

i

∫ 2

1
Fi · d(ri −Rcm)

Mechanical Energy 2 E2
.= K2 + U2

Lagrangian 2 L2
.= K2 −U2

4



Work 3 W3
.=

∑N

i ∆ 1/2 Fi · ri = ∆ K3

Kinetic Energy 3 ∆ K3
.=

∑N

i ∆ 1/2 mi ai · ri

Potential Energy 3 ∆ U3
.= −

∑N

i ∆ 1/2 Fi · ri

Mechanical Energy 3 E3
.= K3 + U3

Work 4 W4
.=

∑N

i ∆ 1/2 Fi · (ri −Rcm) = ∆ K4

Kinetic Energy 4 ∆ K4
.=

∑N

i ∆ 1/2 mi

[
(ai −Acm) · (ri −Rcm)

]
Potential Energy 4 ∆ U4

.= −
∑N

i ∆ 1/2 Fi · (ri −Rcm)

Mechanical Energy 4 E4
.= K4 + U4

Work 5 W5
.=

∑N

i

[ ∫ 2

1
Fi · d(~ri − ~R) + ∆ 1/2 Fi · (~ri − ~R)

]
= ∆ K5

Kinetic Energy 5 ∆ K5
.=

∑N

i ∆ 1/2 mi

[
(~vi − ~V )2 + (~ai − ~A) · (~ri − ~R)

]
Potential Energy 5 ∆ U5

.= −
∑N

i

[ ∫ 2

1
Fi · d(~ri − ~R) + ∆ 1/2 Fi · (~ri − ~R)

]
Mechanical Energy 5 E5

.= K5 + U5

Work 6 W6
.=

∑N

i

[ ∫ 2

1
Fi · d(~ri − ~Rcm) + ∆ 1/2 Fi · (~ri − ~Rcm)

]
= ∆ K6

Kinetic Energy 6 ∆ K6
.=

∑N

i ∆ 1/2 mi

[
(~vi − ~Vcm)2 + (~ai − ~Acm) · (~ri − ~Rcm)

]
Potential Energy 6 ∆ U6

.= −
∑N

i

[ ∫ 2

1
Fi · d(~ri − ~Rcm) + ∆ 1/2 Fi · (~ri − ~Rcm)

]
Mechanical Energy 6 E6

.= K6 + U6

The Relations

From the above definitions, the following relations can be obtained (see Annex II )

K1 = K2 + 1/2 M V2
cm

K3 = K4 + 1/2 M Acm ·Rcm

K5 = K6 + 1/2 M
[
(~Vcm − ~V )2 + (~Acm − ~A) · (~Rcm − ~R)

]
K5 = K1 + K3 & U5 = U1 + U3 & E5 = E1 + E3

K6 = K2 + K4 & U6 = U2 + U4 & E6 = E2 + E4
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The Conservation Laws

The linear momentum [P1 ] of an isolated system of N particles remains constant if the
internal dynamic forces obey Newton’s third law in its weak form.

P1 = constant
[

d(P1)/dt =
∑N

i mi ai =
∑N

i Fi = 0
]

The angular momentum [L1 ] of an isolated system of N particles remains constant if the
internal dynamic forces obey Newton’s third law in its strong form.

L1 = constant
[

d(L1)/dt =
∑N

i mi

[
ri × ai

]
=

∑N

i ri × Fi = 0
]

The angular momentum [L2 ] of an isolated system of N particles remains constant if the
internal dynamic forces obey Newton’s third law in its strong form.

L2 = constant
[

d(L2)/dt =
∑N

i mi

[
(ri −Rcm)× (ai −Acm)

]
=∑N

i mi

[
(ri −Rcm)× ai

]
=

∑N

i (ri −Rcm)× Fi = 0
]

The mechanical energy [ E1 ] and the mechanical energy [ E2 ] of a system of N particles remain
constant if the system is only subject to kinetic forces and to conservative dynamic forces.

