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Abstract—This article proposes the modified KNN (K Near-
est Neighbor) algorithm which considers the feature similarity
and is applied to the keyword extraction. The texts which are
given as features for encoding words into numerical vectors
are semantic related entities, rather than independent ones,
and the keyword extraction is able to be viewed into a binary
classification where each word is classified into keyword or
non-keyword. In the proposed system, a text which is given
as the input is indexed into a list of words, each word is
classified by the proposed KNN version, and the words which
are classified into keyword are extracted ad the output. The
proposed KNN version is empirically validated as the better
approach in deciding whether each word is a keyword or
non-keyword in news articles and opinions. The significance
of this research is to improve the classification performance by
utilizing the feature similarities.

I. INTRODUCTION

The keyword extraction refers to the process of extracting
the essential words which reflect the entire content from an
article. In this research, the keyword extraction is viewed
into a binary classification where each word is classified into
one of the two categories: ‘keyword’, or ‘non-keyword’. We
prepare sample words which are labeled with one of the
two categories and encode them into their structured forms.
By learning the sample words, we built the classification
capacity, encode novice words into the structured forms, and
classify them into one of the two categories. In this research,
we use a supervised learning algorithm for the task which
is viewed into the classification task.

Let us mention some problems which this research tries to
solve. When discovering the dependencies among features of
encoding texts or words into numerical vectors, the Bayesian
networks was proposed as the approaches to the text mining
tasks, but the complicated analysis is required for using
them [29]. The assumption that features are independent of
each other causes the requirement of many features for the
robustness in encoding so. Since each feature has the very
weak coverage, we cannot avoid the sparse distribution of
each numerical vector where zero values are dominant with
more than 95% [1]. Therefore, this research is intended to
solve the problems by considering the feature similarity as
well as the feature value similarity.

Let us mention what we propose in this research as
its idea. In this research, we consider the both similarity

measures, feature similarity and feature value similarity, for
computing the similarity between numerical vectors. The
keyword extraction is viewed into the binary classification
where a supervised learning algorithm is applicable. The
KNN (K Nearest Neighbor) is modified into the version
which accommodates the both similarity measures and ap-
plied to the keyword extraction task. Therefore, the goal of
this research is to improve the keyword extraction perfor-
mance by solving the above problems.

We mention what we expect from this research as the
benefits. Considering the both similarities which are covered
in this research opens the potential way of reducing the
dimensionality of numerical vectors for encoding texts.
Computing the similarity between two texts by the two
measures reflects more semantic similarity between words.
It is expected to improve the discriminations among even
sparse vectors by using the both kinds of similarities. There-
fore, this research pursues the benefits for implementing the
keyword extraction systems.

Let us mention the organization of this research. In
Section II, we explore the previous works which are relevant
to this research. In Section III, we describe in detail what
we propose in this research. In Section IV, we validate
empirically the proposed approach by comparing it with the
traditional one. In Section V, we mention the significance
of this research and the remaining tasks as the conclusion.

II. PREVIOUS WORKS

This section is concerned with the previous works which
are relevant to this research. In Section II-A, we explore
the previous cases of applying the KNN algorithm to text
mining tasks. In Section II-B, we survey the previous cases
of modernizing the KNN algorithm by considering the
similarities among features. In Section II-C, we present
the literatures which are concerned with the scheme of
computing the similarity between texts. Therefore, in this
section, we provide the history about this research, by
surveying the relevant previous works.

A. Using KNN Algorithm to Text Mining Tasks

This section is concerned with the previous cases of
applying the KNN algorithm to text mining tasks. Clas-
sifying texts or words belong to a text mining task, and



the KNN algorithm is adopted as the approach to the task
in this research. The KNN algorithm belongs to the lazy
learning algorithm which does not learn training examples
in advance. The fact that the KNN algorithm is popularly
used in classification tasks in any domain, as well as text
categorization is the reason of adopting and modifying
the KNN algorithm. In this section, we survey cases of
applying the KNN algorithm to the word categorization, text
categorization, and spam mail filtering.

Let us survey the application of the modernized KNN
algorithms to the word categorization, before mentioning
their applications to the keyword extraction. The KNN
algorithm was modified into more suitable version which
receives a table as its input data, as the approach to the word
categorization [12]. The modernized KNN algorithm which
classifies a string vector directly, instead of a numerical
vector, was proposed, as the approach to the topic based
word categorization [13]. The KNN version which classifies
a graph directly was applied to the word categorization [14].
In the above literatures, the modernized versions of KNN
algorithm were applied to the word categorization.

