Chirality (Electroweak interaction) using Geometric
(real Clifford) Algebra Cl3

Jesus Sanchez

Independent Researcher, Bilbao, Spain

Email: jesus.sanchez.bilbao@gmail.com
https://www.researchgate.net/profile/Jesus-Sanchez-21
https://vixra.org/author/jesus sanchez

ORCID 0000-0002-5631-8195

Copyright © 2023 by author Abstract

In this paper, we will obtain the left and the right-handed representation (chirality) of
the wavefunction using Geometric (real Clifford) Algebra Clso. Having the wavefunc-
tion :

Y=y +le; +PPe, +Ples + YPPPeys + ey + Y Per; +PPPe
In Chiral basis, the separation between left and right-handed elements is explicit:

Y, =Ple + e, +Pie; +1P1Pegy;
Yr = P° +Y?3ey; + Y3 les; +Yley,

In Pauli/Dirac basis, this explicit separation is not possible, and the result is as follows:

1
Y = E((¢3 +9%) + (FY + ¥ e + @7 — P )e; + (PP +YO)es

+ (—Y? +9*eys + @ + PP Nes + @HE 4y ey,
+ @3+ l,[)12)3123)

1
Y =5 (0 +9°) + (P! —™ey + W7 +P*ez + W° — Y es

+ @2+ PP ey + (=Pt + PP ezy + (PP P )ey,
+ (1/1123 - 1/’12)3123)

Also, a summary of how all the interactions can be calculated and represented using

Geometric (real Clifford) Algebra is shown.
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1. Introduction

In this paper, we will deal with the chirality in Geometric (real Clifford) Algebra represen-
tation. We will obtain the left and the right-handed representation of the wavefunction us-
ing Geometric (real Clifford) Algebra Clsp.

2. Geometric (real Clifford) Algebra Cl3,0. Basis vectors

There is a discipline in mathematics that is called real Geometric Algebra also known as
real Clifford Algebras [1][3].

In the specific Geometric Algebra Clsp, it is considered a three-dimensional space, so we
need three independent vectors to define a basis. The classical definition of a basis is as
follows:

Fig. 1 Basis vectors in three-dimensional space.

In this paper we will use the nomenclature e; (without any hat or vector sign) to name these
three vectors instead the classical X y Z. Above, | have considered an orthonormal basis as
an example.

But in the general case, this is not even necessary. The only necessary constraint to form a
basis is that the three vectors are linearly independent (this is, they do not lie on the same
plane). An example below:

In Geometric algebra, it is defined an operation called the geometric product. The geomet-
ric product is not represented by any symbol. It is the implicit operation when two vectors
are represented one after the other.

Its definition is:
e;e; = e; ‘e]'+ei/\ej'

L=

Being:
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e; - ¢ = llegll]|e;| cos(ai;)

The classical definition of the scalar product. The product of the two norms (the length) of
the vectors by the cosine of the angle formed by them (we have called it ojj in this case).

The result of the scalar product is a number, a scalar. An important property of the scalar
product is that it is commutative:

ejrej=¢j-e = ||ei||||ej||co s(aij)
As the cosine of the angle is included in the product, you can check that when e; and e; are
perpendicular (right angle), the scalar product is zero. And if the vectors are colinear (the
angle is zero), the scalar product is just the product of the modules of the vectors.
The other element of the geometric product above is:

e; 74N e]-

What it is called the outer, exterior or wedge product of the two vectors.
The result of this operation is not a number. It is another entity that is not a number and not

a vector. It is called a bivector. The bivector is an entity that represents an oriented surface
area (in a same way that a vector “represents” an oriented line segment).

eiheg; eiN\e,
& Y :
€; »
v i —
e

It can be checked above that the module (area of the surface) when reversing the order of
the exterior product is the same. But the orientation (its sign) changes. So, the exterior
product is anticommutative:
ei/\ej = —ej/\ei

The module (area of the surface) of the exterior product is:

lle Aeill = [les Aecl| = llealle | sin(asy)
You can see that when the vectors are colinear (the angle is zero), the exterior product
result is zero. And when the vectors are perpendicular, the module of the exterior product
is the product of the modules of the vectors.
Coming back to the definition of the geometric product:

€i€j=€i'ej+ei/\€j

We can see that when we perform the square of a vector, this is, the product of a vector by
itself (the vector is colinear with itself, its angle is zero) the result is:

(e)? =ee;=e;-e;+eNe = llellllell - 1+0 = llellllell = lle;ll?
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So, the square of a vector is its norm squared. The important thing here, is that the result is
just a number. It is not a vector, it is not a bivector, it is just a number. We have converted
a vector to a number just multiplying it by itself.

If now, we multiply (geometric product) two perpendicular vectors (the angle between
them is a right angle):

eiej'zei'ej+ei/\6j=0+ei/\e]'=ei/\ej

So, you can see that the result is a pure bivector. It does not include vectors or scalars, just
a bivector.

If we reverse the product, we have:
ejei =ej 'ei+ej/\ei = 0+ej/\el' = ej/\el' = —ei/\ej = —eiej

So, when two vectors are perpendicular, not only the exterior product, but also the geomet-
ric product is anticommutative.

