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1 Introduction 
 

The numbers : 

𝑏0 = 1,               𝑏2 =
1

6
,               𝑏4 = −

1

30
,               𝑏6 =

1

42
, 

𝑏8 = −
1

30
              …,              𝑏1 = −

1

2
,              𝑏3 = 𝑏5 = 𝑏7 = 𝑏9 = ⋯ = 0 

 

are called the Bernoulli numbers. They can be defined by the following exponential 

generating function: 

 

𝑡

𝑒𝑡 − 1
= ∑𝑏𝑛

𝑡𝑛

𝑛!

∞

𝑛=0

 

 

For a long time, mathematicians computed 𝑏𝑛 using recursive relations like the 

following one: 

 

{

For 𝑛 = 0, 𝑏𝑛 = 1

∀𝑛 ≥ 1, ∑(
𝑛 + 1

𝑘
) 𝑏𝑘

𝑛

𝑘=0

= 0
 

 

In 1883, Worpitzky gave the following explicit formula for 𝑏𝑛 [1]: 

 

𝑏𝑛 =∑
1

𝑘 + 1

𝑛

𝑘=0

∑(
𝑘

𝑖
) (−1)𝑖𝑖𝑛

𝑘

𝑖=0

               (1) 

 
We can also find other mathematicians from the 19th century who proved formula (1), 

such as Cesaro in 1885 [2] and D’Ocagne in 1889 [3]. 
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For our part, we present an elementary proof of the formula (1). 

 

2 Stirling numbers of the second kind 
 

Let 𝑌  be an arbitrary function of 𝑥, and set : 

 

𝐷𝑛𝑌 = 𝑥(…𝑥(𝑥(𝑥⏟      
𝑛 𝑡𝑖𝑚𝑒𝑠

𝑌 ′)′)′ … )′⏞    
𝑛 𝑡𝑖𝑚𝑒𝑠

 

 

If we develop 𝐷𝑛𝑌 for 𝑛 = 1, 2, 3, 4, we find : 

 

𝐷1𝑌 = 𝑥𝑌′ 
 

𝐷2𝑌 = 𝑥𝑌′ + 𝑥2𝑌′′ 
 

𝐷3𝑌 = 𝑥𝑌′ + 3𝑥2𝑌′′ + 𝑥3𝑌(3) 
 

𝐷4𝑌 = 𝑥𝑌′ + 7𝑥2𝑌′′ + 6𝑥3𝑌(3) + 𝑥4𝑌(4) 
… 
 

We conjecture that : 

 

𝐷𝑛𝑌 = 𝑆𝑛
0𝑌 + 𝑆𝑛

1𝑥𝑌′ + 𝑆𝑛
2𝑥2𝑌′′ +⋯+ 𝑆𝑛

𝑛𝑥𝑛𝑌(𝑛)               (2) 
 

The coefficients 𝑆𝑛
𝑘 are called Stirling numbers of the second kind. They can be 

represented in a triangle similar to Pascal’s triangle. The triangle of the numbers 𝑆𝑛
𝑘 is 

the following : 

 

 k=0 k=1 k=2 k=3 k=4 k=5 … 

n=0 1       

n=1 0 1      

n=2 0 1 1     

n=3 0 1 3 1    

n=4 0 1 7 6 1   

n=5 0 1 15 25 10 1  

… … … … … … … … 

 

Table 1 : The triangle of Stirling numbers of the second kind 𝑆𝑛
𝑘 

 

We observe that : 

{
𝑆0
0 = 1

∀𝑛 ≥ 1, 𝑆𝑛
0 = 0
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The law for forming the numbers 𝑆𝑛
𝑘 in the above table is given by : 

 

𝑆𝑛
𝑘 = 𝑆𝑛−1

𝑘−1 + 𝑘𝑆𝑛−1
𝑘  

 

3 The explicit formula of Stirling numbers of the second kind 
 

If we put 𝑌 = 𝑒𝑥 in the formula (2) we obtain : 

 

𝐷𝑛𝑒𝑥 = 𝑒𝑥∑ 𝑆𝑛
𝑘𝑥𝑘

𝑛

𝑘=0

⟹ 𝑒−𝑥. 𝐷𝑛𝑒𝑥 =∑ 𝑆𝑛
𝑘𝑥𝑘

𝑛

𝑘=0

⟹ (∑
(−1)

𝑗
𝑥
𝑗

𝑗!