Let us survey the cases of using the modernized KNN
algorithms for the keyword extraction which is covered in
this study. The KNN algorithm which processes tables di-
rectly was applied to the keyword extraction [15]. The KNN
algorithm which was modernized into the version which
processes string vectors directly, instead of numerical vectors
is used for extracting keywords from a text [16]. The results
from applying the KNN algorithm which is modified into
one which processes graphs directly were successful [17]. In
the above literatures, the keyword extraction is mapped into
the binary classification in applying the modernized KNN
algorithm.

Let us mention the text summarization is similar as the
keyword extraction, in selecting important paragraphs as
the summary. The KNN algorithm which classifies a table
directly was applied to the text summarization [22]. The
modernized KNN algorithm which deals with the string
vectors, instead of numerical vectors, was proposed as the
approach to the text summarization [23]. Another KNN
version which processes graphs directly was adopted for im-
plementing a text summarization system [24]. The keyword
extraction is regarded as the selection of important words,
whereas the text summarization is regarded as the selection
of important paragraphs.

Let us mention some points which are distinguished from
the above literatures. We explored the previous cases of
using the KNN algorithms which were modernized in the
different directions for the keyword extraction and its related
ones. The three kinds of modernized versions were men-
tioned as the approach to the tasks including the keyword
extraction. The modernized version of the KNN algorithm,
which is proposed as the keyword extraction is one which
considers the similarities among features for computing the

similarity between numerical vectors. In the above litera-
tures, the keyword extraction was mapped into the binary
classification of words, and the proposed version of KNN
algorithm will be to the mapped task as the empirical
validations.

B. Feature Similarity

This section is concerned with the previous cases of
modernizing the KNN algorithm by considering the sim-
ilarities among features. The sparse distribution in each
numerical vector is the most outstanding issue in encoding
texts or words into numerical vectors. In previous works,
results in using the modernized version of KNN algorithm
to text mining tasks were successful. We mention the three
tasks where the performance of the modernized version is
better than the traditional one: word categorization, word
clustering, and index optimization. This section is intended
to survey the previous works on the successful results of
using the modernized KNN algorithm to the three tasks.

Let us review some works on the feature similarities in
using the KNN algorithm for the word categorization. In
2015, it was initially proposed that the KNN algorithm
should use the similarity between numerical vectors, con-
sidering the feature similarity [5]. In 2018, the successful
results in using the modernized version of KNN algorithm
was discovered [18]. The empirical validations in using
the modernized KNN algorithm for the word categorization
were completed through multiple test sets with different
domains [19]. In the above literatures, the modernized KNN
algorithm was proposed, and its better performance in the
word categorization was confirmed.

Let us review some works on the feature similarities in
using the AHC algorithm for clustering words. In 2015, it
was initially proposed that the AHC algorithm should use
the similarities among features as the approach to the data
clustering [6]. In 2018, it was discovered that results from
using the above version of AHC algorithm in the data clus-
tering was successful [20]. In 2018, the better performance
of the above version of AHC algorithm in clustering texts in
various domains was confirmed [21]. The above literatures
proposed the modernized version of AHC algorithm and
validated its performance through experiments.

Let us review some works on the feature similarities in
using the KNN algorithms for the tasks which are derived
from the word categorization. In 2015, it was proposed as
a position paper that the KNN algorithm should consider
the feature similarities in using it for the keyword extraction
[7]. The KNN version was also proposed in using it for
the index optimization [8]. The better performance of the
KNN version which considers the feature similarities was
confirmed through the empirical experiments on the index
optimization [11]. In the literatures, the KNN version was
validated as the better approach to the index optimization.



We mentioned the three tasks where it is effective to con-
sider the feature similarities in the previous works. We try to
consider the feature similarities in the keyword extraction,
and view it into a binary classification, in this research.
We define the similarity metric between numerical vectors,
considering the feature similarities, and modify the KNN
algorithm, based on it. We apply the modified version of
KNN algorithm to the binary classification which is mapped
from the keyword extraction. We empirically validate the
modified version by comparing it with the traditional version
in extracting keywords from a text.

C. Text Similarity

This section is concerned with the previous works on
the non-numerical vector based classification algorithm and
the semantic operation on strings. In previous section, we
presented the cases of using the feature similarities for
computing the similarity between a novice example and
a training example in using the KNN algorithm. In this
section, we present the string kernel based Support Vector
Machine and the table based matching algorithm as the
previous cases of computing lexical similarity between texts,
and mention the previous works on the semantic operation
between strings. The reason of surveying the works on the
text similarity is that texts are given as features for encoding
words into numerical vectors. This section is intended to
explore the previous works on the text similarity and the
semantic similarity between two strings.