E1 = constant
[

∆ E1 = ∆ K1 + ∆ U1 = 0
]

E2 = constant
[

∆ E2 = ∆ K2 + ∆ U2 = 0
]

The mechanical energy [ E3 ] and the mechanical energy [ E4 ] of a system of N particles are
always zero ( and therefore they always remain constant )

E3 = constant
[

E3 =
∑N

i
1/2

[
mi ai · ri − Fi · ri

]
= 0

]
E4 = constant

[
E4 =

∑N

i
1/2

[
mi ai · (ri −Rcm)− Fi · (ri −Rcm)

]
= 0

]
∑N

i
1/2 mi

[
(ai−Acm) · (ri−Rcm)

]
=

∑N

i
1/2 mi ai · (ri−Rcm)

The mechanical energy [ E5 ] and the mechanical energy [ E6 ] of a system of N particles remain
constant if the system is only subject to kinetic forces and to conservative dynamic forces.

E5 = constant
[

∆ E5 = ∆ K5 + ∆ U5 = 0
]

E6 = constant
[

∆ E6 = ∆ K6 + ∆ U6 = 0
]
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General Observations

All the equations of this paper can be applied in any inertial reference frame and also in any
non-inertial reference frame.

Therefore, the new reformulation of classical mechanics presented in this paper is totally in
accordance with the general principle of relativity.

Additionally, inertial reference frames and non-inertial reference frames must not introduce
fictitious forces into Fi ( such as the centrifugal force, the Coriolis force, etc. )

In this paper, the magnitudes [m, r, v, a, M, R, V, A, T, K, F, P1, L1, L2, W1, K1, U1, E1, L1

W2, K2, U2, E2, L2, W3, K3, U3, E3, W4, K4, U4, E4, W5, K5, U5, E5, W6, K6, U6 and E6 ]
are invariant under transformations between inertial and non-inertial reference frames.

The mechanical energy E3 of a system of particles is always zero [ E3 = K3 + U3 = 0 ]

Therefore, the mechanical energy E5 of a system of particles is always equal to the mechanical
energy E1 of the system of particles [ E5 = E1 ]

The mechanical energy E4 of a system of particles is always zero [ E4 = K4 + U4 = 0 ]

Therefore, the mechanical energy E6 of a system of particles is always equal to the mechanical
energy E2 of the system of particles [ E6 = E2 ]

If the potential energy U1 of a system of particles is a homogeneous function of degree k
then the potential energy U3 and the potential energy U5 of the system of particles are
given by: [ U3 = ( k

2 ) U1 ] and [ U5 = (1+ k
2 ) U1 ]

If the potential energy U2 of a system of particles is a homogeneous function of degree k
then the potential energy U4 and the potential energy U6 of the system of particles are
given by: [ U4 = ( k

2 ) U2 ] and [ U6 = (1+ k
2 ) U2 ]

If the potential energy U1 of a system of particles is a homogeneous function of degree k
and if the kinetic energy K5 of the system of particles is equal to zero, then we obtain:
[ K1 = −K3 = U3 = ( k

2 )U1 = ( k
2+k ) E1 ]

If the potential energy U2 of a system of particles is a homogeneous function of degree k
and if the kinetic energy K6 of the system of particles is equal to zero, then we obtain:
[ K2 = −K4 = U4 = ( k

2 )U2 = ( k
2+k ) E2 ]

If the potential energy U1 of a system of particles is a homogeneous function of degree k
and if the average kinetic energy 〈K5〉 of the system of particles is equal to zero, then we
obtain: [ 〈K1〉 = −〈K3〉 = 〈U3〉 = ( k

2 ) 〈U1〉 = ( k
2+k ) 〈E1〉 ]

If the potential energy U2 of a system of particles is a homogeneous function of degree k
and if the average kinetic energy 〈K6〉 of the system of particles is equal to zero, then we
obtain: [ 〈K2〉 = −〈K4〉 = 〈U4〉 = ( k

2 ) 〈U2〉 = ( k
2+k ) 〈E2〉 ]

The average kinetic energy 〈K5〉 and the average kinetic energy 〈K6〉 of a system of particles
with bounded motion are related to the virial theorem.
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The average kinetic energy 〈K5〉 and the average kinetic energy 〈K6〉 of a system of particles
with bounded motion ( in 〈K5〉 relative to ~R and in 〈K6〉 relative to ~Rcm ) are always zero.

