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Abstract: Quantum mechanics and gravitation theory are unified here, when the
unnormalized Schroedinger wave function of an isolated typical elementary particle, is
given dimensions of potential energy, and is assumed to represent part of the particle’s
gravitational self potential energy, as well as representing the particle itself. This
assumption is shown to be consistent with the normalization of the particle’s wave
function and its probabilistic interpretation. It leads directly to the derivation of a set of
covariant partial differential equations which couple quantum mechanics, general
relativity and electroweak and strong physics, and explains how particle rest mass arises
quantum mechanically. The point of view taken here is that a necessary condition that a
theory of elementary particle physics be fundamental, is that its defining equations be
differential equations, exclusively. (For instance the electroweak field equations are the
Bianchi identities satisfied by the gravitational field equations and lack parity invariant
solutions). Gravitation theory is thereby inserted into quantum mechanics, and gravitation
theory (including general relativity) and quantum mechanics are shown to be compatible
theories.

Interacting particle systems of arbitrary complexity are represented here as the
states occupied by a single gravitationally self interacting particle. If this single
gravitationally self interacting particle is composed of matter and not antimatter, then a
consequence of the theory is matter/antimatter asymmetry. Since the theory involves the
gravitational self interaction of a single particle, any multiparticle system, can be
represented in a background space which is ordinary four dimensional space time. This
contfrasts with conventional Schroedinger theory where the background space has 3N
spatial dimensions and time, where N is the number of particles in the system. This
simplification may lead to the numerical solution of complex molecular interactions,
useful in drug, materials and energy research.

Solutions of the aforementioned covariant equations are shown to represent the
following five categories of elementary particle states: 1. 3 spin % lepton states, 2. 3 spin
72 lepton states representing the antiparticles of the particles in category 1, 3. 6 spin ¥
quarks, 4.3 spin 1 bosons, and 5. 1 spin 0 boson. The strength of the gravitational self
interaction at short range for leptons is shown to be proportional to 1/ and to be 1/
for quarks, where r is the distance from the particle.

The rotational stability of the galaxy based on elementary particle gravitational
self interaction is shown.

Introduction

The Heisenberg Uncertainty Principal implies that the position of a single isolated
particle with respect to its own gravitational field, is uncertain - the particle exists
somewhere within its own gravitational field. Like any other particle whose motion
would be affected by the isolated particle’s gravitational field and whose energy would be
quantized by it, the motion of the isolated particle that created the gravitational field, is
assumed to be affected by its own gravitational field and its energy is assumed to be
quantized by it. In the rest frame shared by the isolated particle and the time independent
part of its own gravitational field, isolated particle energy is its rest energy and therefore




particle rest energy and rest mass will be quantized by the isolated particle’s own
gravitational field. This reciprocity between the particle and its own gravitational field
(the isolated particle creates its own gravitational field and the gravitational field affects
the particle’s motion and creates the particle by giving it rest mass) suggests that the
particle’s gravitational field and its Schroedinger wave function satisfy coupled partial
differential equations. :

There are at least three reasons why coupling the field equation of the particle’s
gravitational field and its Schroedinger equation should be impossible: A. The particle’s
gravitational field is a physical entity, and it is not certain that the complex unnormalized
Schroedinger wave function, which could lack physical dimensions and which might not
be physically real, could be coupled to it, B. Solutions of the Schroedinger equation
normally lack a time independent part, and it is uncertain that the Schroedinger equation
could be coupled to the field equation of the particle’s gravitational field, whose solution
has a time independent part, and C. Coupling the particle’s Schroedinger equation to the
differential equation of the particle’s gravitational field could make wave function
normalization and the probability interpretation of the Schroedinger wave function,
impossible.

Condition A. above is addressed by assuming that the unnormalized Schroedinger
wave function of an isolated particle represents part of the particle’s own gravitational
self potential energy field and has dimensions of potential energy. This makes the wave
function physically real and possibly measurable The wave function is complex however,
and would represent a complex gravitational field. This might permit the modeling of
particle creation and annihilation during collisions, just as a complex refractive index
allows a light beam to gain or lose energy (create or annihilate photons) as it traverses a
medium. If the Schroedinger wave function represents gravitational self potential energy,
then gravitation theory is thereby inserted into quantum mechanics, by giving the wave
function dimensions of potential energy. This simple procedure unites gravitation theory
and Schroedinger quantum mechanics and is unaffected by any nonlinearity of the
gravitational field equations or by the possible nonexistence of the graviton. This
simplicity contrasts with the complex conventional approach for uniting gravitation and
quantum mechanical theory, whereby quantum field theory is inserted into gravitation
theory. This latter procedure has never worked and is probably adversely affected by
gravitational field nonlinearity and the absence of the graviton. It is shown shortly that
conditions B. and C. above are also addressed by endowing the wave function with
dimensions of potential energy.

What are the physical dimensions of the unnormalized Schroedinger wave
function? Since the wave function occurs to first power in each term of the Schroedinger
equation, its dimensions are undefined by the Schroedinger equation. In addition the
normalized wave function always has dimensions of one over the square root of volume,
regardless of the dimensions of the unnormalized wave function. Therefore, motivated by
the desire to give the wave function a physical basis, to unify gravitation theory and
quantum mechanics, and to produce a quantum mechanical theory of elementary particle
rest mass, the wave function is assumed to have dimensions of potential energy.

If the wave function W is assigned dimensions of potential energy, it can be added
to or subtracted from the potential energy function V in the Schroedinger equation, where



V and W represent two different parts of the particle’s gravitational self potential energy,
to form two new potential energy functions, that are dimensionally consistent. The two
potential energy functions are called U and Uy , where Uy =V +¥ and Uy, =V -¥
and it can be shown that these potential energy functions are consistent with the following
partial differential equation

ihaU/at = -h* 2mp V2 U + mec* U + U? /2 (1)

where h is Planck’s constant divided by 2 and U is called the modified wave function
and has dimensions of potential energy. If U as defined above is an assumed solution of
(1) and is first inserted into (1), and then Uy, as defined above is an assumed solution of
(1) is then inserted into (1), and then the two differential equations for Uy and Uy, are
subtracted, the Schroedinger equation for ¥ is recovered. Adding the two partial
differential equations, produces a coupled partial differential equation for the quantizing
potential energy function V. Therefore (1) can be decomposed into

ihaV/ot = (-h2/2me) V2V + mec®V + V2 + ¥2/2 2)
iha®/ot = (-h*2mg) V¥ + moc™V + V¥ (3)

If V represents part of the particle’s quantizing field of gravitational self potential
energy, then (2) and (3) represent the self interaction of a particle with its own quantizing
field. Since (2) and (3) can be combined into (1), it is assumed that V, ¥ and U share the
same rest frame. Since V is gravitational and attractive, the particle will occupy bound
states with quantized energy. In the rest frame shared by the particle and its quantizing
field, the particle’s energy is its rest energy, and particle rest energy and rest mass will be
quantized, endowing the particle with rest mass. Therefore the particle’s interaction with
its own quantizing field, may be the reason it has rest mass. (In this paper it is assumed
that an elementary particle is a bound state of its own gravitational self potential energy
field and that in the rest frame shared by the particle and its own gravitational self
potential energy field, that particle rest energy and rest mass are quantized)