From the equations above we can obtain the following equations.
1
e; ej = E(eiej + ejei)

1
e; N e]' = E (eiej — e]-el-)

The demonstration comes directly from the definition of the geometric product. If we sum
a geometric product by its reverse, we put the definition of geometric product, we take into
account that the scalar product is commutative and the exterior product anticommutative:

ei6j+6jei =ei~ej+ei/\e]~+e]~~ei+e]~/\ei=el-~e]-+e,-/\ej+ei-ej—e,-/\ej
=2(ei " ¢))
1
e; - ej = E(eiej + ejei)
If instead of summing, we subtract:
eiej—ejei =ei‘€j+€i/\ej—ej‘ei—ej/\ei =ei‘€j+ei/\€j—€i'ej+ei/\€j
= 2(ei A e])
1
e; N ej = E (eiej - ejei)
We will see in next chapters that when we apply the exterior product instead of the geo-
metric product of two vectors, this means that we want only the result that appears in the
plane they form (in the bivector they form). And we “remove” from the result the scalars
(that will appear with the scalar product of the vectors) and also, we remove the possible
result in vectors (in more complicated products that we will see in next chapters).
Another point to comment is that the exterior product of bivectors (instead of vectors) is

defined in the opposite way (summing instead of subtracting). | am not going to enter into
details, you can check it in [3].

1
(eiej) A(ereg) = 3 (eiejeres + eresejei)
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The same way, the scalar product of bivectors is also defined as the opposite of vectors.
See [3].

1
(eiej) - (e,eg) = E(eiejeres - eresejel-)

Also, to remark that the geometric product is always associative and distributive as you can
see in [3]. But in general, is not commutative or anticommutative as commented (it depends
on the specific product) We will see more examples in the following chapters.

To conclude this chapter about geometric algebra, we will define the trivector. When two
vectors are exterior multiplied, they form a bivector as seen above. The same way, when
three vectors are exterior multiplied, they create an oriented volume, called the trivector:

ey \ej A ey

e NejAe

You can see again, that when we reverse the vectors, we get the same volume (module of
the trivector) but with different orientation (sign):

ei/\ej/\ek=—ek/\ej/\€i

We will check more thing regarding reversion and change of signs in the next chapter.

3. Geometric Algebra Cls. Different types of bases

3.1 Orthonormal basis

In an orthonormal basis, the norm of the basis vectors is equal to one. And the basis vectors
are perpendicular to each other.

So, from the properties commented in chapter 2, we can get obtain the following equations
(for orthonormal basis):

() =ee=¢-e=1
eej =e Nej=—e;Ne;=—eje; (wheni# )
ereg=e-e=0 (wheni=j)

Making the equations explicit for three dimensions:
(e1)? =ee; =1

(6’2)2 =ee, =1
(e3)? =eze3 =1

€16, = —€6;
€63 = —€3€;
€361 = —€16

We can define the inverse of a vector and name it €', as the vector that fulfills (Einstein
summation is not implied here):

(e)7le; = ele; =1 =e;(e) ! = et
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To calculate e' we can post multiply by e;:
(e) tee; = eleje;=1-¢;
e'(e)? = e
el-1=¢
el =¢e; = ()"

So, in orthonormal metric the inverse of a basis vector is itself. It is important to remark
here that in Geometric Algebra there are no covectors (or 1-forms). There are only scalars,
bivectors, trivectors... We will see that the concept of covector in Geometric Algebra is
just a vector that is the inverse of another vector.

In traditional algebra you cannot define the inverse of a vector, so it is used a different type
of element. In Geometric Algebra, the covectors are also vectors. And in fact, the product
of inverse vectors by vectors outputs scalars as it would be expected by the product of a
covector by a vector.

3.2. Geometric Algebra Cl3,0. Orthogonal but not orthonormal basis

In an orthogonal basis, the vectors are perpendicular to each other. But in general, the norm
of the vectors is not one. In Geometric Algebra Cls o, the norm of the basis vectors is always
positive and different from zero.

The 3 in the name Clso, makes reference to that there are 3 basis vectors with positive
norm. The 0 in the name Cls, makes reference to that there are no basis vectors with neg-
ative norm. And the absence of a third number makes reference to that there are no basis
vectors with zero norm.

From the properties commented in chapter 2, we can obtain the following equations (for
orthogonal, not orthonormal basis):

(e)? =ee;=¢; e = |lefll* = gy
ee;=e Nej =—ejNe; = —eje; (wWheni =+ j)
e;rej=e-e=0 (wheni=j)

Making the equations explicit for three dimensions:

(31)2 =66 = ”31”2 =011
(32)2 = €6, = ”32”2 =022
(e3)* = eze3 = |lesl* = g33

€16; = —€364

€63 = —€3€;

€361 = —€16

Where the g;; makes reference to the metric tensor components. See paper [2]. Take into
account that when you multiply two colinear vectors (and a vector is colinear with itself),
its geometric product is equal to the scalar product. And this is exactly the definition of g;;
(the scalar product of e; with itself).

The definition of the inverse of a vector, and naming it e , is the vector that fulfills (not
Einstein summation is implied here):
(e)7le; = ele; =1 =e;(e) ! = et
To calculate e' we can post multiply by e;:
(e) teje; = eleje;=1-¢;
el(e)? = e
ellle? = e;
.. elgii: €;
N S S -1
M P
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So, in orthogonal metric the inverse of a basis vector is itself divided by its norm squared
(by g;i). Everything commented regarding covectors in 3.1 applies also here.

One important consequence of this, is that if the basis vectors are orthogonal (as in this
chapter), all the basis vectors and all the inverse of the basis vectors are also orthogonal
among them (when ij). this is:

. e; 1 1
el.e.:_-e.:—e.-e. :—e.e.+e.e. :0
Togu gii( ¢) Zgiig ¢+ ¢jei)

. . e; ej
el-e)=—.—= e -e)=——(ee +ee)=0
i 9jj 2giigjj( t-¢) 29iigjj( i€+ ¢er)

In the last equation (but when i=j) we get:

9i 9u Yu9u = 9igi (9u)? (9u)?
These last properties apply also to chapter 3.1 (orthonormal basis) but in that case
the elements gii or gj are always 1.