The kinetic energy K5 and the kinetic energy K6 of a system of N particles can also
be expressed as follows : [ K5 =

∑N

i
1/2 mi ( ṙi ṙi + r̈i ri ) ] where ri

.= |~ri − ~R | and
[ K6 =

∑N

i<j
1/2 mi mj M−1( ṙij ṙij + r̈ij rij ) ] where rij

.= | ~ri − ~rj | Note 1

(PN
i<j

.
=
PN

i=1
PN

j>i

)
The kinetic energy K5 and the kinetic energy K6 of a system of N particles can also
be expressed as follows : [ K5 =

∑N

i
1/2 mi ( τ̈i ) ] where τi

.= 1/2 (~ri − ~R) · (~ri − ~R) and
[ K6 =

∑N

j>i
1/2 mi mj M−1( τ̈ij ) ] where τij

.= 1/2 (~ri − ~rj) · (~ri − ~rj) Note 2

(PN
j>i

.
=
PN

i=1
PN

j>i

)
The kinetic energy K6 is the only kinetic energy that can be expressed without the necessity
of introducing any magnitude that is related to the free-system [ such as: r, v, a, ~ω, ~R, etc. ]

In an isolated system of particles, the potential energy U2 is equal to the potential energy
U1 if the internal dynamic forces obey Newton’s third law in its weak form [U2 = U1 ]

In an isolated system of particles, the potential energy U4 is equal to the potential energy
U3 if the internal dynamic forces obey Newton’s third law in its weak form [U4 = U3 ]

In an isolated system of particles, the potential energy U6 is equal to the potential energy
U5 if the internal dynamic forces obey Newton’s third law in its weak form [U6 = U5 ]

A reference frame S is a special non-rotating frame when the angular velocity ~ω of the
free-system relative to S is equal to zero, and the reference frame S is also an inertial frame
when the acceleration ~A of the center of mass of the free-system relative to S is equal to zero.

If the origin of a special non-rotating frame S [ ~ω = 0 ] always coincides with the center of
mass of the free-system [ ~R = ~V = ~A = 0 ] then relative to S: [ ri = ~ri, vi = ~vi and ai = ~ai ]
Therefore, it is easy to see that inertial magnitudes and ordinary magnitudes are always
the same in the reference frame S.

If kinetic forces are excluded, then this paper does not contradict Newton’s first and second
laws since they are valid in all inertial reference frames. The equation [ Fi = mi ai ] is a
simple reformulation of Newton’s second law.

Finally, in this paper, the equation [ Fi = mi ai ] is valid in all reference frames ( inertial
or non-inertial ) even if all dynamic forces always disobey Newton’s third law in its strong
form and in its weak form.
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Annex I

The Free-System

The free-system is a system of N particles that must always be free of internal and external
dynamic forces, that must be three-dimensional, and that the relative distances between
the N particles must be constant.

The position ~R, the velocity ~V and the acceleration ~A of the center of mass of the free-system
relative to a reference frame S (and the angular velocity ~ω and the angular acceleration ~α
of the free-system relative to the reference frame S) are given by:

M .=
∑N

i mi

~R .= M−1
∑N

i mi ~ri

~V .= M−1
∑N

i mi ~vi

~A .= M−1
∑N

i mi ~ai

~ω
.= I−1
↔
· ~L

~α
.= d(~ω)/dt

I
↔ .=

∑N

i mi [ |~ri − ~R |2 1
↔
− (~ri − ~R)⊗ (~ri − ~R) ]

~L .=
∑N

i mi (~ri − ~R)× (~vi − ~V )

where M is the mass of the free-system, I
↔

is the inertia tensor of the free-system (relative
to ~R) and ~L is the angular momentum of the free-system relative to the reference frame S.