Let us consider the string kernel as the lexical similarity
between two raw texts. The string kernel was initially
proposed for improving the SVM (Support Vector Machine)
performance as the approach to the text categorization by
Lodhi et al. in 2002 [28]. It was utilized for improving the
k means algorithm performance as well as the SVM one,
as the approach to the text clustering by Karatzoglou and
Feinerer in 2006 [27]. The string kernel based SVM was
applied to the sentence classification by Kate and Mooney
in 2006 [26]. The string kernel which was mentioned in the
above literatures is the similarity metric between raw texts
based on characters rather than meanings.

There were trials of computing similarity between texts in
using the table based matching algorithms. It was initially
proposed as the approach to the text categorization by Jo and
Cho in 2008 [25]. It was used for the soft categorization of
texts which allows to assign more than one category to each
text [2]. It was upgraded into the more robust and stable
version by Jo in 2015 [9]. In the table based matching
algorithm which is covered in the above literatures, the
similarity between two texts is computed by encoding them
into tables.

Let us mention the semantic operations on strings which
are necessary for computing the feature similarities. The
semantic operations on strings were initially proposed by
Jo in 2012 [3]. They were simulated in the collection of

news articles called Reuter 21278, in 2013 [4]. They were
simulated in the collection of news articles in the current
affair domain and the collection of medical documents called
OSHUMED in the medical domain in 2015 [10]. What are
proposed in the above literatures is the basis for computing
the feature similarities.

We surveyed the previous works on the similarity between
two texts and the semantic operation on the strings. In
the above literatures, the lexical similarity between texts
which are based on characters was proposed in the works on
the string kernel, the similarity between tables representing
texts is defined in the table based matching algorithm, and
the empirical simulations of semantic operations on strings
were executed. In this research, we use texts as features
in encoding words into numerical vectors, and consider
the similarities among texts for computing the semantic
similarity between words. The KNN algorithm was modified
into version which computes the similarity between items,
considering similarities among their features, as approach
to the keyword extraction. Its performance will be validated
in the classification tasks which are mapped from keyword
extractions, compared with the traditional KNN algorithm.

III. PROPOSED APPROACH

This section is concerned with modifying the KNN (K
Nearest Neighbor) algorithm into the version which consid-
ers the similarities among features as well as feature values
and its application to the keyword extraction, and it consists
of the four sections. In Section III-A, we describe the process
of encoding words into numerical vectors. In Section III-B,
we do formally the proposed scheme of computing the
similarity between two numerical vectors. In Section III-C,
we mention the proposed version of KNN algorithm which
considers the similarity among features. In Section III-D, we
explain the architecture of the keyword extraction system
where the proposed KNN is adopted.

A. Word Encoding

This section is concerned with the process of encoding
words into numerical vectors. Texts in a corpus becomes
the features in encoding words so. The three steps which
are presented in Figure 1-3, are involved in encoding words
into numerical vectors. In this research, we consider the sim-
ilarities among texts which were mentioned in Section II-C,
for computing the similarity between numerical vectors.
This section is intended to describe the three steps: feature
extraction, feature selection, and feature value assignment.

The process of extracting features for encoding words into
numerical vectors is illustrated in Figure 1. The N words are
initially given as encoding targets. For each word, texts are
extracted which include itself, and union the sets of texts into
a single list of ones. The list of texts from the process which
is presented in Figure 1, is given as the feature candidates.
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Figure 1. Feature Extraction

All texts in the corpus may be set as features, if the corpus
is very small.

The process of selecting some among feature candidates is
illustrated in Figure 2. The feature candidates are extracted
in the process which is illustrated in Figure 1. The rela-
tionship between a text and a word such as the frequency,
the status of presence or absence, and the TF-IDF (Term
Frequency and Inverse Document Frequency) weight, are
defined as the selection criteria. Texts are selected by their
coverage to words, the total weights of words, or the total
frequencies of words. We use the selected texts as features
for encoding words into numerical vectors.

The schemes of assigning values to features are illustrated
in Figure 3. In the first scheme, a binary values which
indicates whether a word is present or absent in the text
is assigned to each feature. In the second scheme, the
word frequency is assigned to the feature corresponding to
the text. In the last scheme, the TF-IDF weight which is
computed by the equation in Figure 3 may be assigned.
In this research, we adopt the third scheme for assigning
numerical values to features in encoding a word into a
numerical vector.

…. N Feature Candidates

…. d Feature Candidates

d << NFeature Selection

Figure 2. Feature Selection

We mentioned above the three steps of encoding a word
into a numerical vector which are presented in Figure 1-3. In
the numerical vector which represents a word, the features
are given as texts and the feature values are relationship val-
ues between texts and the word. The three hundreds features
are used for representing a text into a numerical vectors in
[28] on the text categorization. The huge dimensionality and
the sparse distribution are main issues in encoding texts and
words into numerical vectors. This research is intended to
solve the above issues using the similarities among texts
which are given as the features.