Inserting the solution U = ¥, U™ 1n=0,1,2,3.4,...... , into (1) or
V=2 U™ 1n=0,2,4,68, ...... ,and W =3,U.e™ n=1,3,57,......, into (2) and
(3) and grouping terms with the same time exponential, leads to an infinite sequence of
coupled partial differential equations of which the following are the first two equations in
the sequence

0 = (-h? /2mg)V2Uy + moc’Up + Ug*/2 (4)
EU, = (-b*/2mo)V*U; + mec’U; + UgU, (5)
These solutions for U, V, ¥ show that a solution for V containing a time independent part

could coexist with a solution for ¥ which lacks a time independent part and resolves
condition B above. Also (5) is the time independent Schroedinger equation for U; and for




appropriate Uy could lead to normalizable solutions for U . In addition (5) can be
associated with a time dependent Schroedinger equation, therefore the normalization
condition and the probability interpretation applies to at least a part of U and ameliorates
condition C above.

There is a problem with equation (1). The potential energy function V is normally
associated with particles which are bosons, and the wave function ‘' is normally
associated with particles which are Fermions. In addition there are two ways to define the
joint wave function of two particles 1 and 2 with individual wave functions ‘¥'; and ¥, in
order that the joint wave functions of the particles have dimensions of potential energy.
These joint wave functions are ‘¥, + ‘¥, and ¥, - ' . If the two particles are identical and
they occupy the same state, the second joint wave function goes to zero (indicative of
Fermions) and the first joint wave function representing the increased probability that the
two identical particles occupy the same state is indicative of the behavior of bosons.

How can the particle whose field equation is (1), be both a Fermion and a Boson
at the same time? If there is only one such gravitationally self interacting particle in any
closed system, such as the universe, the problem is resolved. The question of whether the
particle is a Fermion or a Boson is indeterminate, and it is assumed that the particle can
occupy particle states representing Fermions or Bosons and endowing them with rest
mass. If this single gravitationally self interacting particle is composed of either matter or
antimatter, but not both simultaneously , then a consequence of this theory is
matter/antimatter asymmetry. This coincides with the observation that our universe is
dominated by the presence of matter.

In addition, since there is only one such particle in the closed system and there
could be many particle states which exist simultaneously, it is assumed that solutions of
(1) include multiparticle states of Fermions and Bosons. Although (1) is the field equation
of a single particle, its solutions can represent extremely complex systems of particle
states. Therefore (1) may represent the evolution of a multiparticle system as the
gravitational self interaction of a single particle. The solution above that led to (4) and (5)
can be extended to systems with any number of particles. For instance the solution of (1)
for the two particle case is U = Zy nUmnnexp(mE; + nE;) , mn=0,1,2,3.... Therefore (1) is
a single particle equation with multiparticle solutions. In a later section of this paper,
where the covariant tensor form of (1) is solved, it is shown that this equation has
solutions that can represent Fermions and solutions that can represent Bosons. Did the
particle obeying (1) occupy all the particle states present at the birth of the universe and
endow them all with rest mass at that time, or does it continue to occupy all the particle
states in the universe, endowing them with rest mass and somehow communicating with
them all?

Since (5) is the time independent Schroedinger equation with potential energy
function U, and can be associated with the time dependent Schroedinger equation, these
equations show that (4) with solutions possessing a time independent part can coexist
with the time dependent Schroedinger equation, thereby resolving condition B. above. If
Uy s real and attractive, solution of (5) could lead to normalizable wave functions U, and
a probabilistic interpretation of U , the first term in the solution for . Therefore the
initial assumption that ¥ could represent part of a particle’s gravitational self potential
energy function appears to be compatible with normalization of the wave function and a




probability interpretation of ¥, resolving condition C. above. In the particle’s rest frame
E = my¢” and particle rest energy quantization implies rest mass quantization. If Uy is
attractive, (5) could lead to bound state functions U; which are normalizable. The
simultaneous solution of (4) and (5) with E = myc® might lead to a discrete set of values
for mg.

If U represents a particle’s gravitational self potential energy, it should be possible
to relate it to @, the particle’s classical gravitational potential. It should also be possible to
obtain the field equation for the particle’s entire nonrelativistic gravitational field. Since
V can have a time independent real part, U can have a time independent real part and (1)
should have a real, time independent solution. It will now be shown that (1) can be used
to relate U to ¢ . The relativistically covariant form of the resulting gravitational field
equation and the relativistically covariant equivalent of (1) will later be shown to merge
quantum mechanics and general relativity into a four dimensional, background
independent theory which implies the existence of the particle’s electroweak field.

The classical gravitational field equation of a point particle with gravitational rest
mass mg is

Vimep =0 (6)

Where ¢ = -kmy/R is the Newtonian gravitational potential and me@ has dimensions of
potential energy. Equation (6) is the differential equation of the particle’s gravitational
field in a nonrelativistic, linearized, time independent theory of gravity. To combine (1)
and (6) consistently, the linearized time independent version of nonrelativistic equation
(1) must be used and it is

V2U, = 2my*c*/h*)U, (7)

where U, is the time independent part of U. Consider the following gravitational field
equation

Vmyep = (2mg’c*/h*)Ug (8)

where Uy is the solution of (7). Equation (8) has a homogeneous solution given by the
solution of (6), and an inhomgeneous solution given by the solution of (7). In other words
the equation satisfied by the inhomogeneous solution of (8) is the same as the linearized
time independent version of (1).Since (8) is linear, a complete solution of (8) is given by

mo@ = -kmg/R + Uy = -kmg?/R + Ae(-V2aR)/R ©)

where o = mgc/h. If A =km,? , the potential energy function me¢ in (9) and its gradient
are nonsingular for Lim R — 0. If the particle’s total gravitational field energy is defined
as 1/87tk times the volume integral of the square of the gradient of ¢, then the energy in
the point particle’s gravitational field given by (9) is finite. In conventional theory the
energy in the gravitational field of a point particle of finite mass is infinite. Given the
equivalence of mass and energy this would lead to the contradictory conclusion that the




particle’s rest mass is infinite. Also as will later be shown, the relativistic covariant
equivalents of (1) and (8) along with associated Bianchi identities can be derived. These
are a set of coupled partial differential equations for the metric tensor, the modified wave
function tensor and the stress energy tensor of the electroweak field. These equations may
unify quantum mechanics, General Relativity and electroweak physics in a four
dimensional background independent theory. Equation (1) represents the gravitational self
potential energy field of an isolated particle and (8) represents the isolated particle’s
gravitational field.