The Transformations

The transformations of position, velocity and acceleration of a particle i between a reference
frame S and another reference frame S’, are given by:

(~ri − ~R) = ri = ri
′

(~ri
′ − ~R′) = ri

′ = ri

(~vi − ~V )− ~ω × (~ri − ~R) = vi = vi
′

(~vi
′ − ~V ′)− ~ω ′ × (~ri

′ − ~R′) = vi
′ = vi

(~ai − ~A)− 2 ~ω × (~vi − ~V ) + ~ω × [ ~ω × (~ri − ~R) ]− ~α× (~ri − ~R) = ai = ai
′

(~ai
′ − ~A′)− 2 ~ω ′ × (~vi

′ − ~V ′) + ~ω ′ × [ ~ω ′ × (~ri
′ − ~R′) ]− ~α′ × (~ri

′ − ~R′) = ai
′ = ai
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Annex II

The Relations

In a system of particles, these relations can be obtained ( The magnitudes Rcm, Vcm, Acm,
~Rcm, ~Vcm and ~Acm can be replaced by the magnitudes R, V, A, ~R, ~V and ~A, or by the
magnitudes rj , vj , aj , ~rj , ~vj and ~aj , respectively. On the other hand, R = V = A = 0 )

ri = (~ri − ~R)

Rcm = (~Rcm − ~R)

−→ (ri −Rcm) = (~ri − ~Rcm)

vi = (~vi − ~V )− ~ω × (~ri − ~R)

Vcm = (~Vcm − ~V )− ~ω × (~Rcm − ~R)

−→ (vi −Vcm) = (~vi − ~Vcm)− ~ω × (~ri − ~Rcm)

(vi −Vcm) · (vi −Vcm) =
[
(~vi − ~Vcm)− ~ω× (~ri − ~Rcm)

]
·
[
(~vi − ~Vcm)− ~ω× (~ri − ~Rcm)

]
=

(~vi−~Vcm) · (~vi−~Vcm)−2 (~vi−~Vcm) ·
[
~ω× (~ri− ~Rcm)

]
+

[
~ω× (~ri− ~Rcm)

]
·
[
~ω× (~ri− ~Rcm)

]
=

(~vi−~Vcm) · (~vi−~Vcm)+2 (~ri− ~Rcm) ·
[
~ω× (~vi−~Vcm)

]
+

[
~ω× (~ri− ~Rcm)

]
·
[
~ω× (~ri− ~Rcm)

]
=

(~vi−~Vcm) ·(~vi−~Vcm)+
[
2 ~ω×(~vi−~Vcm)

]
·(~ri− ~Rcm)+

[
~ω×(~ri− ~Rcm)

]
·
[
~ω×(~ri− ~Rcm)

]
=

(~vi − ~Vcm)2 +
[
2 ~ω × (~vi − ~Vcm)

]
· (~ri − ~Rcm) +

[
~ω × (~ri − ~Rcm)

]2
(ai − Acm) · (ri − Rcm) =

{
(~ai − ~Acm) − 2 ~ω× (~vi − ~Vcm) + ~ω× [ ~ω× (~ri − ~Rcm) ] −

~α× (~ri − ~Rcm)
}
· (~ri − ~Rcm) = (~ai − ~Acm) · (~ri − ~Rcm)−

[
2 ~ω × (~vi − ~Vcm)

]
· (~ri − ~Rcm) +

{
~ω× [ ~ω×(~ri− ~Rcm) ]

}
·(~ri− ~Rcm)−

[
~α×(~ri− ~Rcm)

]
·(~ri− ~Rcm) = (~ai−~Acm) ·(~ri− ~Rcm) −

[
2 ~ω × (~vi − ~Vcm)

]
· (~ri − ~Rcm) +

{ [
~ω · (~ri − ~Rcm)

]
~ω − ( ~ω · ~ω ) (~ri − ~Rcm)

}
· (~ri − ~Rcm) =

(~ai− ~Acm) · (~ri− ~Rcm)−
[
2 ~ω× (~vi−~Vcm)

]
· (~ri− ~Rcm)+

[
~ω · (~ri− ~Rcm)

]2− ( ~ω )2 (~ri− ~Rcm)2

−→ (vi −Vcm)2 + (ai −Acm) · (ri −Rcm) = (~vi − ~Vcm)2 + (~ai − ~Acm) · (~ri − ~Rcm)
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Annex III

The Magnitudes

The magnitudes L2, W2, K2, U2, W4, K4, U4, W6, K6 and U6 of a system of N particles can
also be expressed as follows:

L2 =
∑N

j>i mi mj M−1
[
(ri − rj)× (vi − vj)

]
W2 =

∑N

j>i mi mj M−1
[ ∫ 2

1
(Fi/mi − Fj/mj) · d(ri − rj)