∞

𝑗=0

) . 𝐷𝑛 (∑
𝑥
𝑖

𝑖!

∞

𝑖=0

) =∑ 𝑆𝑛
𝑘𝑥𝑘

𝑛

𝑘=0

⟹ (∑
(−1)𝑗𝑥𝑗

𝑗!

∞

𝑗=0

)(∑
𝐷𝑛𝑥𝑖

𝑖!

∞

𝑖=0

) =∑ 𝑆𝑛
𝑘𝑥𝑘

𝑛

𝑘=0

 

 

One can easily prove that 𝐷𝑛𝑥𝑖 = 𝑖𝑛𝑥𝑖, so :  

 

(∑
(−1)𝑗𝑥𝑗

𝑗!

∞

𝑗=0

)(∑
𝑖𝑛𝑥𝑖

𝑖!

∞

𝑖=0

) =∑𝑆𝑛
𝑘

𝑛

𝑘=0

𝑥𝑘 

 

If we develop the left-hand side we obtain : 

 

∑(∑
(−1)𝑘−𝑖(𝑘

𝑖
)𝑖𝑛

𝑘!

𝑘

𝑖=0

)𝑥𝑘
∞

𝑘=0

=∑𝑆𝑛
𝑘

𝑛

𝑘=0

𝑥𝑘 

 

Comparing coefficients in both summations we conclude that : 

 

𝑆𝑛
𝑘 =

1

𝑘!
∑(−1)𝑘−𝑖 (

𝑘

𝑖
)

𝑘

𝑖=0

𝑖𝑛               (3) 

 

4 Relation between Stirling numbers of the second kind and Bernoulli 

numbers 
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Putting 𝑌 = 𝑥𝑦 in the formula (2), we get : 

 

𝐷𝑛𝑥𝑦 =∑𝑆𝑛
𝑘

𝑛

𝑘=0

𝑥𝑘(𝑥𝑦)(𝑘) 

 

We know that (𝑥𝑦)(𝑘) = 𝑦(𝑦 − 1)…(𝑦 − 𝑘 + 1)𝑥𝑦−𝑘 and 𝐷𝑛𝑥𝑦 = 𝑦𝑛𝑥𝑦so we get : 
 

𝑦𝑛 =∑𝑆𝑛
𝑘𝑦(𝑦 − 1)… (𝑦 − 𝑘 + 1)

𝑛

𝑘=0

               (4) 

 

The polynomial 𝑦(𝑦 − 1)… (𝑦 − 𝑘 + 1) is called the falling factorial of order 𝑘 of 𝑦. 

Pochhammer used the symbol (𝑦)𝑘 to denote it, so the formula (4) becomes using 

Pochhammer symbol : 

 

𝑦𝑛 =∑𝑆𝑛
𝑘(𝑦)𝑘

𝑛

𝑘=0

               (4′) 

 

One interesting property of the falling factorial function is the following : 

 

Proposition 1 

 

Let 𝑛 and 𝑦 be non-negative integers, then : 

 

(𝑦 + 1)𝑛+1 − (𝑦)𝑛+1 = (𝑛 + 1)(𝑦)𝑛 
 

Proof 

 
(𝑦 + 1)𝑛+1 − (𝑦)𝑛+1 = (𝑦 + 1)𝑦(𝑦 − 1)… (𝑦 − 𝑛 + 1) − 𝑦(𝑦 − 1)… (𝑦 − 𝑛 + 1)(𝑦 − 𝑛)

= [(𝑦 + 1) − (𝑦 − 𝑛)]𝑦(𝑦 − 1)…(𝑦 − 𝑛 + 1)

= (𝑛 + 1)(𝑦)𝑛

 

 

We are going to use this property in the proof of the following proposition. 