The classical equation of motion of an isolated point, elementary particle
that interacts with its own gravitational field, and whose gravitational field obeys (8) and
(9) is given by

mydv/dt = - grad(my@, 10)

Where v is the particle’s classical velocity vector and -grad(my) is the particle’s
gravitational self force, which from (9) points toward the center of the particle‘s own
gravitational self field. Equations (9) and (10) can be used to calculate the gravitational
self force on an isolated particle

Newton’s laws of motion involve external forces acting on a particle. In
particular, Newton’s first law of motion states that if the net external force acting on a
particle is zero, that the particle’s motion is unaccelerated. The particle whose average
motion obeys (10) is not acted on by any external forces, since the gravitational self force
is internally generated, but the particle’s average motion is accelerated. The particle
obeying (10) has an average motion that would violate Newton’s first law of motion.
How would the motion of a composite body, like a star, composed of quarks and gluons
be affected by the gravitational self interaction force of the quarks and gluons? In the next
section, it is shown, that the rotational stability of the galaxy might be due to quark and
gluon gravitational self interaction, and not to the presence of dark matter.

Gravitational Self Force and Particle Macroscopic Motion

A star’s mass is composed primarily of protons, and the protons are in turn
composed of quarks and gluons. In the following, the microscopic motion of protons,
quarks and gluons within stars is ignored, and the motion of these particles is assumed to
be the same as the macroscopic orbital motion of the stars they occupy about the galactic
center. Also, equations (9) and (10) cannot be applied directly to the calculation of the
gravitational self force on a quark or gluon in a proton, since the quark or gluon move at
relativistic speeds within the proton, and (9) and (10) were derived for particles moving at
nonrelativistic speeds. It is assumed that the gravitational self force on a relativistic quark
or gluon is the same as the gravitational self force acting on an equivalent particle at rest
within the proton, whose mass is equal to the part of the proton’s rest mass contributed by
the relativistic quark or gluon. Also if the gravitational self force acting on an equivalent
particle is initially perpendicular to the star’s velocity vector and points toward the
galactic center (as well as to the center of the particle‘s own gravitational field) , it will
continue to do so thereafter, because the equivalent particle’s travel path is slightly longer




than the path traveled by its gravitational center. This is so because the equivalent
particle’s gravitational field strength is greater at the center of its gravitational field, than
at the particle location in its own gravitational field, and the warpage or shortening of
space is greater at the gravitational field’s center than at the particle location. Therefore
the particle and its gravitational field center could move along concentric circles, centered
at the galactic center, with the particle having a slightly larger radius than its gravitational
center. It is now shown that this is probably true and can explain the motion of stars in
galaxies.

It is further assumed that half the proton’s rest mass is attributable to the three
quarks of which it is composed and half the proton’s rest mass is attributable to the eight
gluons of which it is composed. The proton rest mass is 1.67 x 10" grams, the part of this
mass contributed by each moving quark is about one sixth of this or 2.78 x 10% grams
and the part contributed by each gluon is about one sixteenth of the proton rest mass or
1.04 x 10 grams. The gravitational self force on each equivalent particle of a relativistic
quark and gluon is calculated, using the gradient of myg in (9) with m either 2.78 XTI
for a quark or 1.04 x 10™ for a gluon. Then the gravitational self force on the proton can
be calculated by adding the contributions of each equivalent of a quark or gluon.
Assuming that each quark and gluon is at the center of its gravitational self field (R = 0)
in the expression for grad(mop), where the self force is maximized, the proton self force
is found to be 1.01 x 10°° dynes. This force declines as the distance of each quark and
gluon from its own center of gravitation increases.

Examination of the rotation curve of our galaxy (see Astronomy, the Evolving
Universe, Cambridge University Press, 2002 by Michael Zeilik, P.393, figure 17.8)
shows the velocity of stars whose distance from the galactic center varies from 1000 light
years to 50000 light years to be roughly constant and equal to 250km/sec. The centrifugal
force on protons myv’/R, moving at this speed in circular orbits about the galactic center,
where R, is the proton’s radial distance from the galactic center, with R, ranging from
1000 to 50000 light years, varies from 1.10 x 107" dynes to 2.2 x 10** dynes. The small
discrepancy between this result and the result for the maximum gravitational self force
might be due to the gravitational effect of other stars in the galaxy. The contribution of
the gravitational self force to the rotational stability of the galaxy is therefore about 90%.
Given the approximate nature of the assumptions made in this analysis, the magnitude of
the calculated gravitational self force on a proton seems to be large enough to produce the
observed galactic rotation curve and in remarkable agreement with observation. It is also
found that 1000 light years is the smallest radius at which protons and stars can be held in
orbit by the gravitational self force calculated using (9) and moving at 250 km per second
in our galaxy. In agreement with figure 17.8 referenced above.

In addition, the self force on a proton in orbit about the sun, at the same distance
from the sun as the earth, can be calculated and is found to be between five and six orders
of magnitude smaller than the gravitational force exerted by the sun on the proton.
Therefore, at the level of solar system distances, the gravitational self force can be

ignored, compared to the usual gravitational force between bodies.

Therefore the rotational stability of our galaxy could conceivably be explained by
the gravitational self force on a proton rather than the assumed existence of dark matter.




Derivation of the Covariant Equations of Elementary Particle Gravitational Self
Interaction

In this paper it is assumed that the metric tensors g.; and g"® in flat space and
rectangular coordinates are given by

A0 000 <> 0 0 0

gg= 0 -1/ 0 0O g= P & @ 0 (11)
0 0 -1/20 0 0 ¢ 0
o 0 0 1 0 0 0 1

Assume that the relativistic generalization of (1) has the following form
h22U= - me%c* U - a U? (12)

Where (2= 8%/0-c*V? and o is a constant to be determined. (12) is the relativistic
wave equation of a spin zero free particle modified by the quadratic term in U  to account
for particle gravitational self interaction. Inserting U and U, defined previously into
(12) and subtracting the resulting two equations gives

W= - m’c*¥P - 2 aV¥ (13)
The nonquantum mechanical relativistic energy equation associated with (13) is
F2=my’c*+c?p*+2 aV (14)
The classical nonrelativistic energy equation associated with (1) is
E=moc*+ p/(2mg) + V (15)

In the particle’s rest frame E = mqc’ and in the particle‘s rest frame (14) and (15)

should become identical. This happens if o= myc” and then (12) becomes
[(PU = -(me2c* /M2 )U - (moc*/h*)U? (16)

Equation (16) is the relativistic generalization of (1). Also if U is a solution of
(16), then so is U”, the complex conjugate of U, and it is assumed that U" represents the
antiparticle of the particle represented by U.
Since it has been shown that U could represent a kind of short range
gravitational self potential energy field, it is assumed that U like the metric tensor is a
second rank tensor Uj; . Therefore (16) is replaced by the following relativistically




covariant equation: _ 7 ,
g®U' o = - (my°c* /W)U’ - (mec’/h*)U' U, (17)

where g;; is the metric tensor, ; represents covariant differentiation and iJ.o.p = 1,2,3.4,
sum on o and B. Equation (17) possesses the solution U’;= foéij where § is the Kronecker
tensor. It can be shown by substitution into (17) that f; satisfies (16), which is the
modified wave equation of a structureless spin zero boson, interacting with its own
gravitational field .