]
∆ K2 =

∑N

j>i ∆ 1/2 mi mj M−1 (vi − vj)2 = W2

∆ U2 = −
∑N

j>i mi mj M−1
[ ∫ 2

1
(Fi/mi − Fj/mj) · d(ri − rj)

]
W4 =

∑N

j>i ∆ 1/2 mi mj M−1
[
(Fi/mi − Fj/mj) · (ri − rj)

]
∆ K4 =

∑N

j>i ∆ 1/2 mi mj M−1
[
(ai − aj) · (ri − rj)

]
= W4

∆ U4 = −
∑N

j>i ∆ 1/2 mi mj M−1
[
(Fi/mi − Fj/mj) · (ri − rj)

]
W6 =

∑N

j>i mi mj M−1
[ ∫ 2

1
(Fi/mi−Fj/mj) ·d(~ri−~rj)+∆ 1/2 (Fi/mi−Fj/mj) · (~ri−~rj)

]
∆ K6 =

∑N

j>i ∆ 1/2 mi mj M−1
[
(~vi − ~vj)2 + (~ai − ~aj) · (~ri − ~rj)

]
= W6

∆ U6 = −
∑N

j>i mi mj M−1
[ ∫ 2

1
(Fi/mi−Fj/mj)·d(~ri−~rj)+∆ 1/2 (Fi/mi−Fj/mj)·(~ri−~rj)

]
The magnitudes W(1 to 6) and U(1 to 6) of an isolated system of N particles, whose internal
dynamic forces obey Newton’s third law in its weak form, can be reduced to:

W1 = W2 =
∑N

i

∫ 2

1
Fi · d~ri

∆ U1 = ∆ U2 = −
∑N

i

∫ 2

1
Fi · d~ri

W3 = W4 =
∑N

i ∆ 1/2 Fi · ~ri

∆ U3 = ∆ U4 = −
∑N

i ∆ 1/2 Fi · ~ri

W5 = W6 =
∑N

i

[ ∫ 2

1
Fi · d~ri + ∆ 1/2 Fi · ~ri

]
∆ U5 = ∆ U6 = −

∑N

i

[ ∫ 2

1
Fi · d~ri + ∆ 1/2 Fi · ~ri

]
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Annex IV

Frames and Forces

Diagram of net dynamic forces acting on a reference frame S, when the reference frame S is
a linearly non-accelerated and non-rotating frame relative to an inertial frame (9 points)
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Diagram of net dynamic forces acting on a reference frame S, when the reference frame S is
a linearly accelerated and non-rotating frame relative to an inertial frame (9 points)
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Diagram of net dynamic forces acting on a reference frame S, when the reference frame S is
a linearly non-accelerated and rotating frame relative to an inertial frame (9 points)
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Appendix A

Fields and Potentials I

The net kinetic force Ki acting on a particle i of mass mi can also be expressed as follows:

Ki = + mi

[
E + (~vi − ~V )×B

]
Ki = + mi

[
−∇φ − ∂A

∂t
+ (~vi − ~V )× (∇×A)

]
Ki = + mi

[
− (~ai − ~A) + 2 ~ω × (~vi − ~V )− ~ω × [ ~ω × (~ri − ~R) ] + ~α× (~ri − ~R)

]
where:

E = − ∇φ − ∂A
∂t

B = ∇×A

φ = − 1/2 [ ~ω × (~ri − ~R) ]2 + 1/2 (~vi − ~V )2

A = − [ ~ω × (~ri − ~R) ] + (~vi − ~V )

∂A
∂t

= − ~α× (~ri − ~R) + (~ai − ~A) *

∇φ = ~ω × [ ~ω × (~ri − ~R) ]

∇×A = − 2 ~ω

The net kinetic force Ki acting on a particle i of mass mi can also be obtained starting from
the following kinetic energy:

Ki = − mi

[
φ − (~vi − ~V ) ·A

]
Ki = 1/2 mi

[
(~vi − ~V )− ~ω × (~ri − ~R)

]2
Ki = 1/2 mi

[
vi

]2
Since the kinetic energy Ki must be positive, then applying the following Euler-Lagrange
equation, we obtain:

Ki = − d

dt

[
∂ 1/2 mi

[
vi

]2
∂ vi

]
+

∂ 1/2 mi

[
vi

]2
∂ ri

= − mi ai

where ri, vi and ai are the inertial position, the inertial velocity and the inertial acceleration
of particle i.

