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Abstract 

It was brought to my attention that in previous papers I put in the public domain (references [1] through [8]), I 

did a rather piecemeal presentation of the critical concepts of algebraic orientation, algebraic invariance and 

algebraic variance, as well as the generalization of Cayley-Dickson algebras I referred to as Cayley-Dickson 

without emphasizing the more general nature of the presentation, which was done for reader familiarity 

purposes. I will attempt to remedy this within this document starting at the beginning: the basic definition of an 

algebra, carried through to a full definition and discussion of the general family of hypercomplex algebras I call 

ℋ which subsumes all division algebras and traditional Cayley-Dickson doubled forms. Taking into account all 

structural and algebraic orientation options exposes beautiful structure revealed through group theoretical 

aspects of ℋ construction. The concepts presented are essential to Octonion Algebra mathematical physics. 

*** 

The general concept of an algebra 

An alternative to the n-tuple representation of an n-dimensional object as an ordered set of elements comma 

separated such as (A0, A1, … An-1) is the representation referred to as an algebraic element defined by the sum 

A = A0 e0 + A1 e1 + … + An-1 en-1 

Each Ai ei are called components of the algebraic element, defining the dimensional partitioning within the 

summation. The Ai are called coefficients, and are members of some mathematical field. Once the dimension n 

and particular field are declared, the descriptive an n dimensional algebra over the field… is made. Typical field 

types are real numbers and complex numbers. The ei are called basis elements. 

With this representation, an algebra is defined by three rules on algebraic elements 

1. Algebraic element addition/subtraction:  A ± B = (A0 ± B0) e0 + (A1 ± B1) e1 + … + (An-1 ± Bn-1) en-1  

2. Multiplication by a field member:  k A = kA0 e0 + kA1 e1 + … + kAn-1 en-1  

3. Algebraic element multiplication:  A * B = (Ai Bj) (ei * ej) sum i,j: 0 to n-1 

The first two rules are common to any n dimensional algebra. They serve no purpose defining possible 

differences between two n dimensional algebras. Rules 1 and 2 are sufficient for the important subset linear 

algebra, but the real fun begins with rule 3, which is a statement of the distributive rule of multiplication over 

addition. It is within rule 3 that the salient characteristics of an algebra are defined. The coefficients multiply 

like real numbers by the definition of any mathematical field, so are separated off from the products (ei * ej), 

which we have yet to define. The only limit on the products (ei * ej) is they must not create new basis elements, 

that is, the set of basis elements is required to be closed for the operation *. The most general form this 

requirement can take is given by the following, where the n3 values sijk are called structure constants 

(ei * ej) = sijk ek  

An n dimensional algebra is fully defined by rules 1, 2 and 3 once all structure constants are assigned. The 

difference, if any, between two n dimensional algebras then comes down to a comparison of the set of structure 

constants defining each. Do understand that the basis element enumerations are not defining characteristics in 

and of themselves. We could permute their indexes along with a compatible permutation of the structure 
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constants without actually changing the algebraic structure in in a meaningful way, although the two structure 

constant sets will look different. We say then these two structure constant representations are non-identical but 

equivalent representations. Two n dimensional algebras are isomorphic if and only if their structure constant 

representations are equivalent representations. 

The general form for basis element product results is a linear combination of some subset of, or all basis 

elements. Define an intrinsic basis set as one where the product of any two intrinsic basis elements is within 

sign only one element of the basis element set. We can then define intrinsic basis element products as 

(ei * ej) = sijk ek  where sijk defines both a single k value for given i,j and a choice sijk = one of ±1. 

Intrinsic basis sets lend themselves to what is called a basis element multiplication table, where the rows and 

columns are labelled by the basis elements, and each table entry is either +ei or –ei. This representation is 

equivalent to the structure constant form, and provides in some ways a more illuminating view of the algebra.. 

 

Bifurcating the intrinsic basis product structure definition, partial definition for the algebra ℋn 

From the definition just provided for an intrinsic basis set, we see there are two “things” going on which we can 

take on separately. One is a “numbers thing” where we must define which k for given i, j produces a non-zero 

sijk. The other is a “sign thing”, where we choose whether this sijk = +1 or –1. The algebra is not defined until 

both are determined for all sijk. 