To make the theory developed here background independent and to show that Uj;
represents gravitational self potential energy, a covariant gravitational field equation for
the metric tensor which is coupled to (17) is derived. Tentatively consider the following
gravitational field equation which is the covariant generalization of (8)

Ry= aUg;- QK/cO)D; 1j-1,2,3.4 (18)

where Rj is the second rank curvature tensor and is symmetric in the subscripts 1,j , ais
a constant to be determined, Us;; and U,; are the parts of U; which are respectively
symmetric and antisymmetric in the subscripts i,j and ®; is a symmetric second rank
tensor which will later be shown to contain the electroweak stress energy tensor (see
appendix 1). @; allows (18) to satisfy Bianchi identities and its coefficient has been
chosen for later convenience. If the particle represented by (18) is electrically neutral and
Us;; declines quickly enough as r— o, where r is the distance from the particle, then Ry =
0 far from the particle and the empty space gravitational field equation is recovered.

When (18) is linearized, its (4,4) component equation will yield a differential
equation analogous to (8) for the scalar gravitational self potential energy function myp,
where ¢ is the scalar gravitational potential. In order that this equation give a finite value
for the energy in the gravitational field of a mass point, the solution of the differential
equation satisfied by mep must consist of the sum of two solutions (as in (8)): 1. a
solution which is the Newtonian mass point gravitational potential function multiplied by
my and (2) a solution for myp which is analagous to (8) and equals Usas . This condition
makes it possible to determine a.

Using the textbook definition of R; in terms of Christoffel symbols and the
textbook definition of the Christoffel symbols in terms of the metric tensor gj , it can be
shown that in the time independent,weak field case that

Ry % VP hyy= aUsss- (ZK/ct)Dyy (19)

where g4 = 1+ hys (20)
(See Gravitation and Cosmology, Principals and Application of the General Theory of
Relativity, 1** addition, 1972, see the equation before 10.1.4 and equation 10.1.1)
For the case of a single isolated particle without gravitational self interaction, the
right side of (19) equals zero and

Ry=0 21)




and the Schwartzchild solution for g44 and hys applies giving
14 moc2hy = Y4 moc?e(-2Kmg/(¢*R)) = -Kmy*/R = (me0) (22)

where ¢ is the Newtonian gravitational potential of a point mass. It is further assumed
that this definition between has and @ holds when the right side of (19) is not zero, giving

VA(mo@)= - amg Usqq + (2Kmo/c®)Dyy (23)

The relationship between myo in (23) and Ug, is now established Equation(17)

may be decomposed into two parts which are symmetric and antisymmetric in the
subscripts i and j, where Ugj and Up;;are given by

US,'j:l/z(Uij‘f‘ Uji), UAij =l (U{J‘ - Uji) (24)

Inserting these into (17) and separating (17) into equations which are symmetric and
antisymmetric in the subscripts i and j , gives

g Usjap =-(mg*c*/h?)Us; - (moc’/h?)(UsigUs% + UnicUa%) (22)
e®Unjjop = (mo’c* AU ;- (moe?/h*) Unaio Us®j+ Usia Ua%) (26)

In the linearized time independent case the (4,4) component of (25) in
rectangular coordinates becomes

V2Usu= (mg*c*/h?)Ussq 27)
If Uy, represents gravitational self potential energy, it should be possible to relate
it to the particle’s gravitational potential ¢ as was done in (8) in the first section. The
solution of (23) consists of the sum of a homogeneous solution, where the right side of
(23) equals zero and an inhomogeneous solution where the solution of (23) equals Ugs .
If a=-myc*/h? , (23) becomes
V2(mo®) = (mo2c/h?) U + (2Kmoy/c*) Dy (28)
and if (27) is modified to include @4 it becomes
V2Usas = (mg’c’/h)Usaq + (2Kmo/c")Das (29)
and the inhomogeneous solution of (28) satisfies (29) with mgp equal to Ugs .

Inserting the above value for a into (18) gives

R;= -(moc?/h?)Us; - 2K/ YDy (30)




and using (29) equation (17) becomes
g™ Ujop = ~(my’c"/h?)Uj; - (moe”/h)Use U% - (2Kmy/c*)Dy (31)
Equation (30) may be rewritten as
R'-V4R8'; = -(moc?/h?)(Us' -4 Usy8Y) - (QK/E) (@'Y D%, 3') E (32)

where R=R%, ,sum on a. and 82 is the Kronecker tensor.
Inserting the following into (32)

! Usijzfgaiﬂ“ Hsij, UAij: HAij (33)

( Hsij and HAiJ- are traceless) , taking the covariant derivitive of (32) and using the
Bianchi identity _ .
(R‘j-‘/zRS‘j);F 0 (34)
gives _ _ .
K/ (D' 15D%,8Y)=(moc’/h?)fy j-(moc?/h*)Hs'y (35)

Since (35) is linear in @ it can be split into the sum of three parts

D=, +@,' + @y (D) and @, are traceless) (36)

and @3 = 250:%,8; (37)

Then (2K/cHD,';.= (moc*/h)fy (38)
(2K/c®)®@,'= - (mge*/h*)Hs} : (39)

(K/2%)Ds5%, = -(moc?/h?)fo, (40)

where fo=fo; + T (41

and f;, is composed of the sum of terms, each declining exponentially with distance and
possessing a singular part 1/RY, N=1,2 and fy, is composed of the sum of terms, each of
which either lack the exponential part or possess a singularity of order equal to or higher
than 3.

The covariant derivitive is absent from (39) since both sides of the equation are
traceless and the covariant differential equation is satisfied if both sides are equal. The
covariant derivitive is absent from (40), since both sides of the equation are scalars and
the covariant differential equation is satisfied if both sides are equal. @ must be
traceless or (35) and (38) could be replaced by equalities without derivatives. Then the




right side of (32) would equal zero and (32) would reduce to R’;= 0. This would lead to
V2 @ = 0 in the linearized case, and the prediction that the total gravitational field energy
of a mass point would be infinite - an impossibility.
Inserting (33) and (36) into (31) gives
R (m0204/h2)f;}* (mocth%)(f§2+ HsP o Hs"s/ 4+H,\P HA%p/4) + (H10204/h2)f02 (42)
gaﬁHAij;aﬁz '(mozcéfhz)HAij = (moczﬂlz)(szHAij_f_HAiaHSaj+HSimHAaj) (43)
g""Hs'jop = -(mo’c*/h*)Hs’; - (moc/h)[2fHs’; + Hy'oH" - (Vi)HsP Hs%d'+
"+ Ha'aHa% - (A HAPHA%8Y] -(2Kme/ch)( @, +Dyh) (44)
Inserting (39) into (44) gives
g*Hghop=  ~(moc™/hd)[26oHs'+Hs'oHs (Vo) Hs? Hs %',
+H A oHa % (Y HAPHA%8'] - (2Kmy/c)D) (45)
Inserting (33), (36) and (39) into (32) gives

R'j-¥5 R8Y= (moc*/h?)fy 8] - (2K/c®)D | (46)
The field equations of a gravitationally self interacting mass point are summarized here:

R} ¥4 R&= (moc¥/h?)fy; 8 - QK/P)D, | (47)
(QK/eP)D); ;= (moc/h)fy, ; (48)
g% o.0p= - (my’c*/h%)fy- (moc?/h?)(Fy? + HsP o Hs™p/4-+HAPHA%/4) + (mg’c'/h?)fy, (49)
2" Haop= - (mo”c*/h?)Ha'i- (moc*/h?)(2f6HA HHA W Hs*+ Hs'oHA™) (50)
g Hsop=  ~(moc’/h?)[26Hs +Hs o Hs®-(V) HsP Hs %'

+FHA G HA%-(Y4)HAP HA%8Y] - 2Kmg/c)D (51)

fo=for + for (52)

where f; is composed of the sum of terms each declining exponentially with distance and

possessing a singular part 1/R™, N= 1,2 and £}, is composed of the sum of terms each of
which either lack the exponential part or possess a singularity of order equal to or greater



than 3 and ij,ap=1,2,3,4, sum on a.,f.

