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The non-obvious possibility of decomposing any n-cube consisting of n-cubes (including
visually perceptible 2D and 3D) into layers of these cubes sequentially placed along the main
diagonal of this n-cube is presented. At the same time, the number of n-cubes in each layer
turned out to be closely related to the numbers of Pascal's triangle.

The coefficients of cutting each n-cube from the last (n-1) layers of them with a section of
dimension (n-1)D are calculated.
Examples are given that allow us to outline some ways to further explore this possibility.
In Addition, the possibility of using this method to prove the tetrahedron volume formula
without using infinitesimal methods is shown.

Let's start with a fairly simple example:

A secant plane is made in an ordinary 5x5x5 cube. Question: how many
cubes will she cut?
If you can count them in a minute by removing one layer of cubes from
the top (or bottom) of a large cube, then you have an excellent spatial
imagination.

Fig.1

The second question is more complicated: a 4-cube 5x5x5x5 is cut by a "flat" 3D section (this
will be a regular tetrahedron) by analogy with the previous one.
The question is the same: how many 4-cubes will this section cut?

Visibility obviously cannot help here due to our lack of experience in observing in 4D, and
without any mathematical calculation method, it will not be possible to answer the question.

I managed to discover the possibility of layering an n-cube along its main diagonal into layers of
its constituent n-cubes.

For a two-dimensional space:

Fig.2 Half of the square is decomposed into layers of squares



Integers show the number of squares in each layer, and the fraction 1/2 is the coefficient of
cutting the squares of the last layer.

For 3D:

Fig.3 One sixth of the cube is decomposed into layers of cubes

Integers show the number of cubes in each layer, which is closely related to the numbers of
Pascal's triangle, and fractions 5/6 and 1/6 are the coefficients of cutting the cubes of the
penultimate and last layers.
At the same time, we get the answer to our first question – 25 cubes will be cut.

In 4D and above, visibility disappears, but the following approach can be used:
"When designing all the vertices of an n-cube onto one of its main diagonals, the latter will be
divided by them into n identical parts" (D.Hilbert, S. Cohn-Fossen Visual Geometry).
In this case, the number of vertices of the n-cube projected at each point of the main diagonal
represents the nth row of Pascal's triangle: for a square – 1 2 1, for a cube – 1 3 3 1 , for a 4-cube
– 1 4 6 4 1 etc.

Any n-cube can be cut into identical n-cubes (elements), where x is the number of cuts of
each edge of a large cube.
This will allow us to bypass the need for a visual representation of the n-cube itself and its layers
of elements. We will analyze only the relative position of the main diagonals of these elements in
the form of successive layers along the main diagonal of the n-cube.



Fig. 4 The main diagonals of the elements for the above square and cube in Fig. 2 and 3.
We observe the displacement of the main diagonals of the elements, of which 1/2 square and 1/6
cube are made up, in each subsequent layer. The cutting coefficients of the elements of successive
layers are shown on the right.

Let's show the location of the main diagonals of the elements of the 4-cube.
Since the second layer of elements is tightly connected (vertex to vertex, edge to edge, face to
face ...) with the original one, consisting of one 4-cube, the main diagonals of the elements of the
second layer will be shifted relative to the original one by 1/4 part. Each subsequent layer shifts
its main diagonals relative to the previous one by the same amount. And only after four offsets,
the diagonals of the current and original layers will be aligned.

Fig.5 A 4-dimensional cube, looking directly at the main diagonals of its elements. Only one diagonal of each layer
is shown. The partition coefficients of the elements of successive layers are shown on the right

Replacing the number 4 with n in these arguments, you can see the arrangement of the layers of
elements for any n-cube.
It follows that for any nD, the decomposition of an n-cube into layers of elements will be similar
in terms of clarity to 2D and 3D, and a section of dimension (n-1)D will always cut (n-1) layers
of elements.

