Riemann sums of $\sin x$ and $\cos x$

Pawel Piskorz*

Abstract

Riemann integrals of the trigonometric functions $\sin x$ and $\cos x$ have been computed directly from the appropriate Riemann sums.

Introduction

Let us remind the two fundamental theorems of integral calculus. Let $F(x)$ be the area under the plot of $f(x)$ between the line $x=a, x$ coordinate line and the $O x$ axis. By looking at the Figure 1. we can see that

$$
\begin{equation*}
\lim _{\Delta x \rightarrow 0} F(x+\Delta x)-F(x)=\lim _{\Delta x \rightarrow 0} f(x+\Delta x) \Delta x \tag{1}
\end{equation*}
$$

Dividing the above equation by Δx we arrive at

$$
\begin{equation*}
F^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{F(x+\Delta x)-F(x)}{\Delta x}=f(x) \tag{2}
\end{equation*}
$$

$F^{\prime}(x)$ is the derivative of $F(x) . F(x)$ is being called the primary function of $F^{\prime}(x)=f(x)$.

The first theorem of integral calculus states that the area derivative $F^{\prime}(x)$ is equal to the function $f(x)$ under the plot of which the area $F(x)$ is being computed.

From Figure 2. we see that

$$
\begin{array}{r}
F\left(x_{1}\right)-F\left(x_{0}=a\right)=f\left(x_{1}\right) \Delta x_{1} \tag{3}\\
F\left(x_{2}\right)-F\left(x_{1}\right)=f\left(x_{2}\right) \Delta x_{2} \\
\cdots \\
F\left(x_{N-1}\right)-F\left(x_{N-2}\right)=f\left(x_{N-1}\right) \Delta x_{N-1} \\
F\left(x_{N}=b\right)-F\left(x_{N-1}\right)=f\left(x_{N}\right) \Delta x_{N}
\end{array}
$$

where $\Delta x_{k}=x_{k}-x_{k-1}$ for $k=1,2, \ldots, N$.

[^0]

Figure 1: $F(x)$ is the measure of area under the plot of $f(x)$

Figure 2: Illustration of the Riemann integral computation

Adding all above equations by sides we notice that certain terms cancel out and we arrive at the second theorem of integral calculus

$$
\begin{equation*}
F(b)-F(a)=\lim _{\Delta x_{k} \rightarrow 0} \sum_{k=1}^{N} f\left(x_{k}\right) \Delta x_{k} \tag{4}
\end{equation*}
$$

The above equation on the right hand side has the (upper) Riemann sum for the function $f(x)$.

Computations

The Riemann sum of $\sin (x)$ and $\cos (x)$ we compute for

$$
\begin{equation*}
\Delta x_{k}=\Delta x=(b-a) / N \tag{5}
\end{equation*}
$$

for $k=1,2, \ldots, N$ and choose it as

$$
\begin{equation*}
\lim _{\Delta x_{k} \rightarrow 0} \sum_{k=1}^{N} f\left(x_{k}\right) \Delta x_{k}=\lim _{\Delta x \rightarrow 0} \sum_{k=1}^{N} f(k \Delta x) \Delta x \tag{6}
\end{equation*}
$$

with $x_{k}=k \Delta x$ for $k=1,2, \ldots, N$ so we have

$$
\begin{equation*}
F(b)-F(a)=F(N \Delta x)-F(0) \tag{7}
\end{equation*}
$$

In order to compute the Riemann sums of $\sin x$ and $\cos x$ we use the formula for the sum of the geometric series as presented in [1]

$$
\begin{array}{r}
\sum_{k=1}^{N} e^{i k \phi}=\sum_{k=1}^{N} \cos k \phi+i \sin k \phi \tag{8}\\
=\cos ((N+1) \phi / 2) \frac{\sin N \phi / 2}{\sin \phi / 2}+i \sin ((N+1) \phi / 2) \frac{\sin N \phi / 2}{\sin \phi / 2}
\end{array}
$$

where $i^{2}=-1$. We notice that

$$
\begin{align*}
\cos \alpha \sin \beta & =\frac{1}{2}(\sin (\alpha+\beta)-\sin (\alpha-\beta)) \tag{9}\\
\sin \alpha \sin \beta & =-\frac{1}{2}(\cos (\alpha+\beta)-\cos (\alpha-\beta)) \tag{10}
\end{align*}
$$

and we can substitute

$$
\begin{array}{cl}
\alpha=(N+1) \phi / 2 & \beta=N \phi / 2 \\
\alpha+\beta=N \phi+\phi / 2 & \alpha-\beta=\phi / 2 \tag{12}
\end{array}
$$