(Note: In rectangular coordinates in the flat space approximation, (48) is a first order
differential equation. and the transformation x; — -x;, i=1,2,3 changes the sign of the
terms in (48) involving 8/0x; , i = 1,2,3 and not any other term. Therefore the parity
transform of (48) is a different equation than (48). The parity transform of a solution of
(48), @'; (x,-y,-z,t) satisfies the parity transform of (48) which is different from (48).
Since ®'(-x,-y,-z,t) satisfies a different equation than (48), it can’t generally be equal to
+®(x,y,z,t), which is a solution of (48), and parity is not conserved by the solutions of

(48).)

It is shown in standard texts that if Cij is the stress energy tensor of the
electromagnetic field when f;;=0, that (48) reduces to Maxwell’s electromagnetic field
equations in empty space (See “General Theory of Relativity” by P.A.M. Dirac Copyright
1975, pages 54 to 58) . It is also shown in standard texts on classical general relativity
that the second term on the right side of (47) gives the effect of the electromagnetic field
on the gravitational field of a particle if Cblij is the stress energy tensor of the
electromagnetic field and where

D= (9'a9% - ¥4 0%ppPod5)/(4nc’) (53)

where (Pij 1s the electromagnetic field tensor.
The covariant equivalent of (8) is

d UMdt+{*,5} UP U-(e/(mec?))e® U,=0 (54)

where U is the particle’s velocity four vector, dt is the proper time and e is the
electronic charge.

When fp, # 0, (48) does not reduce to Maxwell s equations. (See appendix 1 where
@, in flat space is expressed in terms of electric and magnetic components in polar
coordinates and appendix 2 where (48) in flat space is expressed in polar coordinates) If
fo1 # 0 only in the immediate vicinity of the particle, then far from the particle, (D]ij obeys
Maxwell s equations and is smooth and continuous, and in the immediate vicinity of the
particle, (Dlij does not obey Maxwell s equations. It can also be shown for an isolated
particle that (48) has solutions when fy; # 0 which completely lack a long range
electromagnetic field, and the particle represented is uncharged and lacks a dipole
moment. (I)lij in this case may represent the particle’s electroweak field and (48) is the
field equation of the particle‘s electroweak field.

Solution of the Covariant Quantum Mechanical Field Equation and the Representation of
Flementary Particle States




The solutions for HAij and Hsij in (49), (50), (51) in flat space time and rectangular
coordinates are given by

H,,=SxfyHy' N=1,2, .6 and Hs}=3x fnHy'j N=789,...,15 (55)

where fiy, N = 1,2, .....15 are 15 scalar functions of space and time and HNiJ , N=
0,1,2.....15 are 16 mixed contravariant covariant second rank tensors including the
identity matrix. (The effect of fg; and @' on (49) and (51) is ignored here for simplicity).
These matrices include Hy = I the identity matrix, and the other matrices are traceless and
given by the following

H, H, H;
0100 0010 0001
-1000 0001 001 0
000 - -1000 0-100
00- 0 0100 1000

Hy H; He
0100 0010 0001
-1 000 000+ 0010
0001 -1000 0100
0010 0-100 1000

H7 HS H9
0100 0010 0001
1000 0001 001 0
000- 1000 0i 00
001 0 01 00 -1000

H10 HH 1{12
0100 0010 0001
1000 000- 00-10
0001 1000 0-1 00
00-10 0100 -1 000

His Hi, His
1000 1000 1000
0100 0-1 00 0-100
00-10 0010 00-10
000-1 000-1 0001 (56)

where the square of any matrix in the above set equals & times the identity matrix and the
product of any two matrices in the set is proportional to a matrix in the set of 16. (These




matrices H'; are obtained by considering an arbitrary antisymmetric or symmetric matrix,
with zero diagonal elements, raising one of the indices using (11) and then applying the
condition H',H% = 25H? ;H%&" .The following analysis applies regardless of the value
given to ¢, so for simplicity ¢ is chosen equal to 1. The matrices with nonzero diagonal
elements are chosen so that H*, = 0) There are 6 independent matrices derived from the
anti- symmetric matrix (H; i =1,2,...6), 6 independent matrices derived from the
symmetric matrix (H;i = 7,8,9....12) and 3 independent matrices derived from the matrix
with nonzero diagonal elements (H; i = 13,14,15). As will be shown, these matrices
endow the particles whose solutions are given by (55) with spin. It can also be shown that
all of the matrices in column 1 of the above matrices are rotationally symmetric about the
z axis, that all of the matrices in column 2 of the above matrices are rotationally
symmetric about the y axis and that all the matrices in column 3 of the above matrices are
rotationally symmetric about the x axis, where for instance a rotation through angle ®
about the z axis is given by

x®= cos® sin® 0 0 X
y'= -sin® cos® 0 0 y
2= 0 0 1 0 z
= 0 0 1 t

where B represents the transformed axes. Also matrices 4,5.,6 are the complex conjugates
of matrices 1,2,3 and matrices 10,11,12 are the complex conjugates of matrices 7,8,9.
Matrices 13,14,15 are their own complex conjugates.

If (55) is inserted into (49), (50), (51) and the coefficients of like matrices are
grouped, then the following differential equations are obtained for the scalar dependent
variables fy N =0,1,2,.....15

O + oy = B(-fo” + £+ £, - 2+ £,2 + £ £ - £ - 2 + 0 - 1 - fl + £ - fis?
- f142 = f152 )

(Pf) + o) = -2B(fofy + £4f5 -ifsf)p +ifefiy)

[P6 + o2y = 2B (fofy + ifyfs + f5f14 -ifsf®0)

OPfs + o2 = 2B(fofs + ifyfy - ifsfy +Hefis)

[Pfy + o6y = 2B (fofy + fify5 + ifyfy -ifyf)

[Pfs + o™ fs = -2B(fofs - ififi + fofy4 +ifsfy)

[Pfs + o = -2B(fofs - ifi iy + ifaf®o + fify5)