B. Similarity Metric

This section is concerned with the similarity metric which
considers the feature similarities between two numerical
vectors. In the previous section, we studied the process
of converting words into numerical vectors. We need to
define the innovative similarity metric between two nu-
merical vectors, in order to solve the poor discriminations
among numerical vectors from their sparse distributions. We
mention the feature value similarity which is the similarity
of elements in two vectors and the feature similarity which



Figure 3. Feature Value Assignment

is one among features. This section is intended to describe
the proposed similarity metric between two vectors.

The frame of computing the proposed similarity met-
ric between two numerical vectors is illustrated in Figure
4. f1, f2, . . . , fd are features of numerical vectors, and
x1, x2, . . . , xd and y1, y2, . . . , yd are feature values of the
two vectors, x and y. The feature similarity is one between
two features, fi and fj and the feature value similarity is
one between two feature values in the two vectors, xi and
yi. The similarity metric between two numerical vectors is
defined by combining the two kinds of similarities with each
other. The value of the proposed similarity metric is always
given as a normalized value between zero and one.

Figure 4. The Combination of Feature and Feature Value Similarity

Let us mention the process of computing the similarity
between features which are given as texts. The two features
are notated by fi and fj , and the similarity between them
is notated by sim(fi, fj). The two features, fi and fj are
expressed as the two sets of words, Fi and Fj , and |Fi| and
|Fj | become the cardinalities of the two sets. The similarity
between the two features is computed by equation (1),

sim(fi, fj) =
2|Fi ∩ Fj |
|Fi|+ |Fj |

(1)

and the similarity is always given as a normalized value
between zero and one. The similarity between the features
is called feature similarity.

Let us mention the process of computing the proposed
similarity metric between the two vectors, considering the
features. The two numerical vectors, x1 and x2 are expressed
as equation (2) and (3),

x1 = [x11 x12 . . . x1d] (2)

x2 = [x21 x22 . . . x2d] (3)

The feature similarity between the two features, fi and fj
is notated as equation (4),

sij = sim(fi, fj) (4)

The proposed similarity metric between two vectors is
defined by equation (5),

sim(x1,x2) =

∑d
i=1

∑d
j=1 sijx1ix2j

d · ‖x1‖ · ‖x2‖
(5)

Equation (5) reflects the assignment of feature similarities
as weights to the product of elements in different features.
The similarity between two vectors which is computed by
equation (5), is always given as a normalized value between
zero and one.

We mentioned the proposed similarity metric between two
numerical vectors as a normalized value between zero and
one. The similarity between two vectors which is computed
by equation (5) is given as 1.0, if the conditions are
expressed as equation (6),

∀i,jsij = 1.0,x1 = x2

x11 = x21, x12 = x22, . . . , x1d = x2d

(6)

The similarity between two vectors is given as 0.0, if the
conditions are expressed as equation (7),

∀i,jsij =

{
1 if i = j

0 otherwise
(7)

If the feature similarities are given as equation (7), and the
two vectors are orthogonal to each other, x1 · x2 = 0 the
similarity is given as zero, as expressed in equation (8),

sim(x1,x2) =

∑d
i=1

∑d
j=1 sijx1ix2j

d · ‖x1‖ · ‖x2‖

=
x1 · x2

d · ‖x1‖ · ‖x2‖
=

0

d · ‖x1‖ · ‖x2‖
= 0

(8)



In the cosine similarity between two vectors, as the tradi-
tional metric, the feature similarities are given as equation
(7).

C. Proposed Version of KNN

This section is concerned with the proposed version of
the KNN algorithm which is shown in Figure 5, as the
approach to the keyword extraction. We describe the process
of encoding words into numerical vectors in Section III-A,
and assume that training examples and a novice item are
given as numerical vectors. The similarity metric between
numerical vectors which was covered in Section III-B is used
for selecting nearest neighbors from the training examples.
Variants may be derived from it by considering various se-
lection schemes and voting schemes. This section is intended
to describe the proposed version of KNN algorithm and its
variants.

Figure 5. The Proposed Version of KNN

Let us mention the process of selecting nearest neigh-
bors as the references for classifying them. We no-
tate the training examples and a novice item which are
mapped into numerical vectors by the process which is
described in Section 3.1 by Tr = {x1,x2, . . . ,xN}
The similarities of the novice item, x, with the train-
ing examples,sim(x1,x), sim(x2,x), . . . , sim(xN ,x), are
computed. The training examples are ranked by their simi-
larities and the k most similar ones are selected as the nearest
neighbors. The rank based scheme is adopted in selecting the
nearest neighbors in the KNN algorithm.