 

Proposition 2 

 

Let 𝑛 ∈ ℕ and 𝑚 ∈ ℕ∗. We have : 

 

∑ 𝑦𝑛
𝑚−1

𝑦=0

=∑𝑆𝑛
𝑘

𝑛

𝑘=0

(𝑚)𝑘+1

𝑘 + 1
               (5) 

 

Proof 
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If we sum for 𝑦 in the formula (4’) we find : 

 

∑ 𝑦𝑛

𝑚−1

𝑦=0

=∑(∑ 𝑆𝑛
𝑘

𝑛

𝑘=0

(𝑦)
𝑘
)

𝑚−1

𝑦=0

⟹ ∑ 𝑦
𝑛

𝑚−1

𝑦=0

=∑ 𝑆𝑛
𝑘

𝑛

𝑘=0

(∑(𝑦)
𝑘

𝑚−1

𝑦=0

)

⟹ ∑ 𝑦𝑛

𝑚−1

𝑦=0

=∑ 𝑆𝑛
𝑘

𝑛

𝑘=0

(∑
(𝑦 + 1)

𝑘+1
− (𝑦)

𝑘+1

𝑘 + 1

𝑚−1

𝑦=0

)

⟹ ∑ 𝑦𝑛

𝑚−1

𝑦=0

=∑ 𝑆𝑛
𝑘

𝑛

𝑘=0

(
(𝑚)

𝑘+1
− (0)

𝑘+1

𝑘 + 1
)

 

Therefore : 

∑ 𝑦𝑛
𝑚−1

𝑦=0

=∑𝑆𝑛
𝑘

𝑛

𝑘=0

(𝑚)𝑘+1

𝑘 + 1
 

 
Definition 

 

Let 𝑛 ∈ ℕ 

The Bernoulli polynomials 𝐵𝑛(𝑥) are defined by the following exponential generating 

function : 
 

𝑡𝑒𝑡𝑥

𝑒𝑡 − 1
=∑𝐵𝑛(𝑥)

𝑡𝑛

𝑛!

∞

𝑛=0

 

 
One interesting observation to make about Bernoulli polynomials is that if we put 𝑥 =
0 we get : 
 

𝑡

𝑒𝑡 − 1
=∑𝐵𝑛(0)

𝑡𝑛

𝑛!

∞

𝑛=0

 

 
This generating function corresponds to the generating function of Bernoulli numbers 

𝑏𝑛. Hence for all 𝑛 ∈ ℕ, we have : 

𝐵𝑛(0) = 𝑏𝑛 
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Another interesting property of the Bernoulli polynomials is the following : 

 

Proposition 3 

 

Let 𝑛 ∈ ℕ 

𝐵𝑛(𝑥 + 1) − 𝐵𝑛(𝑥) = 𝑛𝑥
𝑛−1 

 

Proof 

 

On the one hand : 

 

∑{𝐵𝑛(𝑥 + 1) − 𝐵𝑛(𝑥)}
𝑡𝑛

𝑛!

∞

𝑛=0

= (∑𝐵𝑛(𝑥 + 1)
𝑡𝑛

𝑛!

∞

𝑛=0

) − (∑𝐵𝑛(𝑥)
𝑡𝑛

𝑛!

∞

𝑛=0

)

=
𝑡𝑒𝑡(𝑥+1)

𝑒𝑡 − 1
−
𝑡𝑒𝑡𝑥

𝑒𝑡 − 1

=
𝑡𝑒𝑡𝑥. 𝑒𝑡 − 𝑡𝑒𝑡𝑥

𝑒𝑡 − 1

=
𝑡𝑒𝑡𝑥(𝑒𝑡 − 1)

𝑒𝑡 − 1
= 𝑡𝑒𝑡𝑥

 

 

On the other hand : 

 

∑𝑛𝑥𝑛−1
𝑡𝑛

𝑛!