O°f; = 2B (fofy - ifyfs + ifofyy + £2)01)3)
mg?! = 2B(fofy + ifsfy - i of1n + £11£14)
0 = -2B(fofo + ifpfy - if7£}) + fi126)5)
P8 = 2B(fof®1p + ifafs + £33 -ifef1y)
Py = 2B(fofy; - ififs +ifsfs + fifis)
01 = 2B(fof1z - ififs + fofys + ifyf®)0)
i = 2B (fof1s - £ifs + £5£°10 + fi4fis)
[fiq = -2B(fof14 - Lofs + £33; + fi3f15)

[Pf)s = -2B(fofy5 + 315 - fofy5 + £13f14) (57)




where o = mgc*/h and B= myc?/h®

If eight of the scalar dependent variables in the above equations are assumed to
have a time independent part (denoted by subscript 0) and eight of the scalar dependent
variables in the above equations are assumed to lack a time independent part, (lack a
subscript 0) there are exactly fifteen different sets of coupled partial differential equations
with each equation in the set possessing the same form as either (2) or (3). If the variable
on the left side of a scalar equation has a time independent part then the scalar equation
form is similar to (2). Specifically, the quadratically nonlinear terms on the right side of
the equation consist of products of two variables with time independent parts like V2 or
products of two variables that lack a time independent part like Y2 | If the dependent
variable on the left side of a scalar equation lacks a time independent part, the equation
form is similar to (3). Specifically, the quadratically nonlinear terms on the right side of
the equation consist of the products of two variables, one of which contains a time
independent part and one of which lacks a time independent part, like V'P'. For example

O, + o fy = B(-fo” + fio> + 657 - 57+ fao” + f5o” - foo” - £ - 7+ 657 - 2107 fi10” + fiao”
fp? - £ -fi)
130° - fia” -fis
[Pfio + o “fi0 = -2B(fofio + faofiso -ifsofizo + ifsofii0)
[Ph+ o, =-2B(fh + ifiefy + fofis - ifsef®10)
Pf+ o f;  =-2B(fofs + ifiofs - ifsof; + feofis)
Py + o fa = -2B(fofa + fiofizo + ifofy - ifsfy)
Phso + o 50 = -2B(fofso -ifiofiao + fofis + ifsf7)
Do + o fso = -2B(fofeo -ifiofiio Hbt"10 +is)

0 = 2B(fofy -ifsfso + ifofiro + £10f130)

P fy = 2B (fofy + ifsfio - if%10 fizo + fr10f14)

Ofy = 2B(fofy + ifofag -if7f110 + fi20fis)

P20 = -2B(f0fBio + ifafeo + f7f130 - 1fgti20)

i = 2B(fof110 - ifiofeo + ifsfo + fif1s)

(fi20 = 2B(fofizo - ifiofso + fofis + ifsf’10 )

130 = 2B (fofis0 - fiofuo + Ff%10 + fiafis)

[P = 2B(fofs - Hofso + fsfi10 + fizofis)

[Pfis = 2B(fofis + f3f60 - fofio + f130f14) (58)

where the subscript zero indicates a variable with a time independent part, except for 10
which lacks a time independent part. ( If %, possessed a time independent part, it would
have a double zero subscript like *100)

(In the theory developed here, a particle is represented as a bound state of a field of
potential energy, produced by the particle itself. In the rest frame shared by the potential
energy field and the particle, if particle energy is quantized, then so is particle rest mass.)

See the following table which shows the 15 different solutions of (57) which
possess the form described above, (case 3 in the table corresponds to the above case in

(58)).
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4 0 0O 0 O 0 0 0 0
50 0O 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0

8§ 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0

10 0 0 0O o0 O 0 0 0

11 0 0 0 0 0 0 0 0
12 0 0 0O 0 0 0 0 0

13 0 0 0 0 0 0 0 0
14 0 0 0 0 0O 0 0 0
15 0 0 0 0 0 0O O 0
16 0 X X X X X X X X X X X X X X X

Table 1

where 0 indicates a dependent variable with a time independent part and a space with no
entry indicates that the dependent variable lacks a time independent part. Case 16 in the
above table corresponds to the scalar solution of (17) already discussed, and represents a
structureless spin 0 boson. The X’s in case 16 indicate that there is no variable at all in
that case. The cases are grouped into five sets, with the first set containing three cases, the
second set containing three cases, the third set containing six cases, the fourth set
containing three cases and the fifth set containing one case.

It can be shown that a member of one set above can be transformed into another
member of the same set by a ninety degree rotation about one of the coordinate axes and




that the cases in two different sets can‘t be transformed into each other by rotation.
Therefore the particle types in each set are physically distinct This result is accomplished

using (55) and the transformation equations of the mixed contravariant, covariant tensors
(56), which are

HPY = (0x” ox™ )( oxP/oxBIyH (59)

where x' , i = 1,2,3,4 are the untransformed axes and x®/ , J=1,2,3,4 are the transformed
axes. For instance, consider a 90 degree rotation about the x axis, given by x°>=x, y® =z,
7B = -y, 2 = t, where X,y,Z,t represent the initial axes and x°, yB, 70, 1 represent the
rotated axes. Applying this transformation and (59) to matrix H, transforms H,; into
-H, . When this is done to all the contravariant covariant matrices in the expression for
case 1, keeping track of whether the scalars have a time independent part or not, case 1 is
rotated into an expression with the same form as case 2. The same thing can be done with
rotations about the y and z axes and for all the cases in all the groups in the chart.

It is possible to identify matrices H; , H, , H; with the components of a spin
vector and matrices Hy , Hs , Hg with the components of another spin vector where

ox=%H; o, =%iH, 0, =% iH; (60)
o =-%2Hs, % = Y% iHs, 6" =-% iH, (61)
and these obey the commutation relations
[oy,0y] = i0;, [0x,0.] =-ioy, [0y, 6,] =io, (62)
[0 oyl =ic®,, [05%, 67] =-ic®y, [65, %] =ic"x  (63)

The other matrices in (56) satisfy anticommutation relations and can’t be associated with
particle spin.

Matrices H; , i=1,2,...6 are therefore associated with particle spin. The functions
fio.1=1,2,...,6 that possess a time independent part are gravitational self potential energy
functions associated with particle spin. When these functions are inserted into (48) they
should determine particle electroweak properties. The functions f;, i = 1,2,....,6 that lack
a time independent part are the wave functions associated with particle spin. To a first
order of approximation, if the quadratically nonlinear terms on the right side of (57) and
(58) are ignored, then fj; , i = 1,2,...,6 have a time independent part that satisfies
V- o0fip=0, o =mpc/h and £, i = 1,2,...,6 that lack a time independent part satisfy
CPf + o *f, = 0, where o was previously defined. In order to later show the rotational
symmetry of the spin part of the solutions in table 1, it is assumed that

fo=ai(R) and fi=g(R,t) i=12,....6 (64)

The first derivatives of fjy and f; with respect to coordinates are also solutions of the
differential equations satisfied by the f; and f;; where



ofio/0x = (0gi/0R)(OR/6x) = (0g1/OR)(x/R), 8fio/dy = .....,etc and
ofi/ox = (0g./OR)(OR/x) = (0g/OR)(x/R) , ofi/dy = ....., i=1,2,.....6 (65)
For instance in case 3, the spin related, time independent part of Uij is given by

