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Abstract : The aim of this paper is to give an elementary proof of a well-known
explicit formula for Bernoulli numbers, with some remarks.
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1 Introduction

The numbers :

1 1 1
bozl, bzzg, b4:—%, b6:EJ
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are called the Bernoulli numbers. They can be defined by the following exponential
generating function:

(0 0)
t b t"
et —1 "l
n=0

For a long time, mathematicians computed b,, using recursive relations like the
following one:

Forn =0, b,=1

n+1
vn>1, Z( . )bk=0

We can also find other mathematicians from the 19th century who proved formula (1),
such as Cesaro in 1885 [2] and D’Ocagne in 1889 [3].
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For our part, we present an elementary proof of the formula (1).

2 Stirling numbers of the second kind

Let Y be an arbitrary function of x, and set :

n times
DY = x(...x(x(x YW

n times
If we develop DY forn =1, 2, 3,4, we find :
DY = xY’
D?Y = xY' + x?Y"
D3Y = xY' +3x%Y" 4+ x3y®
D*Y = xY' + 7x?Y" 4 6x3Y®) + x*y®
We conjecture that :

DY = SOV + SixY' + S2x2Y" + - 4 SPx"Y (M (2)

The coefficients S¥ are called Stirling numbers of the second kind. They can be
represented in a triangle similar to Pascal’s triangle. The triangle of the numbers S¥ is
the following :

k=0 | k=1 | k=2 | k=3 | k=4 | k=5
n=0|1
n=1|0 1
n=2 10 1 1
n=3|0 1 3 1
n=4 |0 1 7 6 1
n=510 1 15 |25 |10 |1

Table 1 : The triangle of Stirling numbers of the second kind S¥

We observe that :
{ Sy=1
vn>1, S2=0



The law for forming the numbers S¥ in the above table is given by :
Sk =Sp-i + kS,
3 The explicit formula of Stirling numbers of the second kind

If we put Y = e* in the formula (2) we obtain :

k=0
n
= e D" = SEx*
k=0
o - o n
(—1Yx x'
- D" — | = Skxk
j! i! "
i=0 k=0
.. © . n
(—1Y % D! .
= T = S,x
i=0 k=0

One can easily prove that D™x! = i"x*,so0 :

(%) .. oo , n
—1)/x/ iMxt
)($5) - S

j! i! 4

=0 i=0

If we develop the left-hand side we obtain :

2(2( 1)k ‘(ﬁ) ZSk ’

k=0 \i=0

Comparing coefficients in both summations we conclude that :

5k = %i(—l)’“’ Hr o

4 Relation between Stirling numbers of the second kind and Bernoulli
numbers



Putting Y = x¥ in the formula (2), we get :
n
D"xY = z Sk xk(x¥)to

k=0

We know that (x¥)® = y(y — 1) ...(y — k + D)x¥"®and D™xY = y™xYso we get :
n
y" = er’fy(y— D.-k+1) (4)
k=0

The polynomial y(y — 1) ...(y — k + 1) is called the falling factorial of order k of y.

Pochhammer used the symbol (y), to denote it, so the formula (4) becomes using
Pochhammer symbol :

n
= SN @)
k=0
One interesting property of the falling factorial function is the following :

Proposition 1

Let n and y be non-negative integers, then :

Y+ Dns1 = s =+ D3)n

Proof

G+ Dps1= Onyr = +Dy-D.(y—n+D)—-y@y—-1D..(0 —n+1(y—n)
= [G+D-@-mly-1D.(y—n+1)
= (m+ DO

We are going to use this property in the proof of the following proposition.

Proposition 2

Letn € N and m € N*. We have :

Proof



If we sum for y in the formula (4”) we find :

m—1 m—1 n
n k
y = Z Z Sp (),
y=0 y=0 k=0
m—1 n m—1
k
— yn — z Sn ( (y)k
y=0 k=0 y=0
m—1 n m—1
+1 )
— yn _ z Sfl k+1 k+1
k+1
y=0 k=0 y=0
m—1 n
(m), ., — (0)
: yn — z Sfl ( k+1 k+l)
k+1
y=0 k=0
Therefore :
m-—1 n
n _ k (m)k+1
yi= 2, 5n k+1
y=0 k=0
Definition
Letn €N

The Bernoulli polynomials B,,(x) are defined by the following exponential generating
function :

tetx ® tn
et—1 ZB"(x)E
n=0

One interesting observation to make about Bernoulli polynomials is that if we put x =
0 we get :

(ee]

t t"
et—1 ZB"(O)E
n

=0

This generating function corresponds to the generating function of Bernoulli numbers
b,,. Hence for all n € N, we have :
B, (0) = by



Another interesting property of the Bernoulli polynomials is the following :

Proposition 3

Letn €N
B,(x +1) — B,(x) = nx™1

Proof

On the one hand :

> B+ D) - B} = (ZBn(xH)%)—(ZBn(x)%
n=0

On the other hand :

Z nxn_lﬁ = t—(xt)n_l
n! (n—1)!
n=1
o ()"

n!