Let us mention the process of voting the labels of the
nearest neighbors for deciding one of a novice item. We
notate the set of nearest neighbors of the novice item, x
whose elements are given as numerical vectors and their
target labels, by equation (9),

Nek(x) = {(x1, y1), (x2, y2), . . . , (xk, yk)},
yi ∈ {c1, c2, . . . , cm}

(9)

where c1, c2, . . . , cm are the predefined categories and k
is the number of nearest neighbors. The number of the
nearest neighbors which are labeled with the category,ci is

notated by Count(Nek(x), ci). The label of the novice item,
x, is decided by the majority of categories in the nearest
neighbors, as expressed by equation (10),

cmax =
m

argmax
i=1

Count(Nek(x), ci) (10)

The external parameter,k, is usually set as an odd number
for avoiding the possibility of largest number of nearest
neighbors to more than one category.

Let us mention the weighted voting of labels of
nearest neighbors as the alternative scheme to the
above. Assuming that the similarity between two ta-
bles as a normalized value between zero and one, and
we may use the similarities with the nearest neigh-
bors, sim(x,x1), sim(x,x2), . . . , sim(x,xk) as weights,
w1, w2, . . . , wk by equation (11),

wi = sim(x,xi) (11)

indicates the similarity of a novice item with the ith near-
est neighbor. The total weight of nearest neighbors which
labeled with the category, ci by equation (12),

Weight(Nek(x), ci) =

k∑
xj∈ci

wj (12)

The label of the novice item, x, is decided by the category
which corresponds to the maximum sum of weights as
shown in equation (13),

cmax =
m

argmax
i=1

Weight(Nek(x), ci) (13)

When the weights of nearest neighbors are set constantly,
equation (13) is same to equation (10), as expressed in
equation (14),

Weight(Nek(x), ci) = Count(Nek(x), ci) (14)

We described the proposed version of the KNN algorithm
as the approach to the keyword extraction. It is assumed
that the relationships among features are available in us-
ing the proposed version for the classification task. The
similarity metric which was defined Section III-B is used
for computing similarities of a novice item with training
ones. We adopted the rank based selection for selecting the
nearest neighbors from the training examples. We used the
unweighted voting for decoding the label of a novice item
in experiments which are covered in Section IV.

D. Keyword Extraction System

This section is concerned with the keyword extraction
system which adopts the KNN algorithm considering the
feature similarities. In Section III-C, we described the
proposed version of KNN algorithm as the approach to
the keyword extraction. The task is viewed as the binary
classification where each word is classified into keyword or
non-keyword. The proposed version of the KNN algorithm



is applied to the binary classification which is mapped from
the keyword extraction. This section is intended to describe
the keyword extraction system with respect to its functions
and its architecture.

The process of collecting sample words for implementing
the keyword extraction system is illustrated in Figure 6. The
keyword extraction is viewed as the binary classification
where each word is classified into keyword or non-keyword.
The topic based word classification belongs to the domain
independent classification, whereas the keyword extraction
does to the domain dependent classification as shown in
Figure 6 where even same word may be classified differently
depending on the domain. The words which are labeled with
keyword or non-keyword are collected domain by domain.
It is necessary to tag the input text with its own domain for
executing the keyword extraction.

Figure 6. Sample Words

The entire architecture of the proposed keyword extraction
system is illustrated in Figure 7. A text is given as the input,
and words are extracted from it in the indexing module. The
sample words in the keyword group and the non-keyword
group and ones which are indexed from the text are mapped
into numerical vectors in the encoding module. The words
which indexed from the text are classified into one of the
two categories in the similarity computation module and the
voting module. The system consists of the four modules:
the indexing module, the encoding module, the similarity
computation module, and the voting module.

The execution process of the proposed system is il-
lustrated as the block diagram in Figure 8. The sample
words which are labeled with keyword or non-keyword are
collected from each domain, and encoded into numerical
vectors. The input text is indexed into a list of words and
they are also encoded into numerical vectors. The nearest
neighbors are selected by the similarity computation and its
label is decided by voting ones of its nearest neighbors for
each word. The words which are classified into keyword are
extracted as the final output.

Let us make some remarks on the proposed system
which is illustrated in Figure 7 as the architecture. We

Figure 7. Proposed System Architecture

Figure 8. Execution Process of Proposed System

proposed the similarity metric which considers both the
feature similarities and the feature value ones. It eliminates
the poor discrimination among numerical vectors which is
caused by the sparse distribution in each of them. The
classification performance is improved by what is proposed
in this research, as shown in Section. In the next research,
we present the graphical user interface and the source codes
which are necessary for implementing the system as a
complete one.