Uy = fioH, + faoH, + £50Hs + fioHs
=(1/R)(dg /OR)(-izH, - izH, + iyHs + xHy) (66)

The coefficients of the matrices H, , Hs, Hs, Hg have been chosen to be consistent with
(65) and to preserve rotational symmetry about the z axis, and it can be shown that Uy is
rotationally symmetric about the z axis. In table 1, case 3 represents the only state in the
first set where Uy is rotationally symmetric about the z axis and it is the only state for
which the z component of its spin vector is in an eigenstate. The time independent part of
U for cases 1 and 2 in table 1 are rotationally symmetric about the x and y axes
respectively and it is assumed that these states are not observable. However, it is possible
to form states with time independent parts which are rotationally symmetric about the z
axis by adding states 1 and 2 and by adding states 1, 2 and 3.
The time dependent, spin related part of the wave function in case 3 is given by

¥ = (1/R)(0g./6R)(-iyH, + xH3) (67)
Forming the determinant of this matrix it can be shown that its eigenvalues are
A12= H[(1/R)(0go/OR)] (X + v)° (68)

and it is inferred that case 3 represents a spin 2 particle. This suggests that the particles
in states 1,2,3 represent spin % leptons. The particles in states 4,5,6 are obtained from
states 1,2,3 by complex conjugation, and it is inferred that states 4,5.6 are the antiparticles
of states 1,2.3.

Similarly it can be shown that the time independent, spin dependent part of the
solution in case 15 is given by

Up = (1/R)(9g1/6R)(zH; + zHy) (69)

this potential energy function is clearly rotationally symmetric about the z axis since as
previously stated H; and H, are rotationally symmetric about the z axis. Also of the cases
13, 14, 15 only case 15 has spin dependent, time independent part which is rotationally
symmetric about the z axis. The time independent wave function for cases 13 and 14 are
rotationally symmetric about the y and x axes respectively. Therefore of the three cases,
only case 15 has a z component of the particle’s spin vector which is in an eigenstate.
States for which the time independent wave function are rotationally symmetric about the



z axis can be formed by adding states 13 and 14 and by adding states 13, 14 and 15.
The time dependent part of the wave function in case 15 is given by

¥ = (1/R)(9ga/OR)(-<iyHy+ xH; + iyH;s + xHg) (70)

The eigenvalues associated with this matrix are
A3 =0, £H(1/R)(0g/OR)]® (x* +y)° (71)

And it is inferred that case 15 represents a spin 1 particle. This suggests that the particles
represented by states 13,14,15 in table 1 represent spin 1 bosons.

It can be shown that none of the spin dependent, time independent potential
energy functions for cases 7 to 12 are rotationally symmetric about the z axis. Therefore,
the z component of the spin in none of cases 7 to 12 is in an eigenstate, and none of
these states can represent an independent observable particle. For instamce in case 7, the
spin dependent, part of the potential energy function is given by

U() = G[(XH3 7 iZH4) (72)
and a 90 degree rotation about the z axis carries this expression into barred coordinates
Up=Gy(i yH; +i zH,) (73)

which is not the same as the original function. It is possible however, to form particle
states which are the sum of three particle states from cases 7 to 12 or the sum of a particle
state and its complex conjugate (or antiparticle state) from cases 7 to 12, whose spin
dependent, time independent potential energy functions are rotationally summetric about
the z axis. Therefore these composite states can represent a physically independent and
observable particle.

For instance the sum of the potential energy functions for cases 8, 9, 10 and for
cases 7,11, 12 is

U{) = G]("iZHl - IYHQ + XH3 1 iZH4 T IYHS +XH6) (74)

and it can be shown that this function is rotationally symmetric about the z axis.
Therefore the z component of the spin vector of this particle would be in an eigenstate
and the associated wave function could represent a physically observable particle.

The wave function for this composite is given by

¥ = 2Gy(R)(-izH, -iyH, +xH; + izH, + iyHs +xHg) (75)

This is a particle whose spin related wave function is equal to the complex conjugate of
its spin related wave function. To preclude this possibility, the coefficients of H,, Hs, Hy
are set to zero, and it can be shown that this wave function represents a spin % particle. If
the coefficients of Hy , Hs ,H¢ are reduced by % instead, it can be shown that the




associated wave function represents a spin 3/2 particle.

The potential energy function for the sum of cases 9 and its complex conjugate or
antiparticle and the sum of cases 12 and its complex conjugate or antiparticle , can be
shown to be rotationally symmetric about the z axis. The spin related wave function
associated with these combination states can be shown to represent spin 1 particles. Also
it can be shown that the spin related wave function associated with the sum of case 9 and
the negative of the complex conjugate of case 12 (where case 12 represents the complex
conjugate of state 9) can be made to vanish. Therefore this combination state represents a
spin 0 particle.

These arguments suggest that the particles in states 7 to 12 in table 1 represent
quarks.

Strength and Range of Elementary Particle Gravitational Self Interaction

The previous analysis shows how to distinguish between spin % leptons, spin ¥
quarks and spin O and spin 1 bosons. It does not show why the interaction strength
between leptons and bosons is so much weaker than the interaction strength between
quarks. In this section it is argued that the reason for the difference in interaction strength
between leptons and quarks is that the gravitational self interaction strength at short range
of quarks is much stronger than the gravitational self interaction strength at short range of
leptons.

It was shown in the previous section that the scalar functions f, and fj;, i= 1,2,
...,0 are spin related. The £, i = 1,2,...6 which possess a time independent part, must be
chosen to maintain rotational symmetry about the z axis so that the z component of
particle spin can be in an eigenstate. When the nonlinear terms on the right sides of the
equations they satisfy, in (57) and (58), are ignored in all but the first equation of each set,
then to the first order of approximation, the fj, satisfy

V- o*fio=0, o =mpc/h, i=1,2,...6 (76)
Equation (76) has a solution of the following form
fo=Ae*®R, i=1.2,....6 (77)

where the A; are constants. The derivatives of f; with respect to coordinates x,y,z are also
solutions of (76). For instance

Of 10x = -Ae*}(1/R*+ a/R)e (x/R)

is a solution of (76). It was shown in the previous section that if the time independent
spin related part of the gravitational self potential energy is to be rotationally symmetric
about the z axis that the derivative solutions of (76) must be used. It is assumed that these
fio 1= 1,2,....6 satisfy (48) and determine particle time independent electroweak



properties.
The nonspin related, time independent scalar functions f;, i = S A—
cases in Table 1 satisfy

V=0 ,i=7,8,...,15 (78)

when the right sides of the equations they satisfy in (57) and (58) are ignored to first order
of approximation. It is assumed that the functions f;, i = 7,8, ,15 can be chosen so that
the gravitational self potential energy represented by f; of all of the particles in table 1,
possess a nonspin related part which is spherically symmetric or isotropic about the
origin. The fj; have the solutions

fo=A/R,i=78,....15 (79)

where the A; are constants. The fields these solutions represent, like the time independent
clectrostatic and time independent gravitational field of a point particle, decline as 1/R
where R is the distance from the particle. No such fields which decline as 1/R other than
the electrostatic and time independent gravitational field have ever been observed. These
solutions for f;pi = 7.,8,...,15 are therefore unsatisfactory.