Before continuing, restrict the definition of ℋ algebras to an algebra where one basis element, specifically e0, is 

defined as e0 = +1. This basis element is referred to as the scalar basis element, and all others if any are non-

scalar basis elements. This sets up an algebra where one dimension is given up as a representation of the field 

the algebra is over. This is also a declaration that our algebras of concern ℋn are a type of hypercomplex 

algebra, understanding ℋ1 is the algebra of the field defined, e.g., the algebra of real numbers. This single 

definition algebra requires no additional discussion. 

For our “numbers thing”, our goal is to partially determine the result of (ei * ej) by having a rule, or function if 

you will, which specifies a single index k given the two indexes i and j. This can be expressed as k = F(i, j) 

where F(i, j) is some function of the given indexes. We can easily determine this function where one or both 

indexes are 0, for some non-zero index a: 

F(0, 0) = 0 

F(0, a) = a 

F(a, 0) = a 

At this point we further restrict our ℋn algebra definition such that for integer 0 ≤ b < n, we have F(b, b) = 0.  

We now require the dimension of algebra ℋn to be n = 2m for integer m ≥ 0. Then our numeric basis element 

indexes will range from 0 → 2m – 1, and can be represented by binary numbers of dimension m. This binary 

nature of ℋn might get one thinking about Boolean algebra, and the recognition the F() rules above can be 

satisfied if F() is given by the bit-wise binary exclusive-or (xor) of the two index numbers. Xor is and will be 

here represented by the standard computer software operator ^.  

As it turns out, we can without issue, simply and quite optimally define for all ℋn F(i, j) = i^j for any two 

indexes 0 ≤  i, j < n. The reason this is an optimal representation is the n integers ranging 0 → 2m – 1 form a 

group Xn of order n under the group operation ^. Moreover, we can assign a one-to-one correspondence between 

every subgroup of Xn and every subalgebra of ℋn. I showed this in detail within reference [2]. 
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Covering the rules for xor, we find a^a = 0, 0^a = a^0 = a, a^b = b^a, and a^(b^c) = (a^b)^c, the operator is fully 

commutative and associative. Every permutation of the order of application for a given set of variables will give 

the same result.  

If the two indexes are i ≠ j ≠ 0, then i^j will always equal a third different non-zero result. Using i^j = k as 

above, taking the xor by k on both sides gives us i^j^k = 0, since k^k = 0 for any k. This is extremely important, 

since it tells us given any two of the three the other is single rule determinate. Bringing in now basis element e0, 

the basis element set {e0, ei, ej, ek) is closed for the xor of its basis element indexes. Its indexes are then 

members of the xor group X4, and the basis set {e0, ei, ej, ek) where i ≠ j ≠ k ≠ 0 and  i^j^k = 0 becomes the 

general specification for the basis element set of any ℋ4 (sub)algebra. This is actually quite nice, because as we 

shall see ℋ4 (sub)algebras are where the algebraic orientation choices for any orientable ℋn live, and all such 

ℋ4 subalgebras of a higher dimension ℋn must be identified before its algebraic orientation can be classified. 

 

Algebraic orientation: the “sign choice thing” 

To complete the definition for ℋn, we must make the one of the ± sign assignments after determining the 

“numbers thing” for (ei * ej) = ±ei^j. We will find some sign choices are fixed for the family of algebras ℋn 

while others allow choices. Define the full set of sign assignments where there is a choice as the algebraic 

orientation of the algebra ℋn. 

We find for any xor group Xn for n ≥ 2, the integers 0 and any single member m ≠ 0 form an order two 

(sub)group, and thus after algebraic orientation form a two-dimensional (sub)algebra ℋ2. Our sole sign choice 

here is the sign assignment on (em * em) = ±em^m = ±e0. With the ultimate goal of subsuming the division 

algebras, the obvious choice is to singularly define for any 0 < m < n, (em * em) = –e0. This declares that every 

ℋ2 (sub)algebra is the algebra of complex numbers. 

ℋn starts having multiple non-scalar basis elements for n ≥ 4. Within these algebras we call all products (ea * eb) 

where a ≠ b ≠ 0 oriented products, where we have the binary ± sign choice in (ea * eb) = ±ea^b. All fixed 

definition products where one or both of a and b are 0, or a = b, which define the ℋ1 and ℋ2 subalgebras of any 

ℋn, are called not oriented products.  