After computations we arrive at

$$
\begin{align*}
\sum_{k=1}^{N} \sin k \phi & =-\frac{1}{2}(\cos (N \phi+\phi / 2)-\cos \phi / 2) \frac{1}{\sin \phi / 2} \tag{13}\\
\sum_{k=1}^{N} \cos k \phi & =\frac{1}{2}(\sin (N \phi+\phi / 2)-\sin \phi / 2) \frac{1}{\sin \phi / 2} \tag{14}
\end{align*}
$$

Now we calculate the Riemann sums of $\sin x$ and $\cos x$

$$
\begin{align*}
& \sum_{k=1}^{N} \sin k \Delta x \cdot \Delta x=-\frac{\cos (N \Delta x+\Delta x / 2)}{\sin \Delta x / 2} \frac{\Delta x}{2}+\frac{\cos \Delta x / 2}{\sin \Delta x / 2} \frac{\Delta x}{2} \tag{15}\\
& \sum_{k=1}^{N} \cos k \Delta x \cdot \Delta x=\frac{\sin (N \Delta x+\Delta x / 2)}{\sin \Delta x / 2} \frac{\Delta x}{2}-\frac{\sin \Delta x / 2}{\sin \Delta x / 2} \frac{\Delta x}{2} \tag{16}
\end{align*}
$$

We obtain

$$
\begin{align*}
& \lim _{\Delta x \rightarrow 0} \sum_{k=1}^{N} \sin k \Delta x \cdot \Delta x=\lim _{\Delta x \rightarrow 0}-\frac{\cos (N \Delta x+\Delta x / 2)}{\frac{\sin \Delta x / 2}{\Delta x / 2}}+\frac{\cos \Delta x / 2}{\frac{\sin \Delta x / 2}{\Delta x / 2}} \tag{17}\\
& \lim _{\Delta x \rightarrow 0} \sum_{k=1}^{N} \cos k \Delta x \cdot \Delta x=\lim _{\Delta x \rightarrow 0} \frac{\sin (N \Delta x+\Delta x / 2)}{\frac{\sin \Delta x / 2}{\Delta x / 2}}-\frac{\sin \Delta x / 2}{\frac{\sin \Delta x / 2}{\Delta x / 2}} \tag{18}
\end{align*}
$$

Conclusion

The limits of the expressions

$$
\begin{equation*}
\lim _{\Delta x \rightarrow 0} \frac{\sin \Delta x / 2}{\Delta x / 2}=1 \tag{19}
\end{equation*}
$$

and the Riemann sums for $\sin x$ and $\cos x$ are

$$
\begin{align*}
& \lim _{\Delta x \rightarrow 0} \sum_{k=1}^{N} \sin k \Delta x \cdot \Delta x=\lim _{\Delta x \rightarrow 0}[-\cos x]_{x=0}^{x=N \Delta x} \tag{20}\\
& \lim _{\Delta x \rightarrow 0} \sum_{k=1}^{N} \cos k \Delta x \cdot \Delta x=\lim _{\Delta x \rightarrow 0}[\sin x]_{x=0}^{x=N \Delta x} \tag{21}
\end{align*}
$$

We can check that our results are correct. The derivative of $-\cos x$ is equal to the primary function $\sin x$ and the derivative of $\sin x$ is equal to the primary function $\cos x$.

References

[1] Hirst, Keith E. (1995) Modular Mathematics Numbers, Sequences and Series Butterworth-Heinemann, Oxford

[^0]: *paweljanpiskorz@gmail.com, Krakowska 55, 31-066 Krakow, Poland