3.3. Geometric Algebra Clso. Non-Orthogonal (and therefore not or-
thonormal) basis

In a non-orthogonal basis, the vectors are not perpendicular from each other. And in gen-
eral, the norm of the vectors is not one. As commented in 3.2, in Geometric Algebra Cls,
the norm of the basis vectors is always positive and different from zero.

From the properties commented in chapter 2 and also in [2], we can get obtain the following
equations (for orthogonal, not orthonormal basis):

(e)? = eie; = lleill* = gy
eej =29g;; —eje; =29 — eje;
€€ =¢€i€ =J0ij=JYji
ee=¢e -et+eNe=g;t+eNe
Making the equations explicit for three dimensions:

(31)2 =66 = ”31”2 =011
(32)2 = €6, = ”32”2 =022
(e3)* = eze3 = |lesl|” = gs3

e1e; =201, — €61 = 29,1 — €36

€263 = 20,3 — €36, = 203; — €3€;

ese; = 2931 — e1e3 = 2gi3 — €163
Where the g;; makes reference again to the metric tensor components (the scalar products
of the basis vectors). See paper [2] for more information. You can obtain the above equa-

tions from the definition of scalar product in geometric algebra as commented in chapter
2.

1
e e =gi= E(eiej + ejei)
Multiplying by 2:
2gij = ee; + eje;
Rearranging terms (and knowing that the metric tensor is symmetric):
e;e; = 2g;; —eje; = 295 — eje;

Now, we will define again the inverse of the basis vectors and name them e'. To obtain the
inverse of the basis vectors is this case, you have to get the inverse of the metric tensor, so
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you are able to define a vector e' that fulfills for every i and every j the following (Einstein
summation does not apply):

(e)7le;=ele; =1 =r¢e;(e) " = ese!

. 1 . .
el~ej=ei-ef=E(eief+efei)=0 fori+#j

In general, this is written as:

Where 6} is the Kronecker Delta, that is equal to 1 when i=j and 0 when i#j.

If we multiply two inverse vectors between them, in non-orthogonal metric, we do not
obtain zero as a general case. See below:
i

et-e’ =§(ele1 +ele') =g =gt

So:
elel =2gY —elet
And:
eiel = ()2 = ¢l - ¢l = gii

In this paper, we will work mainly with orthogonal (or orthonormal basis), so do not worry
about these above points. For more info regarding how to invert the metric you have a lot
of literature [58][59][60][61][62][64].

What we will do in general, is to make all the calculations with orthogonal metrics and then
try to generalize to the case of non-orthogonal metric applying the above relations.

3.4. Geometric (real Clifford) Algebra Cls0. Expanding the basis

One of the properties of the Geometric Algebra is that the number of elements that conform
the algebra of a certain realm are more than the number of dimensions of that realm. In
three dimensions we have three basis vectors as commented, but we have 8 different ele-
ments that conform that algebra, that are:

e The scalars

e The three vectors

e The three bivectors

e  One trivector

We will call these elements with these names:

ey = 1 (scalars)
€1

€4 = €23 = €363

€s = €31 = €3€

€6 = €12 = €18,
€7 = €123 = €,€,€3
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In this paper we will consider e, directly as the scalar 1. In other contexts (influenced by
gravitation or non-Euclidean metrics), the value could be a scalar but with norm ||e,]|?
different than 1. We will not consider this here (check [75] for more information).

The elements e, es, es are bivectors whose square is negative, as we will see now. And e;
is the trivector whose square is also negative, as we will see.

In general, we will work with orthogonal (not necessarily orthonormal) basis. About the
non-orthogonal case, we will talk explicitly in certain points of the paper. If nothing is said,
along the paper we will work with orthogonal metric that fulfills the following, already
commented, relations:

(e)? =ee;=¢; e = |lell* = gy
eij = el-e]- = €; 1A e]- = —e]- 1A e; = —e]-el- = —e]'i
e;reg=e-e=0 (wheni=j)

This is, in 3 dimensions:

e —1
(e1)* = llesll* = g11
(€2)? = llexlI* = g2
(e3)* = llesll* = g3

€12 = —€31
€23 = —€33
€31 = —€;3
€123 = —€321

The last three equations are key in orthogonal metric and are the ones that will make work-
ing with bivectors or the trivector much easier. Because they permit us to swap the order
of the vectors in any geometric product, just adding a minus sign for each swap. These
means that the result will be the same if we make an even number of swaps. And will be
the negative of the original if we make an odd number of swaps.

As commented, all these swapping’s with changing of sign can only be applied in orthog-
onal bases. In non-orthogonal bases you should apply the equations in the beginning of
chapter. 3.3.

Knowing this rule, I would just show the squares of the bivectors and the trivector to check
that they are in fact negative:

(e4)? = (ez03)* = eye3e,03 = —e,03030;, = —€,033€; = —J33€,€; = — 33022
(es)® = (e3e1)* = eze eze; = —ezejeie3 = —e3g11€3 = —g11€3€3 = — 11033
(36)2 = (9132)2 = €1€,€16) = —€1€26261 = —€1072261 = —Yg2261€1 = —¥22011
(e7)? = (e1e,63)% = e1e,e3e1€,03 = +e1€,€5831€, = (331,618, = —(33€1€1€,€; = —J33011022

Remind that the gj; are just numbers, so you can move them as you want along the product.
| keep the order obtained in the operations to facilitate the understanding, but you can swap
them as you want not changing the sign or the result.