* In the temporal partial derivative, the spatial coordinates must be treated as constants [ or replace

this in the first equation: + 1/2 (~vi−~V )×B , and this in the second equation: + 1/2 (~vi−~V )×(∇×A) ]
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Appendix B

Fields and Potentials II

The net kinetic force Ki acting on a particle i of mass mi ( relative to a reference frame S
fixed to a particle s ( ~rs = ~vs = ~as = 0 ) of mass ms, with inertial velocity vs and inertial
acceleration as ) can also be expressed as follows:

Ki = + mi

[
E + ~vi ×B

]
Ki = + mi

[
−∇φ − ∂A

∂t
+ ~vi × (∇×A)

]
Ki = + mi

[
− (~ai + as) + 2 ~ω × ~vi − ~ω × ( ~ω × ~ri ) + ~α× ~ri

]
where:

E = − ∇φ − ∂A
∂t

B = ∇×A

φ = − 1/2 ( ~ω × ~ri )2 + 1/2 (~vi + vs)2

A = − ( ~ω × ~ri ) + (~vi + vs)

∂A
∂t

= − ~α× ~ri + (~ai + as) *

∇φ = ~ω × ( ~ω × ~ri )

∇×A = − 2 ~ω

The net kinetic force Ki acting on a particle i of mass mi can also be obtained starting from
the following kinetic energy:

Ki = − mi

[
φ − (~vi + vs) ·A

]
Ki = 1/2 mi

[
(~vi + vs)− ( ~ω × ~ri )

]2
Ki = 1/2 mi

[
vi

]2
Since the kinetic energy Ki must be positive, then applying the following Euler-Lagrange
equation, we obtain:

Ki = − d

dt

[
∂ 1/2 mi

[
vi

]2
∂ vi

]
+

∂ 1/2 mi

[
vi

]2
∂ ri

= − mi ai

where ri, vi and ai are the inertial position, the inertial velocity and the inertial acceleration
of particle i.

* In the temporal partial derivative, the spatial coordinates must be treated as constants [ or replace

this in the first equation: + 1/2 ~vi×B , and this in the second equation: + 1/2 ~vi×(∇×A) ] (∂vs/∂t → as)
[ or replace in the first equation: + 1/2 (~vi +vs)×B , and in the second equation: + 1/2 (~vi +vs)×(∇×A) ]
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Appendix C

Fields and Potentials III

The kinetic force Ka
ij exerted on a particle i of mass mi by another particle j of mass mj

can also be expressed as follows:

Ka
ij = + mi mj M −1

[
E + (~vi − ~vj)×B

]
Ka

ij = + mi mj M −1
[
−∇φ − ∂A

∂t
+ (~vi − ~vj)× (∇×A)

]
Ka

ij = + mi mj M −1
[
− (~ai − ~aj ) + 2 ~ω× (~vi −~vj)− ~ω× [ ~ω× (~ri −~rj) ] + ~α× (~ri −~rj)

]
where:

E = − ∇φ − ∂A
∂t

B = ∇×A

φ = − 1/2 [ ~ω × (~ri − ~rj) ]2 + 1/2 (~vi − ~vj)2

A = − [ ~ω × (~ri − ~rj) ] + (~vi − ~vj)

∂A
∂t

= − ~α× (~ri − ~rj) + (~ai − ~aj ) *

∇φ = ~ω × [ ~ω × (~ri − ~rj) ]

∇×A = − 2 ~ω

The kinetic force Ka
ij exerted on a particle i of mass mi by another particle j of mass mj

can also be obtained starting from the following kinetic energy:

K a
ij = − mi mj M −1

[
φ − (~vi − ~vj) ·A

]
K a

ij = 1/2 mi mj M −1
[
(~vi −~vj)− ~ω × (~ri − ~rj)

]2
K a

ij = 1/2 mi mj M −1
[
vi − vj

]2
Since the kinetic energy K a

ij must be positive, then applying the following Euler-Lagrange
equation, we obtain:

Ka
ij = − d

dt

[
∂ 1/2

mi mj

M

[
vi − vj

]2
∂ [vi − vj ]

]
+

∂ 1/2
mi mj

M

[
vi − vj

]2
∂ [ ri − rj ]

= − mi mj

M
[
ai − aj

]
where ri,vi,ai, rj ,vj and aj are the inertial positions, the inertial velocities and the inertial
accelerations of particles i and j.