As stated above, any X4 (sub)group can be uniquely determined by any two of its non-zero members. We desire 

the same uniqueness for our algebraic orientation choice by devising a rule where for any single oriented basis 

product, the free binary ± choice for (ea * eb) = ±ea^b determines the algebraic orientation for all oriented basis 

element product rules within the ℋ4 related to the X4 that indexes a and b specify. Turned around the other way, 

the single algebraic orientation assigned to a particular ℋ4 can then be associated with each of its oriented basis 

element products. 

W. R. Hamilton of course determined the algebra satisfying these requirements when he devised Quaternion 

Algebra, and we will take this as the definition of any ℋ4. We must then declare for any ℋn for n ≥ 4 that every 

oriented product anti-commutes, a statement that (ea * eb) = – (eb * ea). The specification of algebraic orientation 

is complete by adding to the requirement indexes a ≠ b ≠ c ≠ 0 and a^b^c = 0, the following cyclic shift 

equivalences exist where the same +1 or –1 choice is used for each ±, thus the choice of one determines the 

others. 

(ea * eb) = ±ec  

(eb * ec) = ±ea  

(ec * ea) = ±eb  

From the algebra defining structure constants perspective, this is a statement that sabc = sbca = scab. The full set of 
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order permutations on the set {a, b, c} is described by the symmetric group S3. Its three even permutations are 

the cyclic shifts just presented, and its odd permutations are their reversed orders, flipping the even permutation 

sign choice. So, we have for the six members of the group S3 operating on the index set {a, b, c} defining the 

six oriented products defined by a particular ℋ4  

sabc = sbca = scab = –scba = –sbac = –scba  

With this set of equalities for any ℋ4 subalgebra, the algebraic orientation of any ℋ4 (sub)algebra {e0, ea, eb, ec} 

is given by the free binary choice of sabc = +1 or sabc = –1. This all tells us the two basis indexes of any oriented 

product uniquely specifies the ℋ4 (sub)algebra the product belongs to, we can assign an orientation description 

unique to this particular ℋ4, and it can be commonly associated with all six oriented products this ℋ4 defines.  

When n ≥ 8, every oriented product resides in a single ℋ4 subalgebra of this ℋn, and the set of all ℋ4 

subalgebras fully cover all possible basis element product descriptions in a way that the algebraic orientation of 

one does not confront the algebraic orientation of another. This leads us to a very important observation. 

Rule: The algebraic orientation options for any ℋn where n ≥ 4 are fully given by the free choice of algebraic 

orientation for each of its ℋ4 subalgebras. 

This tells us if ℋn has q ℋ4 subalgebras, ℋn specifies a family of 2q different algebraic orientations of similarly 

structured n dimensional algebras. 

 

The full definition of the family of hypercomplex algebras ℋn  

ℋn is defined on algebraic elements of dimension n = 2m where m = 0, 1, 2, 3, … where basis element e0 is the 

real number +1. All basis element products within the sequentially indexed basis element set ex for 0 ≤ x < n are 

specified by the following rules 

(e0 * ea) = (ea * e0) for any index 0 < a < n 

(e0 * e0) = +e0  

(eb * eb) = –e0  for any index 0 < b < n 

(ea * eb) = –(eb * ea) for a ≠ b and 0 < a, b < n 

(ea * eb) = sab(a^b) ea^b for a ≠ b and 0 < a, b < n, structure constant sab(a^b) = algebraic orientation +1 or –1 

sabc = sbca = scab = –scba = –sacb = –sbac  for a ≠ b ≠ c ≠ 0 and a^b^c = 0 

The algebraic orientation of any ℋn is specified by a free algebraic orientation choice sabc = +1 or –1 for each of 

its ℋ4 subalgebras defined by basis elements indexed a ≠ b ≠ c ≠ 0 and a^b^c = 0, if any. 

 

Algebraic element conjugation is the standard definition where the coefficients attached to all non-scalar basis 

elements are negated. Define the conjugate of A = A. For any A, the product A * A = the sum of squares of the 

coefficients scaling each basis element. The norm of A = |A| is given by (A * A)1/2. 