IV. EXPERIMENTS

This section is concerned with the empirical experiments
for validating the proposed version of KNN, and consists
of the five sections. In Section IV-A, we present the results
from applying the proposed version of KNN to the keyword
extraction on the collection, NewsPage.com. In Section
IV-B, we show the results from applying it for classifying
words into keyword or not, from the collection, Opinosis.
In Section IV-C and IV-D, we mention the results from
comparing the two versions of KNN with each other in the
task of keyword extraction from 20NewsGroups.



A. NewsPage.com

This section is concerned with the experiments for val-
idating the better performance of the proposed version on
the collection: NewsPage.com. We interpret the keyword
extraction into the binary classification where each word is
classified into keyword or non-keyword, and gather words
which are labeled with one of the two categories, from
the collection, topic by topic. Each word is allowed to be
classified into one of the two labels, exclusively. We fix the
input size as 50 dimensions of numerical vectors and use the
accuracy as the evaluation measure. Therefore, this section
is intended to observe the performance of the both versions
of KNN in the four different domains.

In Table I, we specify NewsPage.com which is used as
the source for extracting the classified words, in this set
of experiments. The text collection was used for evaluating
approaches to text categorization, in previous works [5]. In
each topic, we extracted 125 words labeled with keyword,
and 125 words labeled with non-keyword. The set of 250
words in each topic is partitioned into the 200 words as
training ones and the 50 words as the test ones, keeping the
complete balanced distribution over the two labels, as shown
in Table I. In building the test collection of words, we decide
whether each word is a keyword or not, depending on its
frequency concentrated in the given category combining with
the subjectivity, in scanning articles.

Table I
THE NUMBER OF TEXTS AND WORDS IN NEWSPAGE.COM

Category #Texts #Training Words #Test Words
Business 500 200 (100+100) 50 (25+25)
Health 500 200 (100+100) 50 (25+25)
Internet 500 200 (100+100) 50 (25+25)
Sports 500 200 (100+100) 50 (25+25)

Let us mention the experimental process of validating
empirically the proposed approach to the task of keyword
extraction. We collect sample words which are labeled
with keyword or non-keyword in each of the four do-
mains: Business, Sports, Internet, and Health, depending
on subjectivities and concentrated frequencies of words,
and encode them into numerical vectors. In each domain,
for each of the 50 test examples, the KNN computes its
similarities with the 200 training examples, and select the
three most similar training examples as its nearest neighbors.
Independently, we perform the four experiments each of
which classifies each word into keyword or non-keyword
by the two versions of KNN algorithm. For evaluating the
both versions of KNN in the classification which is mapped
from the keyword extraction, we compute the classification
accuracy by dividing the number of correctly classified test
examples by the number of test examples.

In Figure 9, we illustrate the experimental results from
decoding whether each word is a keyword, or not, using

the both versions of KNN algorithm. The y axis indicates
the accuracy which is the rate of the correctly classified
examples in the test set. Each group in the x-axis indicates
the domain within which the keyword extraction which is
viewed into a binary classification is performed, indepen-
dently. In each group, the gray bar and the black bar indicate
the performance of the traditional version and the proposed
version of KNN algorithm, respectively. The most right
group in Figure 9 indicates the average over accuracies over
the left four groups, and set the input size which is the
dimension of numerical vectors as 50.

Figure 9. Results from Recognizing Keywords in Text Collection:
NewsPage.com

Let us make the discussions on the results from doing
the keyword extraction using the both versions of KNN
algorithm, as shown in Figure 9. The accuracy which is
the performance measure of the classified task is in the
range between 0.45 and 0.6. The proposed version of the
KNN algorithm works better in the two domains: Health
and Internet. It matches with the traditional version in the
domain, Business, but is lost in the domain, Sports. However,
from this set of experiments, we conclude the proposed
version works better than the traditional one, in averaging
over the four cases.

B. Opinopsis

This section is concerned with the set of experiments for
validating the better performance of the proposed version
on the collection, Opinosis. We view the keyword extraction
into the binary classification where each word is classified
into keyword or non-keyword, and collect words which
are classified by their frequencies and subjectivities from
Opniopsis. In each topic, each word is exclusively classified
into one of keyword and non-keyword. We fix the input size
to 50, and use the accuracy as the evaluation measure. In this
section, we observe the performances of the both versions
of KNN algorithm in the three different domains.

In Table II, we illustrate the text collection, Opinosis,
which is used as the source for extracting the classified
words in this set of experiments. The collection was used
in previous works, for evaluating the approaches to text



categorization. We extract the 250 words from each topic;
the half of them is labeled with ‘keyword’. In each topic, the
250 words is partitioned into the 200 words as the training
set and the 50 words as the test set, keeping the completely
balanced distribution over the two labels, as shown in Table
II. In building the collection of labeled words, we label
them into ‘keyword’ or ‘non-keyword’ by combining their
frequencies which are concentrated in their own category
with the subjectivity in scanning individual articles.