Let's confirm our reasoning with the following formula for a 4-cube of elements:



The first term is the number of uncut 4–cubes, and fractions 23/24, 12/24 and 1/24 are the
coefficients of cutting three subsequent layers of 4-cubes along the main diagonal of a 4-cube
with an edge length x.
Opening the brackets and bringing similar ones, we are convinced of the fairness of equality.

It is not difficult to see the answer to the second question: for a 4-cube at x= 5, 65 4-cubes will
be cut (in layers 10+20+35 ).

For each nD, there is a set of coefficients for cutting n-cubes, which are very conveniently
located on Pascal's triangle.

Fig.6 Pascal's triangle with n-cube cutting coefficients

Calculating the coefficients for any nD is not difficult and begins with cutting the first layer
consisting of one element (n-cube), for which the coefficient is 1/n!
The second coefficient is calculated from the analysis of two layers of elements and so on.

These numerical examples are shown in Fig. 6, where they are highlighted with dashed lines.

If Fig. 2 is ordinary and understandable, then Fig. 3 is quite psychologically difficult. I only
managed to see him while playing with a child with simple wooden cubes.

Let's give an example for an eight-dimensional space:

Here, fractional numbers are the coefficients of cutting 8-dimensional cubes for each layer, and
integers are the number of elements in each layer.

The second example will be visually geometric for a four-dimensional space.
For a 4-cube 3x3x3x3, you can show a 3D section view that cuts three layers of 4-cubes.



The section in this case should consist of fifteen elements: eleven tetrahedra and four octahedra.
One tetrahedron will be located in the center of the secant tetrahedron, four octahedra will be
adjacent to all four of its faces, and the remaining 10 tetrahedra will be outside, forming all four
faces of the large tetrahedron.

Fig.7 3D section view for a 4-cube 3x3x3x3

We consider that four tetrahedra are located in the four corners of a large tetrahedron and six
more are in the middle of each of its edges. The four octahedra are highlighted in dark color and
we observe only a part of their outer faces. The central small tetrahedron is not visible from any
side of the large tetrahedron.

According to the following equality:

let's show the view of the current tetrahedron for 4-cube 4x4x4x4:

Fig.8 3D section view for 4-cube 4x4x4x4

We note that it differs from the previous tetrahedron by only one additional layer of small 10
tetrahedra and 6 octahedra – it is highlighted by a plane with a bold perimeter. This can be done
from any of its four sides. It has the appropriate symmetry.
You can also compare the flat appearance of any of the faces of this tetrahedron with the
appearance of the face of an ordinary cube 4x4x4, obtained after removing four layers of cubes
from it in the spirit of Fig.3. Note the complete coincidence of these species.
You can even try to imagine a 4D section of a 5-cube consisting of 4-tetrahedra and 4-octahedra.
The analogy with Fig.8 helps.



The proposedMethod of layering an n-cube along the main diagonal allows us to take a fresh
look at the structural features of n-cubes and their representation in the form of successive layers
of n-cubes.

Addition

I remember a drawing called "damn stairs" from school. I remember some of its strangeness and
inconsistency between the complexity of the proof and the ultimate simplicity of the result.

Fig.9

The method of exhaustion (infinite approximation), discovered in ancient times, proves the
equality of the volumes of two pyramids with equal bases and the same heights. Ultimately, this
lemma allows us to prove strictly that:

The volume of the pyramid is equal to one third of the product of the area of the base by
the height (1).

Integral calculus can also be used to derive this formula.

In the formulation of his third problem, Hilbert, based on Gauss's letters to Christian Curling,
raises the question: Is it possible to abandon the limit transition in the derivation of the formula
for the volume of a triangular pyramid and limit oneself only to the method of equidistance.
Max Den gave the first answer, and the answer is negative. Today, Hilbert's III problem is
considered to be definitively closed.

What if mathematicians were just unlucky in finding a proof of formula (1) without going to the
limit? (this is exactly how V. Boltyansky puts the question in his book "Hilbert's Third
Problem").