We find ℋn to be the generalization of Cayley-Dickson algebras. The Cayley-Dickson dimension doubling 

process uses an obtuse basis element multiplication rule to generate only a single algebraic orientation from a 

particular doubled dimension algebra. On the other hand, ℋn has simple basis element product rules and a 

simple methodology to assign all possible algebraic orientation choices. 
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The algebra family ℋ8  

Group theory tells us X8 has seven X4 subgroups, meaning ℋ8 has seven ℋ4 subalgebras, and the algebraic 

orientation of each is a free choice. This gives us 27 = 128 different algebraic orientations for ℋ8. We rightfully 

expect to find all possible Octonion Algebra algebraic orientations within this set. A relatively simple computer 

program doing a proof by exhaustion on the limited set of options tells us only 16 of 128 algebraic orientations 

demonstrate the required Octonion norm composition rule |A * B| = |A| |B| for any two algebraic elements. 

In reference [3] I demonstrated each of the other 112 ℋ8 non-Octonion algebraic orientations I called 

Broctonion Algebras are seen to be one ℋ4 (Quaternion) subalgebra algebraic orientation off of a proper 

Octonion algebraic orientation. Unlike Octonions, they are not division algebras, producing 24 primitive zero 

divisors. With 16 proper Octonion orientations, each with seven Quaternion subalgebras, this gives the total of 

16(1+7) = 128 covering all ℋ8 algebraic orientations.  

Because the set of division algebras are of superior importance, we will focus in on the algebraic orientation 

characteristics of this subset of ℋ8 for the remainder. 

 

Octonion Algebra algebraic orientations 

Each non-scalar basis element of ℋ8 shows up in three of seven ℋ4 subalgebras, specifying all combinations of 

unlike non-scalar basis products with each of the other six not e0, two up for each subalgebra. We defined the 

ℋ4 structure constant algebraic orientation choices such that cyclic shifts of its index set indicate identical 

orientations. We are free then to take the algebraic orientation defining structure constants for the three ℋ4 

subalgebras any given non-scalar basis element belongs to, and cyclically shift their three indexes if necessary 

to place the common index in the central position, without confronting their assigned algebraic orientations. 

Doing this, we can observe the set of 16 proper Octonion algebraic orientations indicate two different 

observable structures. Using any choice of member non-scalar common basis element index, eight of 16 

Octonion algebraic orientations will indicate the three non-scalar basis element indexes of a fourth ℋ4 

subalgebra only on the right side of the three triplet structure constants, and the other eight will indicate the 

same but only on the left side.  

To clarify this, jumping ahead a bit to the specification of Octonion algebraic orientation R0, the first three are 

set for common index 4 being in the central position. We have 

s642  

s541  

s743  

The right side indexes of these three are {2, 1, 3} which are the indexes of a fourth Quaternion triplet. The left 

side indexes are {6, 5, 7} which are not triplets of a Quaternion subalgebra. Choosing instead a common index 

of 1 we have 

s541  

s123  

s761  

Cyclically shifting to place 1 centrally we have 

s415  
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s312  

s617  

Once again, the right side indexes are {5, 2, 7}, the triplet of another Quaternion subalgebra and the left side {4, 

3, 6} are not. 

This is a consistent structural difference between halves of the full set of 16 proper Octonion orientations 

despite the fact all are proper Octonion. The right and left sided structures cannot possibly be different 

representations of equivalent basis element product tables, Right Octonion algebraic orientations are not 

isomorphic with Left Octonion algebraic orientations. We should then specify which chiral type we are dealing 

with when discussing an Octonion algebraic orientation. 

We can do this by assigning a number, one of 0 to 7 attached to the declaration R for right and L for left. Which 

number to attach to which algebraic orientation can be optimally chosen by first identifying fundamental 

Quaternion algebraic orientation negations that do not move us from a proper Octonion into a Broctonion 

Algebra orientation. Two fundamental morphs achieve this. We can negate the four Quaternion subalgebra 

orientations excluding any single basis element, or negate the three Quaternion subalgebra orientations that 

include any single basis element, and any number of combinations thereof. The four-morph is a map within 

Right or within Left proper Octonion algebraic orientations, and the three-morph is a map between Right and 

Left proper Octonion algebraic orientations.  

