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Abstracts 

The value of curvature k that appears in the Friedman's equation of the FLRW metric is the subject 

of controversy. Of its three possible values (+1, -1, 0), determining whether it is zero or not is an 

important problem in physics. The experimental results existing today do not allow us to resolve it. 

In this report we have studied this problem by carrying out a theoretical calculation of the 

parameters, curvature density Ωk and matter density Ωm. To do this we have obtained an equation 

that relates the spatial curvature constant to the energy density and through it and the Friedman's 

equation we have calculated Ωk and Ωm. The ratio between the two will determine whether the 

curvature k is zero or non-zero. The result obtained in this report leads us to think that the curvature 

constant that appears in the Friedman's equation is zero. 
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1. - The cosmic spacetime  

We are going to study a uniform and isotropic spacetime from a physical point of view, this 

is equivalent from a geometric point of view to being invariant under translations and 

rotations. 

According to Professor Fulvio Meliá in reference [1], we define “cosmic spacetime” as the 

set of points (t, r, Ø Φ) that satisfy the FLRW metric, that is, that satisfy the equation: 

ds2 = c2dt2 – a(t)2(
𝑑𝑟2

1−𝑘𝑟2 + r2dΩ2) 

We define each of the "3D hypersurfaces" of cosmic spacetime as the set of points that have 

the same temporal coordinate. Thus, cosmic spacetime will have a different hypersurface 

for each time t. As we have defined them, these hypersurfaces do not intersect, that is, they 

have no common points and the set of all of them constitutes cosmic spacetime. 

It is in these 3D hypersurfaces where we are going to calculate the spatial curvature 

constant that constitute the object of this report

 

2. - Calculating the spatial curvature constant in the 3D hypersurfaces of cosmic 

spacetime 

First we are going to calculate the curvature scalar of a 3D hypersurface of our 

homogeneous and isotropic cosmic spacetime with an matter density ρm . 

2.1- Birkhoff–Jebsen theorem  
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We make a brief comment on this theorem of mathematics applied to the theory of 

generalized relativity. First, we summarize Professor Fulvio Melia in reference [2] to explain 

it.  

“If we have a spherical universe of mass-energy density ρ and radius r and within it a 

concentric sphere of radius rs smaller than r, it is true that the acceleration due to gravity at 

any point on the surface of the sphere of relative radius rs to an observer at its origin, 

depends solely on the mass-energy relation contained within this sphere”. 

Thus, according to this, to calculate the curvature of the gravitational field of a point located 

at a distance "rs" from the geometric center that we are considering in our continuous 

universe, it is only necessary to consider its interaction with the points that are at a radius 

smaller than "rs", therefore, the mass "m" to be considered will only be that contained in the 

sphere of radius "rs". 

In general relativity, Birkhoff's theorem states that any spherically symmetric solution of 

the vacuum field equations must be statically and asymptotically flat. This means that the 

outer solution (that is, the spacetime outside a gravitational, non-rotating, spherical body) 

must be given by the Schwarzschild metric. 

 

2.2- Calculating the spatial curvature constant 

Let's consider our 3D hypersurface and a sphere of radius r inside, the Birkhoff–Jebsen 

theorem assures us that if we want to calculate the curvature at a point on its surface, we 

must consider only the interaction with the gravitational mass found inside, the 

gravitational mass inside for the sphere external point that we are considering behaves as 

a point mass of equal magnitude to that of the mass of the sphere and located at its central 

point. In this case we are already in the Schwarzschild model, and we can use its equations 

to calculate the corresponding curvature.  

For all this, we can treat the problem of calculating the curvature scalar in each of the 3D 

hypersurfaces of our cosmic spacetime as a problem to be solved by the Schwarzschild 

model and calculate the curvature scalar from that model. In this model, spacetime is 

reduced to a 2D surface and so Gaussian curvatures are easily calculated; the scalar 

curvature in this case is twice the Gaussian curvature.  

According to Annex I, we have found an equation that relates the Gaussian curvature K of 

the spacetime of the Schwarzschild model, with the cosmological parameters mass M and 

universal gravitation constant G. We are going to use this equation to solve our problem. 

This equation is the following:  

K = -GM/c2r3 

Since in our case it is a sphere, its mass will be given by  

M = 4πr3ρm/3 

K = -4πG ρm/3c2  

The curvature scalar R in bidimensional spaces, 2D surfaces, will be given by twice the 

Gaussian curvature K, thus:  

R/ρm = -8πG/3c2 
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 R curvature scalar, spatial curvature constant (m-2) and ρm is the matter density (Kg/m3) 

The curvature scalar in our case is the spatial curvature constant we are looking for.  

Thus, the spatial curvature constant each point of the hypersurface is the same and is 

proportional to the density of matter. 