This problem has always, since ancient times and up to the present day, been considered in the
light of the relationship of only two objects – triangular prisms and pyramids having a common
base and height.

Now we're going to take a bold step and complicate the task – add another prism as an object and
see what happens. Indeed, sometimes the complication of the initial conditions can lead to a
simplification of the decision process (recall D. Poya).



Let's add such a triangular prism so that, touching the first one, it would form a parallelepiped.
We note that in this case it must be symmetrical to the existing prism, and therefore it will have
an equal volume, which has been proven for a long time without involving integrals and "damn
stairs".

Now we derive the formula for the volume of a triangular pyramid — tetrahedron, without the
traditional transition to the limit.
The tetrahedron ABCD is the initial one, the volume of which must be determined.

Fig.10

Let's add it to the parallelepiped as follows: we choose vertex D as the main one, and through
vertices A, B and C we draw planes parallel to the opposite faces of the tetrahedron. And we will
continue these faces of the tetrahedron until they intersect with the new planes.
We obtain a parallelepiped DQ consisting of two symmetrical prisms: ABDMNC and APBMQN.
The first prism entirely contains the ABCD tetrahedron, the second one, which we added, does
not contain it. The area of their ABNM junction is highlighted in red along the perimeter.
Divide the edges of the parallelepiped AD, CD, BD in half by the points K, L, M respectively.
Through them we will draw new planes parallel to the faces of the parallelepiped. We get a
parallelepiped DQ divided into eight small parallelepipeds, and all of them are similar to a
parallelepiped DQ.

Let 's denote the volume of a small parallelepiped . Then the volume of a large
parallelepiped:

The initial tetrahedron consists of the following volumes: three small tetrahedra and a small
parallelepiped without the same tetrahedron, but symmetrical to it (highlighted in green in
Fig.10).

Assuming (we will prove below) that the ratio of the volume of the tetrahedron and the
parallelepiped (hereinafter referred to as t) does not change during the similarity transformation,
we can write the following:



Reducing everything by , we get:

That is, the tetrahedron occupies 1/6 of the parallelepiped, which in turn consists of two
triangular prisms of the same volume.
Therefore, any tetrahedron occupies 1/3 of the volume of a triangular prism having a common
base and height with it.

Previously, we used the statement that the ratio of the volume of a tetrahedron to the volume of
the parallelepiped in which it is highlighted does not depend on the similarity transformation.

Fig.11

Suppose that this is not the case, and some part of the inner points of the tetrahedron, during the
similarity transformation, passes into the points of the remaining part of the parallelepiped, i.e.
the ratio of their volumes is violated.

Let's choose any of these transition points of the tetrahedron, let it be a point .
Let's lower the perpendicular from it to the plane ABC separating the volumes under

consideration, we get a point . Let's continue the perpendicular beyond the point away

from the plane ABC, without going beyond the tetrahedron. We will get a point .

So, the similarity transformation asserts, as one of the consequences, that the order of points on
any straight line cannot change during the similarity transformation.

Thus, the point will never be able to cross to the other side of the ABC plane.
Similarly, it is proved that none of the points on the other side of the plane can pass into a
tetrahedron.
Consequently, the ratio of the volumes of the considered polyhedra does not change during the
similarity transformation, and we have the right to use this fact.

By the way, the requirement that the segment is perpendicular to the ABC plane is
unnecessary, since the basic definition of similarity allows you to choose any pair of points, the
distance between which changes with a coefficient k during the similarity transformation.
If we choose the first point among certain ones (presumably passing through the ABC

plane), then the second one can be any of the points in the ABC plane.



This proof is based on the following remarkable fact: only a cube and a parallelepiped can be
composed of smaller, similar polyhedra. The triangular prism and other polyhedra do not have
this ability.

Thus, theMethod of dividing the n-cube along its main diagonal allowed us to approach the
ancient proof here in an unexpected way.
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