We can arbitrarily choose any one of the Right proper Octonion algebraic orientations and declare it R0. The 

optimal choice for enumerating the remaining seven is to pick for Ra the four-morph on R0 that excludes the 

basis element indexed a. The composition of the three-morph and four-morph using the same included/excluded 

basis index is the negation of all seven Quaternion subalgebra algebraic orientations. We can use this involution 

to map between Lb and Rb, allowing us to define all algebraic orientations for enumerated Left Octonions from 

and consistent with our chosen optimal enumerations for Right Octonions. 

My algebraic orientation enumerations for ℋ8 proper Octonions are defined by the following structure constants 

where each structure constant equals +1 

R0: s642 s541 s743 s123 s572 s761 s653  

R1: s246 s541 s347 s123 s275 s761 s356  

R2: s642 s145 s347 s123 s572 s167 s356  

R3: s246 s145 s743 s123 s275 s167 s653  

R4: s642 s541 s743 s321 s275 s167 s356  

R5: s246 s541 s347 s321 s572 s167 s653  

R6: s642 s145 s347 s321 s275 s761 s653  

R7: s246 s145 s743 s321 s572 s761 s356  

L0: s246 s145 s347 s321 s275 s167 s356  

L1: s642 s145 s743 s321 s572 s167 s653  

L2: s246 s541 s743 s321 s275 s761 s653  

L3: s642 s541 s347 s321 s572 s761 s356  

L4: s246 s145 s347 s123 s572 s761 s653  

L5: s642 s145 s743 s123 s275 s761 s356  

L6: s246 s541 s743 s123 s572 s167 s356  

L7: s642 s541 s347 s123 s275 s167 s653  
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The order 8 Hadamard Group and the enumeration of proper Octonion algebraic orientations 

All non-oriented basis element products have no connection to any proper Octonion algebraic orientation 

specification, so are consistently defined across all Right and Left orientations. The oriented products take on 

the algebraic orientation associated with the ℋ4 algebra they belong to. We can separately chart both against 

Right and Left enumerations from the above definitions by using table entry +1 representing a not oriented 

products or if the ℋ4 for a particular Right or Left Octonion enumeration is oriented the same as its same X4 ℋ4 

subalgebra in some reference Octonion Right or Left enumeration. We would then use –1 if the algebraic 

orientation is the negation of that reference orientation. We will use our R0 and L0 algebraic orientations for 

our references. Doing so produces the following tables 

 

𝕆 R0 R1 R2 R3 R4 R5 R6 R7 

[0]:Not oriented +1 +1 +1 +1 +1 +1 +1 +1 

Triplet[1]: s642 +1 –1 +1 –1 +1 –1 +1 –1 

Triplet[2]: s541 +1 +1 –1 –1 +1 +1 –1 –1 

Triplet[3]: s743 +1 –1 –1 +1 +1 –1 –1 +1 

Triplet[4]: s123 +1 +1 +1 +1 –1 –1 –1 –1 

Triplet[5]: s572 +1 –1 +1 –1 –1 +1 –1 +1 

Triplet[6]: s761 +1 +1 –1 –1 –1 –1 +1 +1 

Triplet[7]: s653 +1 –1 –1 +1 –1 +1 +1 –1 

 

𝕆 L0 L1 L2 L3 L4 L5 L6 L7 

[0]:Not oriented +1 +1 +1 +1 +1 +1 +1 +1 

Triplet[1]: s246 +1 –1 +1 –1 +1 –1 +1 –1 

Triplet[2]: s145 +1 +1 –1 –1 +1 +1 –1 –1 

Triplet[3]: s347 +1 –1 –1 +1 +1 –1 –1 +1 

Triplet[4]: s321 +1 +1 +1 +1 –1 –1 –1 –1 

Triplet[5]: s275 +1 –1 +1 –1 –1 +1 –1 +1 

Triplet[6]: s167 +1 +1 –1 –1 –1 –1 +1 +1 

Triplet[7]: s356 +1 –1 –1 +1 –1 +1 +1 –1 

 

The two tables have identical arrays of +1 and –1 entries, which can be seen to form an 8x8 Hadamard Matrix. 

This matrix ends up in what is referred to as systematic format because we used the particular enumeration rule 

assigning m for Rm and Lm, and used the particular enumeration order of the row labelling structure constants. 