Table II
THE NUMBER OF TEXTS AND WORDS IN OPINIOPSIS

Category #Texts #Training Words #Test Words
Car 23 200 (100+100) 50 (25+25)

Electronic 16 200 (100+100) 50 (25+25)
Hotel 12 200 (100+100) 50 (25+25)

We perform this set of experiments by the process which
is described in Section IV-A. We collect sample words which
are labeled with ‘keyword’ and ‘non-keyword’ in each of
the three domains: ‘Car’, ‘Electronics’, and ‘Hotel’, and we
encode them into 50 sized numerical vectors. For each test
example, the both versions of KNN computes its similarities
with the 200 training examples and select the three most
similar training examples as its nearest neighbors. Each
test example is classified into ‘keyword’ or ‘non-keyword’
by the two versions of KNN algorithm; we performed the
three independent experiments as many as the domains.
The classification accuracy is computed by the number of
correctly classified test examples by the number of the test
examples for evaluating the both versions of KNN algorithm.

In Figure 10, we illustrate the experimental results from
deciding whether each word is a keyword, or not. The y-axis
indicates the value of accuracy and the x-axis indicate the
group of two versions by a domain of Opinopsis. In each
group, the gray bar and the black indicate the achievements
of the traditional version and the proposed version of KNN
algorithm. In Figure 10, the most right group indicates the
averages over results of the left three groups. Therefore,
Figure 10 show the results from classifying each group into
one of ‘keyword’ and ‘non-keyword’, by both versions of
KNN algorithm.

We discuss the results from doing the keyword extraction
which is mapped into a binary classification, using the
both versions of KNN algorithm, on Opinosis, shown in
Figure 10. The accuracy values of the both versions range
between 0.45 and 0.6. The proposed version works better
than the traditional one in one of the three domains: Hotel.
It is comparable with the traditional version in the domain,
Electronics, and it is leaded in domain, Car. From this set
of experiments, we conclude the proposed version works
competitively with the traditional version in averaging the
three cases.

Figure 10. Results from Recognizing Keywords in Text Collection:
Opiniopsis

C. 20NewsGroups I: General Version

This collection is concerned with one more set of experi-
ments for validating the better performance of the proposed
version on text collection: 20NewsGroups I. We gather
words which are labeled with ’keyword’ or ’non-keyword’
from each broad category of 20NewsGroups, under the view
of the keyword extraction into a binary classification. The
task in this set of experiments is to classify each word exclu-
sively into one of the two categories in each topic which is
called domain. We fix the input size to 50 in encoding words,
and use the accuracy as the evaluation measure. Therefore,
in this section, we observe the performances of the both
versions in the four different domains.

In Table III, we specify the general version of 20News-
Groups which is used for evaluating the two versions of
KNN algorithm. In 20NewsGroup, the hierarchical classifi-
cation system is defined with the two levels; in the first level,
the six categories, alt, comp, rec, sci, talk, misc, and soc, are
defined, and among them, the four categories are selected,
as shown in Table III. In each category, we select 1000 texts
at random and extract 250 words from them. Among the 250
words, one half of them is labeled with ’keyword’, and the
other half is labeled with ’non-keyword’. As shown in Table
III, the 250 words is partitioned into the 200 words in the
training set, and the 50 words in the test set, keeping the
complete balance over them. In the process of gathering the
classified words, each of them is labeled manually into one
of the two categories by scanning individual texts.

Table III
THE NUMBER OF TEXTS AND WORDS IN 20NEWSGROUPS I

Category #Texts #Training Words #Test Words
Comp 1000 200 (100+100) 50 (25+25)
Rec 1000 200 (100+100) 50 (25+25)
Sci 1000 200 (100+100) 50 (25+25)
Talk 1000 200 (100+100) 50 (25+25)

The experimental process is identical is that in the previ-
ous sets of experiments. We collect the words by labeling



manually them with ‘keyword’ or ‘non-keyword’ by scan-
ning individual texts in each of the four domains, comp, rec,
sci, and talk, and encode them into numerical vectors with
the input size fixed to 50. For each test example, we compute
its similarities with the 200 training examples, and select the
three similar ones as its nearest neighbors. The versions of
KNN algorithm classify each of the 50 test examples into
one of the two categories by voting the labels of its nearest
neighbors. Therefore, we perform the four independent set
of experiments as many as domains, in each of which the
two versions are compared with each other in the binary
classification task.