The derivatives of fj, with respect to the coordinates x,y,z are also solutions of
Vi, = 0 and these solutions decline as 1/R? with respect to the distance R from the
particle. For instance

fio = (8/0x)(AJ/R) = -Ax/R’ (80)

These solutions represent the gravitational self interaction potential energy of the particle
and also its interaction potential energy with other particles. The equation for the nonspin

related time independent gravitational self potential energy for case 3 in table 1 is given
by

Uo'= fiio Hit'j+ fiao Higly + f130 His}

where case 3 in table 1, as shown in the previous section, represents a lepton whose spin
related potential energy is rotationally symmetric about the z axis and therefore represents
a possible lepton state.

It is further assumed that

fi10=-1Ay/R?, fizo=-Ax/R®, fi30= -iAZ/R® (81)

where i = V-1 . When these are inserted into the time independent version of the first of
(58), ignoring all other fj; and f; and ignoring f,* on the right side of this equation, the
differential equation for f; has a right side which is a function R alone and proportional to
1/R*. Solving this differential equation for f;, gives




fy proportional to 1/R? (82)

at short range where f; represents the isotropic nonspin related part of the particle’s
gravitational self interaction potential energy.

It was shown in the previous section that a composite state composed of states
8,9,10 or 7, 11,12 in table 1 might represent a physical particle, a hadron. The nonspin
related part of the gravitational self potential energy function which is the sum of cases
8.,9,10 from table 1 is given by

Uo= (f'70+ 70 + 170 JHy + £'% Hy + (90 + o0 + %0 YHy + £100 Hyo

+ 110+ Prio+ £000)Hin+ 120 Hip + 130 Hyp + 0150 Mg+ 150 His (83)

where the superscript references the particle state in table 1.

Equation (83) can be rewritten in the more compact form as

U= f30 Hy + £30 Hg + fo0 Ho + f100 Hio +110 Hiy + fio0 Hip + fi30 His + f140 Hyg + fis0 Hys (84)
Just as it was possible to form three new fi, by differentiating f;, = A/R = ¢ in

(79) with respect to the coordinates x,y,z, giving the fiin (81), it is possible to form new

fio by differentiating each fi in (81) with respect to the coordinates x,y,z and associating
these functions with the f;, in (84) as follows:

f70= 0" p/0x" = A(-1/R’ + 3x*/R’)

fyo = 0°0/Oxdy = A(3xy/R’)

fo0 = &*@/Ox0z = Ai(3xz/R’)

fi00= O*@/Bydx = A(3xy/R’)

fi10= &*@/3y* = A(-1/R>+ 3y*/R®)

f120= &*@/dzdy = Ai(3yz/R®)

fi30= 0°0/0x0z = A(3xz/R’)

fi40= 0°0/0y0z = A(3yz/R’)

fiso= O*@/0z* = A(-1/R*+ 324/R%) (85)

Inserting (85) into the time independent version of the first of equation (57) gives
V2o - o fy = (mo/h*)(Er0” + £30” - foo® + fi00” + Fi10” -fine” + fi30° + fiao” + fi50%)
= 6mpA%/(h°R®) (86)
The solution for fjat short range is
fo proportional to 1/R*

The self interaction potential energy of leptons at short range is proportional to



1/R* and the self interaction potential energy of quarks at short range is proportional to
I/R*. 1t is inferred that the interaction strength between leptons at short range is
proportional to 1/R? and the interaction strength between quarks at short range is
proportional to 1/R*.

Conclusions

The interactions of any system of elementary particles can be represented by the coupled
covariant partial differential equations of a single gravitationally self interacting particle,
evolving in a curved background independent space consisting of three spatial and one
temporal dimension. The covariant equations couple quantum mechanics, general
relativity and the equations of the electroweak and strong fields. The field of gravitational
self potential energy endows the particles in the system with rest mass, and affects their
macroscopic motion. The rotational stability of the galaxy is explained without the need
to assume the existence of dark matter. The theory developed here may facilitate the study
of molecular interactions which are the basis of drug research, energy research and
materials research.

Appendix 1. Stress energy tensor of the electromagnetic field in polar coordinates
in flat spacetime:

(I)lij =
HEE-Es®  'R(E\E+HH,) ¢*Rsin(O)(EEs+HH;)  (E,H;-H,E;)
+H,%-H,*-H;%)/2

HEEAHLILYR *(-E*+Ey-Es?  c*sin(0)(E,EstILH;)  *(HEs-EHs/R
-H,%.H,>-H:%)/2

B, E; c*(EzE;3 c*(-E1%-E,*+E;? ¢*(E H,
+H;H;)/(Rsin(0)) +H,H,)/sin(0)  -H,>-H,?+H;%)/2 -H,E,)/(Rsin(0))

C'(HEy-EoH;) *R(E\Hs-HiEs) ¢’Rsin@)(H Ey-EiHy)  c*(E,*+E,2+E,?
+H,+H,*H3%)/2
Where E| =Eg E; =Eg, Es=E,, Hi=Hg, H;=Hg, H; = Hy (Physical Components)




Appendix 2 Equations (61) with electromagnetic substitution in polar coordinates
in flat spacetime

¢*0/OR(E2-E,%-E5*+H -H,*-H32)/2+(c*/R)8/00(E Eo+H, Hy )+
(c4/(Rsin(0)))8/0¢(E Es+H Hs)+c*(2E*-E,*-Es*+2H,%-H,-H;?)/R +
c*etn(0)(E,E,+H, Hy)/R+¢*3/0t(H,E5-E,Hs) = (moc®/(2kh?))(8/6R)fy; B.1

¢*0/OR(R(E Ey+H; Hy))-¢* 6/08(E - E,*+Ey™+H, >-H,>+H;5 )/ 2+
(¢*/sin(0))8/0¢(E,E3+HyHs)+2¢* (B Ep+H, Hy y+cetn(0)(E,%-Es+H,2-H,%) + ¢*Ré&/6H(E H;-
H,E5)

= (moc*/(2kh?))(8/80)fy; B.2

c*sin(0)0/0R(R(E,Es+H, Hs))+c*9/60(sin(0)(E,Es+H,H;))

- ¢*0/06@(E *+E,*-Es*+H *+H,%-H,?)+c*cos(0)(E,Es+H,Hs)

+ 2¢*sin(0)(E, Es+H, H;)+c*Rsin(0)8/0t(H, E»-E Hy)

= (moc®/(2kh?))(8/80)fy; B.3

¢’ 8/6R(H;E,-H,Es) + (¢*/R)&/80(H, Es- E\Hs) + (¢*/(Rsin(0)))d/60(E,H,-H, Ey)
+ ¢*0/0t(E 2+ B+ B2 +H +H,?+H;%)/2+2¢° (H3 Ep-H E3)/R + (Setn(0)/R)(H, Es-E Hs)
= (moc"/(2kh?))(8/e0)fo, B.4
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