Hadamard matrices demonstrate a composition of two rows(columns) where the entries in common 

column(row) are multiplied to form the composition result same column(row). This composition will always 

result in one of the matrix rows(columns). Clearly the “Not oriented” row and the R0/L0 columns define the 

identity member for these compositions. The composition is clearly commutative and associative. Staying with 

only row compositions for our two tables, we have an identity member row, each row composed with itself 
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yields this identity row so each member row has its inverse in the set of rows, and the row set is closed for the 

composition of rows. The rows then form a group under the stated composition as the group operation, the order 

8 Hadamard Group. 

Taking the [x: 0 to 7] indexes in the table row labels as our row enumerations and using the operator • to specify 

the composition of rows, we find row[a] • row[b] = row[a^b]. Once again, the xor operation comes into play. 

This only is the case because the Quaternion subalgebra triplet algebraic orientations were enumerated as they 

were, optimally since it leads to this beautiful structure. Hadamard matrices appear in many places within 

division algebras, I covered this in some detail in reference [4]. 

These enumerations also have another remarkable feature. Take index m ≠ 0 to select Triplet[m]. If we take the 

set {a, b, c} to be the triplet indexes specified by Triplet[m], we will find that index m is a member of Triplet[a], 

Triplet[b] and Triplet[c]. 

Now Octonion Algebra is not fully associative for *, so it cannot directly take on the characteristics of a group 

since group theory requires associativity of the group operation on its members. But as we have just 

demonstrated, splitting * in two, to the “numbers thing” and “sign thing”, we find both are individually 

represented by groups for the largest dimension division algebra, and hence all division algebras. 

 

Multiple * products and the composition of algebraic orientation indicators 

When we form the product A * B of two Octonion algebraic elements, the result will be a sum of product terms 

that are either oriented or not oriented, scaling the same resultant basis element. Our fundamental definition of 

an algebra says the different types of coefficients simply add without consideration as to whether they are 

oriented or not as long as they scale the same basis element. My position on this is if you plan on doing 

mathematical physics with Octonion Algebra, you must track and maintain the orientation characteristics of 

every in-progress product term coefficient. 

We can do this by appending an algebraic orientation indicator to every coefficient, and agree to extend our 

fundamental algebra rules to state two coefficients scaling the same basis element only add or can be reduced 

(e.g., a trig reduction) if they have identical algebraic orientation indicators. At the end of the process, we can 

form sets of product terms with the same algebraic orientation indicator as an important partition of the result. 

Each product term in A * B is of the form Ar er * Bs es and the product of the two basis elements tells us if this 

is an oriented or not oriented product. If oriented, indexes r and s give us the ℋ4 subalgebra in play, and the 

orientation of that ℋ4 subalgebra in our particular choice of using either Rn or Ln Octonion Algebra used gives 

us the sign of the basis element product result er^s. 

It would make sense then to make the algebraic orientation indicator a function of the [] indexes in the two 

tables above. The fact that we pick the same one of eight indexes independent of Right or Left considerations is 

a nod to the fact they are not isomorphic representations of Octonion Algebra, but all Right Octonions are 

isomorphic yet different, and all Left Octonions are isomorphic yet different. The index rule resides within 

isomorphic sets. 

When we form multiple * products, each final product term has its separate product history, including the 

number of oriented products of two basis elements along the way, or more specifically whether this number is 

odd or even. To track this odd/even parity along with algebraic orientation, we will take the [] table index 

indicated by the indexes of the two basis elements multiplied, and multiply it by two, or from the binary number 

perspective shift the bits 1 to the left, freeing up the least significant bit for our parity designation. 
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So, we have 16 different algebraic orientation indicators, and without too much confusion with three index 

structure constants we can label them s0 through s15, that is index 0 through fifteen. This so far begs the 

question; how do we multiply algebraic orientation indicators? Without too much head scratching with the 

understanding the row composition result is indexed by the bit-wise xor of the row indexes and parity 

combinations also are a single bit xor we have the simple rule for algebraic orientation indicator products 

sa sb = sa^b  

By virtue of the fact the compositions form a group, we can do as many repeated products as we please. 

We can now write the general product term result including initial algebraic orientation indicators for oriented 

or not oriented constituent basis element products as follows. First, we must appreciate we always work within 

a single Octonion algebraic orientation, and it will determine the sign of the basis element product result based 

on its rules and the basis element order, so it must be included in the result indicating only the resultant basis 

element product sign. We have the following product term rule for oriented or not oriented eu * ev for each step 

through a product term product history. 