Just to close the chapter, | will comment that an entity that is composed by the sum of
scalars, vectors, bivectors etc... is called a multivector. As an example:

A =3+ 2e; —3e;+7e3e;

This entity A is called a multivector. We will see that in Geometric Algebra any object can
be defined by a multivector expression.

The most important comment of this section is the following. In Geometric Algebra, once
you have defined the number of dimensions (in this case 3) and the consequent degrees of
freedom (or different basis vectors and their combinations, in this case 8, from e to ev), it
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does not matter how many operations (sums, geometric products, even exponentials etc...)
you do, the number of basis vectors and their combinations are always the same (8 in this
case). You can multiply the times you want any multivector by another one, you will only
finish with 8 coefficients that multiply 8 basis vectors from e to e; (considering also basis
vectors their product combinations). Nothing else. This is key in Geometric Algebra and
its power.

If you are familiarized with matrices, tensors or tensors products, you know that in those

cases the number of elements could grow to infinite (the number of dimensions also). In
Geometric Algebra, there is a limit. And this KEY as we will see.

3.5. Geometric Algebra Cls,0. Comments about eo and e7
Regarding e; the important property as commented is this:

(37)2 = (313233)2 = €1€,€3€1€263 = —(033911922

This means, its square is negative, and it is a “neutral” vector. Meaning “neutral” that it
does not have any “preferred” direction or orientation. The bivectors es, es, es have also
negative square but with “preferred” directions.

(34)2 = (3233)2 = 6236263 = —(U33022
(35)2 = (3331)2 = €3€61€361 = —011933
(e6)? = (e1€2)” = ejeze16; = —g22011

But e7 has a negative square and does not point anywhere specific. It applies to the volume
in general (not a surface or a line). If you have read the papers [4][5][6] probably you have
already seen the possibility that the time vector can be associated with ez (the trivector).
The reason is that the square of ez is negative and that taking this consideration is com-
pletely coherent with Dirac Equation, Maxwell equations and Gell-Mann matrices

[51[6][26][63].

In previous papers [4][5][6][26][63], we saw that depending on the context, the scalars eg
(as considered in APS[43][74]) or the trivector e; could represent time depending on the
context. We will see later, but first we need to understand the spinor in Geometric Algebra
to understand the different possible contexts.

What we will keep from previous papers [4][5][6][26][63]is that as the square of e; is neg-
ative and does not have any preferred direction. So, when the imaginary unit i is used in
traditional algebra, we will substitute it in Geometric Algebra by the trivector e;. The rea-
son is that in Geometric Algebra there are already elements as e; (appearing in a natural
way) whose square is negative.

And the imaginary unit i is used in traditional algebra as an “unknown or generic” element
whose square is negative. In Geometric Algebra, what you have to do is, depending on the
context, to use the corresponding already existing element in the Algebra (of all the ones

whose square is negative) instead of using i. As commented, we will used e for the reasons
commented above.

4. Special operations in Geometric Algebra

4.1. The reverse of a multivector and the reverse product

If we have multivector, the reverse of it can be defined as a multivector with the same
coefficients but where all the products of basis vectors are reversed. An example:

A = 3 + 261 - 361 + 76361 + 28263 - 5818283

Its reverse will be:

10
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AT =3+ 281 - 381 + 76183 + 26263 - 5636261

This, in orthogonal metric (not in general) can be converted using chapter 3.2 equations
into:

AT = 3 + 261 - 381 - 76361 - 26263 + 5616263 = A*
Being A" the conjugate multivector. This means, in orthogonal metric the reverse of a mul-
tivector is the same as a conjugate of the multivector. The conjugate means changing the
sign of the elements whose square is negative (this means: bivectors and trivector) and
keeping the same sign for scalars and vectors (whose square is positive)

In a non-orthogonal metric, you should use equations in chapter 3.3 instead of those in
chapter 3.2, so in a general case, reverse and conjugate will not be the same.

Anyhow, as commented, in this paper we will focus on orthogonal basis, so here reverse
and conjugate will be the same in most cases (but this is not true for a general case).

Calculating the reverse for the different basis vectors, we have (orthogonal basis):

e, =€
eI =e
el = e,
el = e,
eI = (ez63)" = eze, = —e,e;
e§ = (ese))" = eje5 = —eze;
92 = (e16)" = ez, = —eye,
e; = (e1e263)" = eze,e; = —eqe505

One important property is that a product of basis vectors multiplied by its reverse is always
positive definite (also in non-orthogonal metrics):

90‘5'(;r = egey = llegll* = goo
elef =ee; = e = 911
eze;r = eze; = |le;ll* = g,
333; = eze; = |lesll* = g3

9491 = eye3(ee3)" = eye5e58;, = €,033€, = g33€2€, = 33922 = Gaa

ese;r = ezei(e3e1)T = ezeeie5 = e3g1163 = g11€3€3 = 911933 = Jss

eeeg = eje;(e1e)" = eje,e.6) = €195061 = gpr€1€1 = 32911 = e

373; = ejepe5(e e0e5)" = eje 0505000, = 9356162281 = §339,,€181 = 95:.9,,9,, = 977

Where | have defined the g; as the result of these products also for basis vectors with i>3.
And also, as commented it is defined a goo as the square for eg to have one degree of free-
dom more (even that very probably defining it as 1, should be ok, meaning just a that pre-
normalization has been de-facto done).

As you can guess, the reverse product is just defined as multivector by the reverse of other
(or the same) multivector following the rules commented above.

An important thing to comment, is that the reverse should not be mixed up with the inverse.