∞

𝑛=0

= ∑𝑡
(𝑥𝑡)𝑛−1

(𝑛 − 1)!

∞

𝑛=1

= 𝑡∑
(𝑥𝑡)𝑛

𝑛!

∞

𝑛=0

= 𝑡𝑒𝑥𝑡

 

 

Comparing coefficients of both summations we conclude that for all 𝑛 ∈ ℕ: 

 

𝐵𝑛(𝑥 + 1) − 𝐵𝑛(𝑥) = 𝑛𝑥
𝑛−1 

 

Proposition 4 

 

Let 𝑛 ∈ ℕ 

𝐵𝑛(𝑥) =∑(
𝑛

𝑘
)𝑏𝑛−𝑘𝑥

𝑘

𝑛

𝑘=0

 

Proof  
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∑𝐵𝑛(𝑥)
𝑡𝑛

𝑛!

∞

𝑛=0

=
𝑡𝑒𝑡𝑥

𝑒𝑡 − 1

=
𝑡

𝑒𝑡 − 1
. 𝑒𝑡𝑥

= (∑𝑏𝑛
𝑡𝑛

𝑛!

∞

𝑛=0

)(∑
(𝑥𝑡)𝑛

𝑛!

∞

𝑛=0

)

= ∑(∑𝑏𝑛−𝑘
𝑡𝑛−𝑘

(𝑛 − 𝑘)!

𝑛

𝑘=0

.
(𝑥𝑡)𝑘

𝑘!
)

∞

𝑛=0

= ∑(∑𝑏𝑛−𝑘

𝑛

𝑘=0

(
𝑛

𝑘
) 𝑥𝑘)

𝑡𝑛

𝑛!

∞

𝑛=0

 

Therefore : 

 

𝐵𝑛(𝑥) = ∑𝑏𝑛−𝑘

𝑛

𝑘=0

(
𝑛

𝑘
) 𝑥𝑘 

 

Summing for 𝑦 in the relation 𝐵𝑛+1(𝑦 + 1) − 𝐵𝑛+1(𝑦) = (𝑛 + 1)𝑦
𝑛 we obtain : 

 

(𝑛 + 1)∑ 𝑦𝑛

𝑚−1

𝑦=0

= ∑{𝐵𝑛+1(𝑦 + 1) − 𝐵𝑛+1(𝑦)}

𝑚−1

𝑦=0

= 𝐵𝑛+1(𝑚) − 𝐵𝑛+1(0)

= 𝐵𝑛+1(𝑚) − 𝑏𝑛+1

 

Thus : 

 

(𝑛 + 1) ∑ 𝑦𝑛
𝑚−1

𝑦=0

= 𝐵𝑛+1(𝑚) − 𝑏𝑛+1               (6) 

 

Comparing formula (5) with formula (6) we conclude that : 

 

𝐵𝑛+1(𝑚) − 𝑏𝑛+1 = (𝑛 + 1)∑𝑆𝑛
𝑘

𝑛

𝑘=0

(𝑚)𝑘+1

𝑘 + 1
               (7) 

 
If we develop the expression of (𝑋)𝑘+1 in terms of the powers of 𝑋 we find : 

 



8 
 

(𝑋)𝑘+1 = 𝑋(𝑋 − 1)…(𝑋 − 𝑘)

= 𝑋 (𝑋𝑘 −
𝑘(𝑘 + 1)

2
𝑋𝑘−1 +⋯+ (−1)𝑘𝑘!)