In Figure 11, we illustrate the experimental results from
deciding whether each word is a keyword or not on the
broad version of 20NewsGroups. Figure 11 has the identical
frame of presenting the results to those of Figure 9 and
10. In each group, the gray bar and the black bar indicates
the achievements of the traditional version and the proposed
version of KNN algorithm, respectively. Each group in the x
axis indicates the domain within which each word is judged
as a keyword or a non-keyword. This set of experiments
consists of the four binary classifications in each of which
each word is classified into one of the two categories.

Figure 11. Results from Recognizing Keywords in Text Collection:
20NewsGroup I

Let us discuss the results from doing the keyword extrac-
tion using the both versions of KNN algorithm, on the broad
version of 20NewsGroups. The accuracies of the both ver-
sions of KNN algorithm range between 0.47 and 0.72. The
proposed version shows the better performance in the two
domains, comp and talk. However, it shows its slightly less
performances in the others. From this set of experiments, the
proposed version keeps its better performance, in averaging
its four achievements.

D. 20NewsGroups II: Specific Version

This section is concerned with one more set of ex-
periments where the better performance of the proposed
version is validated on another version of 20NewsGroups.
We gather the words which are labeled with ‘keyword’
or ‘non-keyword’. We map the keyword extraction into a

binary classification, and carry out the independent four
binary classification tasks as many as topics, in this set of
experiments. We fix the input size in representing words to
50, and use the accuracy as the evaluation metric. Therefore,
in this section, we observe the performances of the both
versions of the KNN with the four different domains.

In Table IV, we specify the second version of 20News-
Groups which is used in this set of experiments. Within the
general category, sci, the four categories, electro, medicine,
script, and space, are predefined. In each specific category
as a domain, we build the collection of labeled words by
extracting 250 important words from approximately 1000
texts. We label manually the words with ‘keyword’ or
‘non-keyword’, maintaining the complete balance. In each
domain, the set of 250 words is partitioned with the training
set of 200 words and the test set of 50 words, as shown in
Table IV.

Table IV
THE NUMBER OF TEXTS AND WORDS IN 20NEWSGROUPS II

Category #Texts #Training Words #Test Words
Electro 1000 200 (100+100) 50 (25+25)

Medicine 1000 200 (100+100) 50 (25+25)
Script 1000 200 (100+100) 50 (25+25)
Space 1000 200 (100+100) 50 (25+25)

The process of doing this set of experiments is same to
that in the previous sets of experiments. We collect the
sample words which are labeled with ‘keyword’ or ‘non-
keyword’, in each of the four domains: ‘electro’, ‘medicine’,
‘script’, and ‘space, and encode them, fixing the in input size
to 50. We use the two versions of KNN algorithm for their
comparisons. Each example is classified into one of the two
categories, by the both versions. We use the classification
accuracy as the evaluation metric.

We present the experimental results from classifying the
words using the both versions of KNN algorithm on the
specific version of 20NewsGroups. The frame of illustrating
the classification results is identical to the previous ones.
In each group, the gray bar and the black bar stand for
the achievements of the traditional version and the proposed
version, respectively. The y-axis in Figure 12, indicates the
classification accuracy which is used as the performance
metric. In this set of experiments, we execute the four
independent classification tasks which correspond to their
own domains, where each word is classified into ‘keyword’
or ‘non-keyword’.

Let us discuss on the results from doing the keyword
extraction on the specific version of 20NewsGroups, as
shown in Figure 12. The accuracies of both versions of
KNN algorithm range between 0.40 and 0.65. The proposed
version shows its better results in the domain, ‘electro’. It
shows its comparable one in the two domains, ‘script’ and
‘space’, and its less one in the domain, ‘medicine’. From this
set of experiments, it is concluded that the both versions are



Figure 12. Results from Recognizing Keywords in Text Collection:
20NewsGroup II

comparable with each other.

V. CONCLUSION

Let us discuss the entire results from extracting keywords
using the two versions of KNN algorithm. The both versions
are compared with each other in the task of word classi-
fication which is mapped from the keyword extraction, in
these sets of experiments. The proposed version shows its
better results in two of the four collections and its matching
ones in the others. The accuracies of the traditional version
range between 0.4 and 0.76 and those of the proposed
version range between 0.49 and 0.72. From the four sets
of experiments, we conclude the proposed version improved
the keyword extraction performance as the contribution of
this research.

Let us mention the remaining tasks for doing the further
research. We need to validate the proposed approach in
specific domains such as medicine, engineering, and eco-
nomics, as well as in generic domains such as ones of news
articles. We may consider the computation of similarities
among some main features rather than among all features
for reducing the computation time. We try to modify other
machine learning algorithms such as Naive Bayes, Percep-
trons, and SVM (Support Vector Machine) based on both
kinds of similarities. By adopting the proposed approach,
we may implement the keyword extraction system as a real
program.
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