The inverse of a product of basis vectors is defined as the inverse of each basis vector in
reverse order. This is, for example:

(e,)7! = (eree3) 7! = (e3) 7' (ex) 7 (ey) ™ = e3e?e! =€’

11
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Where in the last steps above, | have used the definition of the superscripts as defined in
chapters 3.1, 3.2 and 3.3, as the inverse of the basis vectors. We can check that this hold:

e,e’ = eje,e;ee?el =ee,-1-e%el=¢; -1-el =1

So, in fact, it corresponds to the inverse of e;. The same applies, to the rest of vectors:

(31)_1 =e!
(32)_1 = e?
(33)_1 =e?

(e))™! = (eze3) 7" = (e3)7M(ex) ' =e’e? =e*

(es)™! = (eze) ™t = (e))1(es) P = ele® = €5

(€)™t = (e15) 7t = ()7 H(ey) ™t = e?e! = e
(e))™! = (ereze3) ™" = (e3) 7 (ex) M (e)) 7t = e3e?e =&’

So, you can see that the inverse, also reverses the order, but besides that, it inverses the
basis vectors (converts the subscripts in superscripts and vice-versa).

4.2. Clifford conjugation

Another special operation is the Clifford conjugation that it has not be confused with the
reverse or with the standard conjugation (see 4.1).

The Clifford conjugation [73] is represented by a bar above the vectors. It changes the sign
of the vectors and reverses the product. This is:

€ =e =1

ey =—e
e, =—e
é; = —e3
e; = (eze3) = (—e3)(—ey) = eze; = —eje;
és = (eze;) = (—e)(—e3) = eje3 = —eze;
es = (e1e;) = (—ey)(—ey) = eze; = —eqe;
es = (e1eze3) = (—e3)(—ex)(—ey) = —ezeze; = eeze;

It changes the signs of the vectors and bivectors and keep the sign of the scalars and the
trivector.

4.3. Grade automorphism

It is the combination of the 4.1 and 4.2 [73]:

el =e =1
e_1+ =€
e_zT = —€
9_3T = —é€3

&t = (ez63)" = eze5

3_51- = (93"‘31)Jr = €36,

6_61- = (91"‘32)Jr = e16;
3_6+ = (ere283)" = —eje5e5

12
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It changes the sign of the vectors and the trivector (odd grade elements). It keeps the sign
of the scalar and the bivector (even grade elements).

5. Spinor in Geometric Algebra Cls0

A spinor in matrix notation has this form:

Y1r + Pyl
l,b — 1p2r + 1pzii
1p3r + 1p3ii
Yur + Pyl

As you can see, it has eight parameters:

Yir Y1i Yor Yoi Yar Y3 Yur and Py,

In Geometric Algebra, the spinor has this form:
Y= l,b“e# = 1/)Oeo +Yle; +le, + e +hte, + 1!’595 + l/)666 +y7e,

Where the e; are the elements (scalars, vectors, bivectors and trivector) as defined in chapter
3.5.

The ' are the coefficients of the spinor or wavefunction. You can see that they are also
eight as in the matrix notation. You can find a relation between both in [5] [31]and [63].
There you can find that that relation is coherent with Dirac Equation and Strong Force
Interaction (Gell-Mann matrices).

For this paper we will just stick to that these 8 coefficients are sufficient to define a spinor
or wavefunction. And calculating them is what we need to define the state of a particle or
a related filed.

6. Probability density and probability current

As we saw in [63] we can calculate probability density and probability current multiplying
the reverse of the wavefunction by itself, this way:

Yhyp = (woeg +ylel +y2el + 1/)36; +ytel + wse;r + 1/)66;r + 1/J7e;r)(1p°eo +le;
+ e, +e; +hte, + Pes + e + Y7 e;)

Where all the vectors, bivectors and the trivector and their reverses, are as defined in chap-

ter 4 and previous ones.

Only in the case of orthogonal metric (not in the general case), this can be simplified as
(the reverse is the same as the conjugate):

1/’“/’ =YY = (1/)0@0 + 111131 + 1/)232 + 1/)333 - 1/’434 - 1/’535 - 1/)696 - 1/)797)(1/J030
+Yle; +PPe, +Ples +Pte, +Ptes + Poes +P7e;)

As you can see in Annex A2, the result of this multiplication is for the orthogonal case is:

Yy =p+j
Being:

p =%+ @WH2%911 + W3)?go + W*)2g33 + @2 922933 + W°)? 933911 + W°)*G11922
+ (W7)? 911922933
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J= 2@t — p*POga, + 3PP gss + Y7 ga0933)e;
+ 2(+p°yP% + P POgy — v P3gs3 + PP gszgi1)e;
+ 2(+P°P3 —PMPP g1y + PPt gay + YO g11g22)es

Being p the probability and j the fermionic current.

But we can say that even in the general case where the basis is not orthogonal or even if
the product above is defined another way, the result will have for sure have this form:

1,DT'¢’ = jﬂeu

In Annexes Al, A2, A3 and A4, you can find that in whatever metric you are or however
this product is defined (in A4 it is shown an example using the inverse product instead of
the reverse product), the result will always have this form:

Pl = jhe,

Where p and v go from 0 to 7 in the most general case. This means, independently of the
metric, independently if the product is correctly defined or are some elements pending (see
Annexes Al, A2, A3 and A4 for details), what it is true is that the result, will have the form
above.

Even if we calculate wrongly the coefficients of j*, we can continue with our study as these
coefficients will represent a general case. In case they change the value, we will change the
operations done, but the study following will be perfectly correct as the meaning of the
coefficients j* is general. This is the power of geometric algebra. We know the form of the
results even if we have calculated them wrong. We know that the result will have 8 com-
ponents j# (very important, scalar coefficients or functions that output a scalar) multiply-
ing 8 basis vectors (considering their product combinations also, this means, considering
them from e, to €7).