Au sa eu * Bv sb ev  

=  

suv(u^v) Au Bv sa^b eu^b   for not oriented product (eu * ev) 

suv(u^v) Au Bv sa^b^1 eu^b  for oriented product (eu * ev) 

There is no loss in generality defaulting our calculations to R0 when we maintain the algebraic orientation 

indicators. They effectively sieve the results into sets whose members either all change sign or all do not change 

sign if we were to use a different Octonion Algebra orientation. The indicators are agnostic to whether we are 

using a Right Octonion or Left Octonion orientation. We must however have results that properly track what 

would happen if we changed between Right and Left. This is where the parity partition comes into play. The 

map between Rm and Lm negates all oriented products. This negation will only change the sign of product 

terms whose product history has an odd number of oriented products. Sieving into separate odd/even parity bins 

takes care of this.  

Whether or not the product terms within a given algebraic orientation indicator set change signs is deterministic 

for any change in applied Octonion orientation. If required, the results using any other Octonion orientation can 

simply be determined from the R0 results. 

 

Algebraic Invariance and Algebraic Variance 

If a product term in a final result ends up with an algebraic orientation indicator s0 or s1, it means the result is 

independent of ℋ4 subalgebra orientations. If we changed Octonion orientations within the Right Octonion set 

or within the Left Octonion set, these product terms would not change sign. If the final indicator is s1, only 

changes between Right and Left orientations would induce a sign change. 

Every final product term with algebraic orientation indicator s0 remains unchanged for any change in Octonion 

orientation applied. These product terms are thus algebraic invariants. Each of the other 15 algebraic 

orientation indicators flag product terms that are algebraic variants. 

From the mathematical physics perspective, we were given a heads up on why this delineation is significant by 

the cross-product rule explaining the deflection of a charged particle moving through a magnetic field. The 

particle velocity is in a fixed observable direction as is the force causing the deflection. Both are observables 

that must be independent of the definition of the cross-product, which is an oriented product. This forces the 



© Richard Lockyer May 2024                     All Rights Reserved                       page 10 

magnetic field to be an oriented vector such that the cross-product of the velocity and field vectors is an 

orientation invariant. 

More than simple right- or left-handed cross-product rules, Octonion Algebra has 16 different algebraic 

orientations, and there is absolutely nothing that can lead us to believe only one orientation is physical. We must 

then construct Octonion mathematical physics in a way that all observables end up as algebraic invariants. If the 

explanation of something observable ends up as an Octonion algebraic variant, one should question the 

legitimacy of the approach. 

Another consideration is there may be structures that seem to be required yet do not lend themselves to direct 

experimental observation, like fractional charge quarks. If describable within an Octonion setting, one might 

expect them to appear in some algebraic variant subset along with the explanations for observables in the 

algebraic invariant subset. 

Additionally, any final result can be made into an algebraic invariant by requiring the sum of all members in 

each algebraic variant subset to be 0. Then, when the Octonion orientation is changed up, it can only result in a 

sign change to 0, i.e., no change. I have called these homogeneous equations of algebraic constraint. Without 

the typical experimental observation suggesting an ansatz mathematical theory path, due to their algebraic 

variant character, this would provide an additional paradigm for theoretical development. 

 

Conclusions 

There are some that claim all Octonion variations are isomorphic, so there is no need to consider the 

differences. Besides being a patently false statement, it is excessively naïve to think so. Right and Left Octonion 

algebraic orientations are not isomorphic, they have the defined structural difference presented above. One 

might claim this structure is unimportant since the only thing that matters is all forms are Octonion, all forms 

are division algebras, and that is all that matters. A person taking this path does so at their own peril. They may 

never reach the conclusions they seek, or worse may develop a methodology that falls apart when Octonion 

definition variations are brought in. 

Even the differences within isomorphic Right Octonion algebraic orientations and isomorphic Left Octonion 

algebraic orientations are critical, because consideration of the differences within provides the entrée for the 

extremely important theoretical tool of group theory as twice shown above. These group theoretical aspects will 

most likely have ramifications beyond the scope of this document. 

If you wish to use Octonion Algebra, you should have a complete understanding of it. What is presented here is 

meat on the bone. 
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