S
Il
=}

n=0

= text

Comparing coefficients of both summations we conclude that for all n € N:
B,(x +1) — B,(x) = nx™!

Proposition 4

Letn € N

n

B,(x) = Z (:) bn—kxk

k=0
Proof



n=0

Therefore :

B,(x) = Z bk (Z) x*
k=0

Summing for y in the relation B,,.;(y + 1) — B,.1(y) = (n + 1)y™ we obtain :

m—1 m—1
(n+1) Z o= Z{Bn+1(y +1) = By ()}
y=0 y=0

Bn+1 (m) - Bn+1 (O)

Bn+1 (m) - bn+1
Thus :

m—1
(A1) ) Y =B by (6)
y=0

Comparing formula (5) with formula (6) we conclude that :

Bn+1(m) —byy=(n+1) Z Sk (e 7)
k=0

" k41

If we develop the expression of (X);., in terms of the powers of X we find :



Xker = XX -1D..(X—k)
- X(Xk KA Dyea Ly (—1)'%!)

2
k
= XZC]X]
j=0
k
— j+1
= ZC]'X]+

j=0
Therefore :
k

Xks1 = z ¢ Xt

j=0

If we apply the above formula for (m);, in the formula (7) we find:

n+1 .
Bpi1(m) —bpyq = Z Sn k + 1 C] m/*t

Substituting also B, ,(m) by its explicit expression, we finally get :

n+1 k
n+1
Z( k )b”“"‘m bn1 = Z ”k+
k=0 ]:
= n+1 - +1
n n .
= Z( k )bnﬂ—km":ZSr’ka gm'™
k=1 k=0 j=0
Zn:(n+1)b i+1 2 kn+1 i i+1
e =
L \j+1) 7™ k140"
j=0 =0 Jj=0
n n n
n+1 , kn+1 .
= z ( +1)b m]=z el L
=\ j=0 \k=j

We have equality between two polynomials in m, both of degree n, so the coefficients
of the terms of the same degree are equal. In particular for j = 0 we have :

("} )=y s
= is (D

" k41
k=0




To get the explicit expression of b, in terms of n, we substitute S¥ in the above

identity by its explicit expression, and after simplification we obtain the remarkable
formula (1) for the Bernoulli numbers.

5 Some observations

From formula (6) we can deduce Bernoulli’s formula, we have :

m-—1

1
z y*r o= n__H{Bn+1(m) — byy1}

y=0
n+1
1 n+1 X
= n+1 Z( k )bn+1—km = bp1

+1
1 n+1 X
= ( k )bn+1—km

S

1 n+1 .
- <j+1)b”‘fmj+1

The proof given by Cesaro and D’Ocagne use the Bernoulli formula directly instead of
introducing Bernoulli’s polynomials like we did.

Formula (2) is called Grunert’s formula [4], it furnishes an original definition for the
Stirling numbers of the second kind. Stirling in his book “Methodus Differentialis”
define the Stirling numbers of the second kind using formula (4°) result of formula (2),
so we conclude that Stirling definition is but a special case of Griinert’s.

We can deduce identity (8) from the explicit formula of Stirling numbers of the second
kind. We know form formula (3) that for all 0 < k < n:

k
ik
k1 Sk = Z(—l)"“(,)i”
i=0 '

If we invert the above formula we find :



k" = zk:()i!s,g

i

=0
= k" = Zk:S L (k);

i=0

This formula is similar to formula (4’) with the exception that the sum is taken here
from 0 to k, and this is valid only for k € {0, 1, ...,n}, while in formula (4°) the sum
was taken from 0 to n, and that was valid for all real number y.

Now summing for k in the last formula we obtain :

= le _I_lz:c](n+1)‘+1
i=0

n

n
. G .
= YD si e+
i=j

_ i+1
j=0
Thus we have :

2

n
. i+ 1
Jj=0

n
2.
k=0

Using Bernoulli’s formula we conclude that :

n

. C .
> si |+ it
i=j

(n+1 n n

n
j+1 ) j+1=2 Z i C j+1
Z b, |+ 1) si—l= |+ 1)

j=0 j=0 \i=j

The coefficients of n 4+ 1 in both representations are equal so :
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+1 n n i :

U, =) si— by = ) S} SO

n+1" _O”i+1 " ,O”i+1
1= 1=
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