Last comment to make are the measuring units of this j#e, . For the j° component the units
are density of probability in 3D space, this means probability/cubic length. Probability does
not have units, so it is L.

The components j* to j3 are called the probability current and its units are density of prob-
ability multiplied by velocity. As probability does not have units, the density has L3 and
the speed has LT, the total units are LT, To make these units coherent with j°, we have
to multiply j° by ¢ (the speed of light) or the opposite, to divide the components of j* to j°
by it.

As commented, for orthonormal or orthogonal bases, j* only has components from 0 to 3.
For the general case, it would have components from 0 to 7 and the measuring units should
be harmonized with the units that have the components from 0 to 3. But we will not care
about that now, we will just consider that we can find a coherent following expression with
coherent units:

l,lJTl/) = j“eu
Just to finalize, | will comment that to be consequent with certain papers in the literature

[57], sometimes | will use the following nomenclature, but you can check that the concept
is the same, just changing the name of j to V, and the dummy index form p to p:

1/)1.111 =j/’leu = Vpep

7. Chirality (Electroweak interaction) in Geometric (real Clifford) Alge-
bra Cls.o
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In this chapter we will explain how to deal with the chirality in Geometric (real Clifford)
Algebra Clzo. In the Feynmann diagrams where electroweak interaction is involved, the
following chiral projection operators appear [48][77][78]:

1
5(1 -v®

La+y9)
2 Y

Where y5 is defined as:

¥S = iyOyly?ys

And being y¢ the gamma matrices as defined in [48]:
In Dirac-Pauli representation[48][77][78] this is:

0 010

s_[0 0 0 1

=110 0 0

01 0 0

In Chiral representation [77][78]:

-1 0 0 O
s_[ 0 -1 00
4 0 0 10
0 0 0 1

7. 1. Chirality (Electroweak interaction) in Geometric (real Clifford) Al-
gebra Clz.o in chiral basis

The chiral representation is the one which has a clearer map-to-map relation with Geomet-
ric (real Clifford) Algebra representation as we will see now. Anyhow, in previous papers
[63][75] we have always worked with Dirac-Pauli representation [48], so we will calculate
with the two options.

We start with chiral representation. Left operator:

1000 -1 0 00 2 0 00
1(1—;/5):— 0100) (0 —-10o0)|_1f0o200
2 210 0 1 0 0 0 10 20 0 0 0

0 0 01 0 0 0 1 0000

1000

_[0 1 0 0

~lo0 0 0 O

0 000

Right operator.
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1(1+ 5) =
e Tro=
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Using the following definitions:

lplr + ill}li
l/)2r + ill}Zi
1p3r + il,b3i
1/)4r + ill)“

]p:

ey = 1 - scalars
€1
€
€3
ey = ey3 = eye5
es = eqq = eze
€ = €1, = €6,
€; = €153 = €,€563

And defininng the wave function as in previous papers [63][75]:

Y =1te, =P°e +Ple +PPe, +Ples +Ptes +Ptes +Ptes +P7e,
=%y +Ple; +PPe, +Pies + PP ey +1P3les; +1Ptle,
+9Y1%e;,

The one-to-one map we obtained between matrix representation and Clifford Algebras rep-
resentation (in the calculation of the probability and fermionic current and Dirac equation
(Annex A1-A4, [63][75]) was:

l/)lr — _.¢’2
l/)li — _.¢’1
.L/)ZT — _1/1123
l/JZi — 1/13
.L/)3r — —1/123
1/)31 — 1/)31
.L/)4-r — 1/112
l/)4i — —1/10
.L/)O — —l/)4i
llJl — _wli
lpz — _lplr
1/13 — 1/)Zi
23 — _¢3r
¢31 — ¢3i
1p12 — l/)4r
¢123 — _ler

Putting this mapping in the matrix representation:
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lplr + ilpli _w2 _ ll/)l
ler + ilpZi _ _¢123 + “/)3
¢3r + illlBi _1p23 + ilp'o’l

¢4r + i¢4i wlZ _ lll)o

This is:
Y =9Y° +Ple, +Ple, +P3es + Y23e,s + P3leg + Prle, + YP1%3eg,,
Y=Yt —Plie, —YPlTe, + P?le; — P3Teys + Pileg + Y4 ey, — PPTe s
So, defining the left hand projected wavefunction in Clifford Algebras as:

Y =90 eo + Yt e + PP e, + PP ey + 73 eps + YT ez + Y% gy + P13 egps

Yo, =~y
lplL — _lpllL
Y2, = -y,
w3L — 1pZLL
¢23L — _ll}?‘;rL
¢31L — lpSlL
?2132L - “l}4r211‘”
P =Y

Yr=—9P", — Pt e — P ey + P 63 — P ep3 + % o5 + YN e — PP erns

So, the naming of the elements in the matrix representation would correspond to:

1/}17‘L + il/)liL _lsz _ il/)1L
lp B erL + il/JZiL . _lp123L + il/)3L
L= I,[}3rL + il/)3iL _¢23L + il/)31L
¢4TL + ill)4iL lplzL - il/)OL

And now calculating v, , from ¥ using y°, we get:

1.0 0 0\ [P+t PIr it
1 01 0 0)\|y*+ip* P2+ i
= — —y5 = ) = +l¢
0 0 0 0/ \yor e 0
_lpz _ ”/)1
5 _ll}123 + l'l/)S
0
0

So, the transformation is:
wlrL — l,l)lr N _lpz
1/)1iL — lllli N llll
lper — II)ZT N _¢123
¢2iL — .(I)Zi N ¢3
¢3TL =0
l,[)31'11 =0
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¢4TL =0

.¢)4-iL =0
Y, = _1/’4iL - 1»[’1iLe1 - Y e, + IPZiLes — P37 ey + 1»t’e’iLe31 +9* e — P erps

Y, = _wlie1 —yPe, + 1/)2i‘33 — P ep;
P = Ple; +PPe, +pley +PPPe

First point is to remark that the definition of y> used for this result is the chirality one.
This is incoherent with the previous papers and [48], but just to check that depending on
the definitions chosen, the results can be highly simplified. For example, in this case, we
see that only the odd grade elements of the algebra (vectors and trivector) are left with this
definition. Again, the signs can be changed depending on the convention and definitions

chosen.

