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Abstract : In this note, we prove a remarkable theorem in the trapezoid.

Theorem.

Let ABCD be a trapezoid with bases AB = a, DC = b, and legs CB = d, AD = c, and
diagonals AC = p and BD = q, then we have :
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Proof.

We are going to prove formula (2).

We construct the trapezoid ABCD.

Heron’s formula for the area of a triangle with lengths a, b, c is given by :
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One can easily prove that the expression (3) is equivalent to the following
expression :
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Now, using formula (4), the area K; of the triangle ACD in the above trapezoid is:
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Similarly the area K, of the triangle BCD is:
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Since the two triangles ACD and BCD have the same base and altitude, their areas
are equal, therefore :
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Similarly we prove formula (1) by considering the triangles ABD and ABC. [ |



