A Beautiful Geometric Property of the Complex Numbers: Statement and Proof in 6 Sentences

Lance Horner

May 21, 2024

Abstract

We relate the product of the vertices of a regular n-gon in the complex plane to the nth powers of the n-gon's center and complex radii.

Theorem: In the complex plane, consider a regular n-gon with center c and some complex radius r. Then the product of its vertices is equal to $c^{n}+r^{n}$ if n is odd, and $c^{n}-r^{n}$ if n is even. Symbolically: $\forall c, r \in \mathbb{C}, n \in \mathbb{N}=\{1,2, \ldots\}$,

$$
\begin{equation*}
\prod_{k=1}^{n}\left(c+r e^{2 \pi i k / n}\right)=c^{n}-(-1)^{n} r^{n} \tag{1}
\end{equation*}
$$

Proof: If the n-gon were centered at the origin, its vertices would be the nth roots of r^{n}, which are the zeros of $x^{n}-r^{n}$. So the vertices of our actual n-gon ('translated' to center c) are the zeros of $(x-c)^{n}-r^{n}$. Now, by Vieta's formulas, the product of the zeros of a monic polynomial of degree n is $(-1)^{n}$ times its constant term, and so the product of the n-gon's vertices is $(-1)^{n}\left((-c)^{n}-r^{n}\right)$, which equals $c^{n}+r^{n}$ if n is odd, and $c^{n}-r^{n}$ if n is even.

To comment or contact, visit: https://complexnumbers.org/