Later, we will use the Dirac-Pauli definition that is more coherent with the paper [48], but
the result will include more elements.

First let’s calculate the right-handed wavefunction:

wer + “l}llR _lsz _ il/)lR
lpR _ lpZTR + ille.R . _¢123R + il/)3R
lp3rR + il,b3lR _¢23R + i¢31R
¢47’R + ilp4iR ¢12R _ ilpOR
0 0 0 o\ /[¥T+ip" 0
1 0 0 0 0 1/}27‘ + l'll}ZL 0
= — 5 = . = . i
Yr = 2 au t+y )l/) 00 1 0 ¢3r + ilpBL l/)3r + ll/)3l.
0 0 0 1 YA+ i YA+ iyt

Y =9° +Ple; +Ye, +Pies + P2 ey + P lesy + P Per; +1PPPe

Y=y —Plle, — e, + PPes —P3Teys + Pilesy + P e, — PP ens

l/)OR = _l/)‘l-fR
lle — _.L/)UR
Y2 =7,
l/}3R — wZLR
.L/)23R — _lps.'rR
1/)31R — l/}3lR
15)21321? - lp4r21$‘
V= YTy

Yr =10ge0 + 1/.)1Re1 +'¢2Rez +3pes + Il"23R‘5'23 +9* s +_¢’12R€12 + 1% eras
Yp = _111411; - ¢1LR31 - 1/Jerez + 1/’21Re3 - 1/)g'rRez3 + 1/)311;331 + l/JMReu

- 1/’2rRe123
llllr =0
lpliR =0
1/)21"R =0
lpZiR =0
R

18



J.Sanchez

wSrR — lp3r._) _1p23
lpSLR — lp3l N 1l)31

1/)4-1”R — lp4r N 11}12

lp4iR — 1pzl—i N _wO

Yr = =M =Pt eg =P ey P ey — PP ey + Y esy H Y ey,
- ¢2TR‘3123

Yr = P —P3Teys +Piley; +P*ey,

Yr = Y0 +Y?3ey; + Y les; +Ytle,

We can see that only the even grade elements are left (scalars and bivectors).

We see that with the chiral representation the separation between left-handed and right-
handed elements In Geometric Algebra is pretty straight forward. The odd grade elements
are the left-handed part and the even grade ones the right-handed part.

This means that in the chiral basis we can use a simple operation in geometric algebra to
separate the left and the right-handed elements.

In fact, applying the grade automorphism (see chapter 4.3 and [73]) to :

Y=9°+le; +PPe; +Pies + YPeys +P3lesy + PP + PP e 0,

YT =90 —le; —PPe, —Pie; +P*3ey; +P3ley + PrPer, — P Pey;

1 1 — 1 —
Yo=s -y =5(1-(N)w=50 -9

= (YO +ple; +le, +Pies + P PPeys + Y3 tesy + P le,
+ l,1)1233123
- (1/)0 - 1/’131 - 1/)232 - 1/)333 + 1/’23923 + l/J31931 + l/J12312

1
—P123e,y)) = 2 (2(Wte; + e, +PPe; +1%3ey,3))

=le; +1PPe, + Piez +1P3e

1 1 — 1 _
br =50 =5 (1+(D)p =@ +9h
= (1/)0 + 1/)131 + 1/’232 + 1/)333 + 1/)23923 + 1/)31931 + 1/)12912
+ 1/)1233123

+ W —Yle; —YPe, —Pies + Y3y +1P3ley; +YPlley,
1
- 1»[’123“3123)) =5 (2(11’0 +Y?3e; + Y les; + 1!’12312))

=Y° +pPe,; +PPley; +tley,
So, we can conclude that in the chiral basis [48][77][[78] the ¥® is equivalent in Clifford
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Algebras to the grade automorphism operation. Regretfully, this will not be true in the case

of the Pauli/Dirac basis, as we will see now.

7. 2. Chirality (Electroweak interaction) in Geometric (real Clifford) Al-
gebra Cls.o in Pauli/Dirac basis

Now, let’s complicate the things using the Pauli Dirac definition of gammas as used during

the paper [48]. Let’s calculate the following factors:

1.0 0 0 00 1 0 1 0 -1 0
Lo_ysy=tffo r0o0) fooo0 1)) _1fo 1 o0 -1
2V 7V 7= 200 0 1 0 100 0 2l-1 0 1 o0