 

2.3- Studying the spatial curvature constant 

Applying the Friedmann equation and our equation that relates spatial curvature constant 

to energy density in 3D hypersurfaces, we study the ratio between the parameter ΩK and 

the matter density parameter Ωm will give us a value that can allow us to solve the question 

of whether the universe (spatially) is flat or not. We study this question here. 

Ωm = ρm/ρc  

R/ρm = -8πG/3c2  

Dividing the two terms of the fraction by ρc, we get: 

 (R/ρc) /Ωm = 8πG/3c2 

Defining: 

Ωk = (R/ρc)) 

Result:  

Ωk/Ωm = 8πG/3c2 = 6.10-27  

Friedmann´s equation: 

H2 = (a´/a)2 = 8πGρ/3 – kc2/a2 

being H the Hubble constant, “a” the scale factor and “ρ” the energy density.  

In a universe dominated by matter, such as ours: 

ρ = ρm + ρΛ 

ρm is the matter density, 

ρΛ is the vacuum energy density. 

Friedmann's equation can be written like this: 

1 = Ωm + Ω∆ + Ωk  

Ωm = 8πGρm/3H2 

Ω∆ = 8πGρΛ/3H2 

Ωk = 6.10-27Ωm 

According to these calculations, the Friedmann equation can be written as: 

1 = Ωm + Ω∆ 

Therefore, according to our calculations, the value of the curvature parameter k 

appearing in the Friedman equation is zero, k=0. 
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2.4- Experimental data Ωk 

According to the reference [3] 

Ωk = 0,001±0,002 

Our value for the parameter Ωk is within the possible experimental data. Our result is 

consistent with the experimental data. 

 

3. - Conclusions 

By studying the relationship of the cosmological parameters Ωk and Ωm we can know 

whether the spatial curvature constant is zero or not. If the result of our calculation is very 

close to zero, it is expected that this constant will take a value of zero, if the result of our 

calculation is greater, it is expected that this constant will not be zero. The current 

experimental results are not precise enough to determine this. 

Performing a calculation as detailed in this report we have obtained a value very close to 

zero for the relationship between these two parameters Ωk and Ωm. Applying this result to 

the Friedman equation we have obtained a zero value for k, the curvature constant that 

appears in the equation without any doubt regarding another possible value. Thus, we 

consider that the problem we proposed at the beginning of this report has been resolved. 

Opinion among current astrophysicists is divided, with those who think that this curvature 

is zero being very relevant. Our calculations also seem to indicate this. 

 

 

Annex I 

In this annex we obtain an equation that relates the Gaussian curvature of the Schwarzschild 

spacetime with several physical parameters. 

The Flamm paraboloid, J. Droste's spacetime solution to the problem studied by 

Schwarzschild, [4], is a 2D surface inserted in an R3 space. Its geometry allows us to 

parameterize the paraboloid as a function of the observer's distance from the point mass 

“r” and the azimuth angle “φ”. The problem admits a mathematical treatment of differential 

geometry of surfaces [5], and with it we are going to calculate the Gaussian Curvature. (Rs 

= Schwarzschild radius)  

Surface parameters (r, φ) 

0 ≤ r < ∞,   0 ≤  𝜑 < 2π   

which has this parametric equation: 

x = r cosφ 

y = r senφ 

z = 2(Rs (r- Rs))1/2 

Vector Equation of the Surface 

f (x,y,z) = (r cosφ,  r senφ,  2(Rs(r- Rs))1/2) 
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Determination of velocity, acceleration, and normal vectors to the surface 

ðf/ðφ = (-r senφ, rcosφ, 0)  

ðf/ðr= (cosφ, senφ, (r/Rs -1)-1/2) 

ð2f/ðφ2 = (-r cosφ, -r senφ, 0) 

ð2f/ðr2 = (0, 0, (-1/2Rs). (r/Rs -1)-3/2)    

ðf/ðφðr = (-senφ, cosφ, 0) 

n=  
(ðf/ðφ x ðf/ðr)  

[
ðf

ðφ
x

ðf

ðr
]  

 

(ðf/ðφ x ðf/ðr)  = (rcosφ/(r/Rs  -1)1/2,   rsenφ/(r/Rs  -1)1/2,   -r) 

[
ðf

ðφ
x

ðf

ðr
] = r ((1/(r/Rs  -1)) +1)1/2  

 

Curvature and curvature parameters  

Gauss curvature      K = LN-M2/EG-F2 

 L = ð2f/ðφ2. n = -r(r/Rs)-1/2 

N = ð2f/ðr2. n = (1/2Rs) (r/Rs)-1/2 (r/Rs - 1)-1      

M =(ðf/ðφðr). n = 0 

E = ðf/ðφ.  ðf/ðφ = r2 

G = ðf/ðr. ðf/ðr = 1 + (1/ (r/Rs – 1)) 

F = ðf/ðφ. ðf/ðr = 0 

K = -Rs/2r3 =- GM/c2r3 

 for Schwarzschild radius, Rs = 2GM/c2 
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