= 𝑋∑𝑐𝑗

𝑘

𝑗=0

𝑋𝑗

= ∑𝑐𝑗

𝑘

𝑗=0

𝑋𝑗+1

 

Therefore : 

(𝑋)𝑘+1 =∑𝑐𝑗

𝑘

𝑗=0

𝑋𝑗+1 

 

If we apply the above formula for (𝑚)𝑘+1 in the formula (7) we find: 

 

𝐵𝑛+1(𝑚) − 𝑏𝑛+1 =∑𝑆𝑛
𝑘

𝑛

𝑘=0

𝑛 + 1

𝑘 + 1
∑𝑐𝑗

𝑘

𝑗=0

𝑚𝑗+1 

 

Substituting also 𝐵𝑛+1(𝑚) by its explicit expression, we finally get : 

 

(∑(
𝑛 + 1

𝑘
) 𝑏𝑛+1−𝑘𝑚

𝑘

𝑛+1

𝑘=0

) − 𝑏𝑛+1 =∑𝑆𝑛
𝑘

𝑛

𝑘=0

𝑛 + 1

𝑘 + 1
∑𝑐𝑗

𝑘

𝑗=0

𝑚𝑗+1

⟹ ∑(
𝑛 + 1

𝑘
) 𝑏𝑛+1−𝑘𝑚

𝑘

𝑛+1

𝑘=1

=∑𝑆𝑛
𝑘

𝑛

𝑘=0

𝑛 + 1

𝑘 + 1
∑𝑐𝑗

𝑘

𝑗=0

𝑚𝑗+1

⟹ ∑(
𝑛 + 1

𝑗 + 1
) 𝑏𝑛−𝑗𝑚

𝑗+1

𝑛

𝑗=0

=∑𝑆𝑛
𝑘

𝑛

𝑘=0

𝑛 + 1

𝑘 + 1
∑𝑐𝑗

𝑘

𝑗=0

𝑚𝑗+1

⟹ ∑((
𝑛 + 1

𝑗 + 1
) 𝑏𝑛−𝑗)𝑚

𝑗

𝑛

𝑗=0

=∑(∑𝑆𝑛
𝑘
𝑛 + 1

𝑘 + 1
𝑐𝑗

𝑛

𝑘=𝑗

)

𝑛

𝑗=0

𝑚𝑗

 

 
We have equality between two polynomials in 𝑚, both of degree 𝑛, so the coefficients 

of the terms of the same degree are equal. In particular for 𝑗 = 0 we have : 

 

(
𝑛 + 1

1
) 𝑏𝑛 =∑𝑆𝑛

𝑘
𝑛 + 1

𝑘 + 1
𝑐0

𝑛

𝑘=0

⟹ 𝑏𝑛 =∑𝑆𝑛
𝑘
(−1)𝑘𝑘!

𝑘 + 1

𝑛

𝑘=0

(8)
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To get the explicit expression of 𝑏𝑛 in terms of 𝑛, we substitute 𝑆𝑛
𝑘 in the above 

identity by its explicit expression, and after simplification we obtain the remarkable 

formula (1) for the Bernoulli numbers. 

 

5 Some observations 
 

From formula (6) we can deduce Bernoulli’s formula, we have : 

 

∑ 𝑦𝑛
𝑚−1

𝑦=0

=
1

𝑛 + 1
{𝐵𝑛+1(𝑚) − 𝑏𝑛+1}

=
1

𝑛 + 1
{(∑(

𝑛 + 1

𝑘
)𝑏𝑛+1−𝑘𝑚

𝑘

𝑛+1

𝑘=0

) − 𝑏𝑛+1}

=
1

𝑛 + 1
∑(

𝑛 + 1

𝑘
) 𝑏𝑛+1−𝑘𝑚

𝑘

𝑛+1

𝑘=1

=
1

𝑛 + 1
∑(

𝑛 + 1

𝑗 + 1
)𝑏𝑛−𝑗𝑚

𝑗+1

𝑛

𝑗=0

=
1

𝑛 + 1
∑(

𝑛 + 1

𝑗
) 𝑏𝑗𝑚

𝑛−𝑗+1

𝑛

𝑗=0

 

 
The proof given by Cesaro and D’Ocagne use the Bernoulli formula directly instead of 

introducing Bernoulli’s polynomials like we did. 

