A COMPLETE PROOF OF THE *abc* CONJECTURE: IT IS EASY AS ABC!

ABDELMAJID BEN HADJ SALEM

To the memory of my Parents, To my wife Wahida, my daughter Sinda and my son Mohamed Mazen

ABSTRACT. In this paper, we consider the *abc* conjecture. Assuming that the conjecture $c < rad^{1.63}(abc)$ is true, we give the proof that the *abc* conjecture is true.

1. INTRODUCTION AND NOTATIONS

Let a be a positive integer, $a = \prod_i a_i^{\alpha_i}$, a_i prime integers and $\alpha_i \ge 1$ positive integers. We call *radical* of a the integer $\prod_i a_i$ noted by rad(a). Then a is written as:

$$a = \prod_{i} a_i^{\alpha_i} = rad(a) \cdot \prod_{i} a_i^{\alpha_i - 1} \tag{1}$$

We denote:

$$\mu_a = \prod_i a_i^{\alpha_i - 1} \Longrightarrow a = \mu_a . rad(a) \tag{2}$$

The *abc* conjecture was proposed independently in 1985 by David Masser of the University of Basel and Joseph Esterlé of Pierre et Marie Curie University (Paris 6) [1]. It describes the distribution of the prime factors of two integers with those of its sum. The definition of the *abc* conjecture is given below:

Conjecture 1.1. (abc Conjecture): For each $\epsilon > 0$, there exists $K(\epsilon)$ such that if a, b, c positive integers relatively prime with c = a + b, then :

$$c < K(\epsilon).rad^{1+\epsilon}(abc) \tag{3}$$

where K is a constant depending only of ϵ .

We know that numerically, $\frac{Logc}{Log(rad(abc))} \leq 1.629912$ [2]. It concerned the best example given by E. Reyssat [2]:

$$2 + 3^{10} \cdot 109 = 23^5 \Longrightarrow c < rad^{1.629912} (abc)$$
⁽⁴⁾

A conjecture was proposed that $c < rad^2(abc)$ [3]. In 2012, A. Nitaj [4] proposed the following conjecture:

Conjecture 1.2. Let a, b, c be positive integers relatively prime with c = a + b, then:

$$c < rad^{1.63}(abc) \tag{5}$$

$$abc < rad^{4.42}(abc) \tag{6}$$

In the following, we assume that the conjecture giving by the equation (5) is true that constitutes the key to obtain the proof of the *abc* conjecture.

Date: March 25, 2024.

²⁰²⁰ Mathematics Subject Classification. 11AXX, 26A06.

Key words and phrases. Elementary number theory; one variable calculus.

2. THE PROOF OF THE ABC CONJECTURE

Proof.:

2.1. Case $\epsilon \geq (0.63 = \epsilon_0)$. In this case, we choose $K(\epsilon) = 1$ and let a, b, c be positive integers, relatively prime, with c = a + b, $1 \leq b < a, R = rad(abc)$, then $c < R^{1+\epsilon_0} \leq K(\epsilon).R^{1+\epsilon} \Longrightarrow c < K(\epsilon).R^{1+\epsilon}$ and the *abc* conjecture is true.

2.2. **Case:** $\epsilon < (0.63 = \epsilon_0)$. We suppose that the abc conjecture is false, then it exists $\epsilon' \in]0, \epsilon_0[$ and for all parameter $K' = K'(\epsilon) > 0$, it exists at least one triplet (a', b', c') so a', b', c' be positive integers relatively prime with c' = a' + b' and c' verifies :

$$c' > K'(\epsilon').R^{1+\epsilon'} \tag{7}$$

In the above equation, c' depends of the value of $K'(\epsilon')$ but not of the value of $K'(\tau)$ with $\tau \neq \epsilon'$. We can choose $K'(\epsilon)$ as a smooth increasing function for $\epsilon \in]0, \epsilon_0[$. Let $\bar{\epsilon} = \epsilon' - \Delta \epsilon$ with $0 < \Delta \epsilon \ll \epsilon'$ so that the *abc* conjecture is verified : it exists $K(\bar{\epsilon})$ and:

$$c' < K(\bar{\epsilon}).R^{1+\bar{\epsilon}} \tag{8}$$

We remark here that c' is independent of $K(\bar{\epsilon})$. The equation (7) can be written as:

$$c' > K'(\epsilon')R^{1+\epsilon'} > K'(\epsilon' - \Delta\epsilon).R^{1+\epsilon' - \Delta\epsilon} \Longrightarrow$$
$$c' > K'(\bar{\epsilon}).R^{1+\bar{\epsilon}}$$
(9)

Now, as the parameter $K'(\epsilon)$ is arbitrary, we choose in the last equation above (9), $K'(\bar{\epsilon}) = K(\bar{\epsilon})$, it follows using the equation (8):

$$K'(\bar{\epsilon}).R^{1+\bar{\epsilon}} < c' < K(\bar{\epsilon}).R^{1+\bar{\epsilon}} \Longrightarrow$$
$$K'(\bar{\epsilon}).R^{1+\bar{\epsilon}} < c' < K'(\bar{\epsilon}).R^{1+\bar{\epsilon}} \Longrightarrow 1 < 1$$
(10)

Then the contradiction. It follows that the assumption that the *abc* conjecture is false on]0, 0.63[is not verified and the *abc* conjecture is true for all $\epsilon \in]0, 0.63[$.

Finally, the *abc* conjecture is true for all $\epsilon > 0$.

Q.F.D

We can announce the theorem:

Theorem 2.1. (*The abc Theorem*) We assume that the conjecture $c < R^{1.63}$ is true. For each $\epsilon > 0$, there exists $K(\epsilon)$ such that if a, b, c positive integers relatively prime with c = a + b, then :

$$c < K(\epsilon).R^{1+\epsilon} \tag{11}$$

where K is a constant depending only of ϵ .

References

- M. Waldschmidt: On the abc Conjecture and some of its consequences, presented at The 6th World Conference on 21st Century Mathematics, Abdus Salam School of Mathematical Sciences (ASSMS), Lahore (Pakistan), March 6-9, 2013.
- [2] B. De Smit: https://www.math.leidenuniv.nl/ desmit/abc/. Accessed December 2020.
- [3] P. Mihăilescu: Around ABC, European Mathematical Society Newsletter, N° 93, 2014, 29-34.
- [4] A. Nitaj: Aspects expérimentaux de la conjecture *abc*. Séminaire de Théorie des Nombres de Paris (1993-1994), London Math. Soc. Lecture Note Ser., Vol n°235, 1996, 145-156, Cambridge Univ. Press.

Résidence Bousten 8 Mosquée Raoudha, Bloc B, 1181 Soukra Raoudha, Tunisia. Email address: abenhadjsalem@gmail.com _