* In the temporal partial derivative, the spatial coordinates must be treated as constants [ or replace

this in the first equation: + 1/2 (~vi−~vj)×B , and this in the second equation: + 1/2 (~vi−~vj)×(∇×A) ]
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Appendix D

Fields and Potentials IV

The kinetic force Ku
i exerted on a particle i of mass mi by the center of mass of the Universe

can also be expressed as follows:

Ku
i = + mi

[
E + (~Vcm − ~V )×B

]
Ku

i = + mi

[
−∇φ − ∂A

∂t
+ (~Vcm − ~V )× (∇×A)

]
Ku

i = + mi

[
− (~Acm − ~A) + 2 ~ω× (~Vcm − ~V )− ~ω× [ ~ω× (~Rcm − ~R) ] + ~α× (~Rcm − ~R)

]
where:

E = − ∇φ − ∂A
∂t

B = ∇×A

φ = − 1/2 [ ~ω × (~Rcm − ~R) ]2 + 1/2 (~Vcm − ~V )2

A = − [ ~ω × (~Rcm − ~R) ] + (~Vcm − ~V )

∂A
∂t

= − ~α× (~Rcm − ~R) + (~Acm − ~A) *

∇φ = ~ω × [ ~ω × (~Rcm − ~R) ]

∇×A = − 2 ~ω

The kinetic force Ku
i exerted on a particle i of mass mi by the center of mass of the Universe

can also be obtained starting from the following kinetic energy:

K u
i = − mi

[
φ − (~Vcm − ~V ) ·A

]
K u

i = 1/2 mi

[
(~Vcm − ~V )− ~ω × (~Rcm − ~R)

]2
K u

i = 1/2 mi

[
Vcm

]2
Since the kinetic energy K u

i must be positive, then applying the following Euler-Lagrange
equation, we obtain:

Ku
i = − d

dt

[
∂ 1/2 mi

[
Vcm

]2
∂ Vcm

]
+

∂ 1/2 mi

[
Vcm

]2
∂ Rcm

= − mi Acm

where Rcm, Vcm and Acm are the inertial position, the inertial velocity and the inertial
acceleration of the center of mass of the Universe.

* In the temporal partial derivative, the spatial coordinates must be treated as constants [ or replace

this in the first equation: + 1/2 (~Vcm−~V )×B , and this in the second equation: + 1/2 (~Vcm−~V )×(∇×A) ]
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Diagram I

Paper III Paper IV

↓ ↓

Newton’s Law III

( False )
=

Newton’s Law III

( False )

↓ ↓

Auxiliary system of particles

Free-System
=

Auxiliary system of particles

Free-System

↓ ↓

Invariant Magnitudes

Inertial position : ri

Inertial velocity : vi

Inertial acceleration : ai

=

Invariant Magnitudes

Inertial position : ri

Inertial velocity : vi

Inertial acceleration : ai

↓

↓

Kinetic force Ka

Ka
ij = − mi mj

M
(ai − aj)

Kinetic force Ku

Ku
i = − mi Acm

Net kinetic force

Ki = − mi ai

↓

Second Principle

Fi = mi ai

Second Principle

Ti = Ki + Fi = 0

↓ ↓

Base Equation

Fi = mi ai

=
Base Equation

Fi = mi ai



Diagram II

Paper III Paper IV

↓ ↓

Base Equation = Base Equation

↓ ↓

Equation of Motion = Equation of Motion

↓ ↓

Definitions = Definitions

↓ ↓

Relations = Relations

↓ ↓

Conservation Laws = Conservation Laws

↓ ↓

General Observations = General Observations

↓ ↓

Annexes = Annexes

↓

∇ ·E = 2 ~ω 2 , ∇ ·B = 0

∇×E = −∂B/∂t , ∇×B = 0
← Appendices
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