 

Formula (2) is called Grunert’s formula [4], it furnishes an original definition for the 

Stirling numbers of the second kind. Stirling in his book “Methodus Differentialis” 

define the Stirling numbers of the second kind using formula (4’) result of formula (2), 

so we conclude that Stirling definition is but a special case of Grünert’s. 

 

We can deduce identity (8) from the explicit formula of Stirling numbers of the second 

kind. We know form formula (3) that for all 0 ≤ 𝑘 ≤ 𝑛: 

 

𝑘! 𝑆𝑛
𝑘 =∑(−1)𝑘−𝑖 (

𝑘

𝑖
)

𝑘

𝑖=0

𝑖𝑛 

 
If we invert the above formula we find : 
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𝑘𝑛 = ∑(
𝑘

𝑖
)

𝑘

𝑖=0

𝑖! 𝑆𝑛
𝑖

⟹ 𝑘𝑛 = ∑𝑆𝑛
𝑖 (𝑘)𝑖

𝑘

𝑖=0

 

 

This formula is similar to formula (4’) with the exception that the sum is taken here 

from 0 to 𝑘, and this is valid only for 𝑘 ∈ {0, 1, … , 𝑛}, while in formula (4’) the sum 

was taken from 0 to 𝑛, and that was valid for all real number 𝑦. 

 

Now summing for 𝑘 in the last formula we obtain : 

 

∑𝑘𝑛
𝑛

𝑘=0

= ∑(∑𝑆𝑛
𝑖 (𝑘)𝑖

𝑘

𝑖=0

)

𝑛

𝑘=0

= ∑𝑆𝑛
𝑖∑(𝑘)𝑖

𝑛

𝑘=𝑖

𝑛

𝑖=0

= ∑𝑆𝑛
𝑖

𝑛

𝑖=0

(
(𝑛 + 1)𝑖+1 − (𝑖)𝑖+1

𝑖 + 1
)

= ∑𝑆𝑛
𝑖

𝑛

𝑖=0

(𝑛 + 1)𝑖+1
𝑖 + 1

= ∑𝑆𝑛
𝑖

𝑛

𝑖=0

1

𝑖 + 1
∑𝑐𝑗

𝑖

𝑗=0

(𝑛 + 1)𝑖+1

= ∑(∑𝑆𝑛
𝑖
𝑐𝑗

𝑖 + 1

𝑛

𝑖=𝑗

)

𝑛

𝑗=0

(𝑛 + 1)𝑗+1

 

Thus we have : 

 

∑𝑘𝑛
𝑛

𝑘=0

=∑(∑𝑆𝑛
𝑖
𝑐𝑗

𝑖 + 1

𝑛

𝑖=𝑗

)

𝑛

𝑗=0

(𝑛 + 1)𝑗+1 

 
Using Bernoulli’s formula we conclude that : 

 

∑(
(𝑛+1
𝑗+1
)

𝑛 + 1
𝑏𝑛−𝑗)(𝑛 + 1)

𝑗+1

𝑛

𝑗=0

=∑(∑𝑆𝑛
𝑖
𝑐𝑗

𝑖 + 1

𝑛

𝑖=𝑗

)

𝑛

𝑗=0

(𝑛 + 1)𝑗+1 

 

The coefficients of 𝑛 + 1 in both representations are equal so : 
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(𝑛+1
1
)

𝑛 + 1
𝑏𝑛 =∑𝑆𝑛

𝑖
𝑐0

𝑖 + 1

𝑛

𝑖=0

⟹ 𝑏𝑛 =∑𝑆𝑛
𝑖
(−1)𝑖𝑖!

𝑖 + 1

𝑛

𝑖=0

 

∎ 
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