0 00 1 010 0 0 -1 0 1

(1000 00 1 0 1010

1 1{{fo 1 0 o 0 0 0 1 01 0 1

_ 5y — — Z

2(1+”)20010+1000 211 0 1 0
0 0 0 1 0100/ 01 0 1

Now, let’s start calculating the left-handed elements of the wavefunction representation in
Geometric Algebra Cls . For that, let’s start with the matrix representation and then make

the mapping to the Geometric Algebra representation:

l/)lrL + il/)liL 1 0 -1 0 lplr + il/)li
P R I O B R R R
L l/)3rL + l-.¢’3iL 2 21 -1 0 1 0 l/)3r + ll/)3l
YT, it L VA

ll)lrL + il/}liL ll)lr + il/)li _ lp3r _ il,[)gi

¢2rL + i¢2iL 1 ler + il/)Zi _ lp4r _ i¢4i
R I R A
1/J4rL + il/)4iL —l,ler _ ille + l'[)4-1” + ilpzl-l

l'[)11‘ _ ¢3r + i(l/)li _ ¢3i)

B 1 Y2 — i 4 i(l/)Zi _ 1‘041')
2 _1/)11‘ + ll}3r + i(-l/)li + l/)3i)
_¢2r+¢4r + i(_II)Zi + ¢4i)

1
l'[)11”11 — E(l'blr _ l'[)31‘)
; 1 ; .
1IJ1lL — E (.ll}ll _ ¢31)
1
.(I)ZTL — E(l’bZT _ lp4r)

. 1 . .
lthlL — E(IIJZL _ ¢41)
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1
IPSTL — E (_wlr + .¢)3r)
. 1 ; ;
¢3LL — E (_lpll + .¢)31)
1
.¢)4-TL — E (_¢2T+¢4—T)

. 1 . .
1IJ4LL — E(_IPZL + Ilf“)

Y, = _1/)4LL - 1/)1LLe1 - 1/)1rLez + 1/)211433 - 1/)3rLez3 + 1/)3114331 + 1/)4TL312 - 1/)2rLe123

1 ) ) ) ) ) )
Y, = 2 (—(—w” + ¢4l) - (lpll - 1/)31)“31 - (w” - 1/)3r)ez + (1/)21 - 1!’41)33
— (= + ey + (P + 3 Des; + (YT Y ey,
- (wzr - l,b‘”)e123)

l,blr — _wz
lpli — _Ipl
IPZT — _lp123
lpZi — lpS
lp3r — _lp23
1p3l — 1p31
lpll-'r — lplz
.¢’4-l — _.¢’0

1
Y, = 5(_(_#}3 — %) — (=t —3De; — (=2 +YP?¥e, + @2 + 9Y°)es
— W2 —ypPeys + W@ +PPes; + WP +HPey,
- (_1/)123 - 1/}12)3123)

1
Yo =5 (W 90 + Gt + 9 De + @2 — pP)e, + (° + 9 e;

+ (—* +9*eys + @ + Y3 N)es + @HE 4y ey,
+ @@=+ 1/}12)3123)

We can see that the result is not as straight forward as in 7.1. Here the left-handed elements
are a combination of the elements in the original wavefunction. There is not a simple op-
eration to calculate 1, apart from a mapping as above. The y° in this case is not easily

converted to a factor or an operation in Geometric algebra.

Now, let’s go with the right-handed:

ir iaf,1i .1

wer + llpZiR 10 1 0 l/JlT + ll/Jll.

+1i 1 1 2r 4 %t

T R B O P S | K
P R+”'blR 2 2{1 0 1 0 P + it

.L/)4-TR + il/)4iR 01 0 1 l/J4T + il/J4i
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1/)1TR + ill)ll:R l/Jlr + ilpli + l/J3T + il/JSi
lper + illeR _1 Y2+ ill)2i +Yr 4 i¢4i
¢3rR + ill)3iR - 2 +.¢)1r + llpll + .¢)3r + llp3l
\¢4rR + il/)4iR/ \+l/)2r + il/JZl + 1p4—r + l'l/)‘“/

1plr +l/J3T + i(ll)li +1/J3i)

_1 1p2r + l/J4T + i(ll)Zi + l/J4i)

- 2 lplr + lp'a’r + i(wli + 1»[}3i)

l/J2T+l/J4T + i(l/JZi + l/)“)

1
l/JlTR — E (wlr + lp31")

. 1 . .
1pllR — E(l’bll + 1p31)

1
lerR — E (er + ¢4T)

. 1 . .
leR — E(lle + 1p4—1)

1
lp3rR — E(wlr + 1p3r)

A U
Py = @+
1
lpzl-rR — E(.lp2r_|_.lp4-r)
R U
Y =5 @+t

Yr = =Pty — P ey + PP ey — PP ey + PP esy + Y e,
- were123

1 ) ) ) ) ) )
Y = E(-(lﬂ“ +P*) — @M+ PP e; — @ + PP e, + WH +PH)e;
- (1,0” + l/)3r)323 + (lpli + 1/’3i)e31 + (¢2r+¢4r)e12

v 1/;_2 W +*)esz3)
1 — _ 1
1/;\)12)7‘ =__1pl/123
l/JZi — 1/13
.L/)3r — —1/123
1/)3i — 1/,31
.L/)4-'r — 1/112
1/}‘“ — _1/}0

1
Ve =5 (—° =90 = (P! + ¥ De; - (92— ¥)e, + (B — PO)es
- (_1/)2 - l,[’23)323 + (_1/)1 + l,[’31)331 + (_1/)123"'1/)12)912
- (_1/)123 + l.[’12)3123)

1
Yo = 5 (02 + 90 + Pt =P e + @2 +9P)e, + @ —Y0e

+ @2 +9* ey + (=P + 3 N)ezy + (=P +yP1 ey,
+ @' - 1,1’12)3123)
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We have a similar solution to the right-handed elements. Just a mapping between matrix
and geometric algebra. No easy way to represent y> in Geometric Algebra for the
Pauli/Dirac basis. In chiral basis y°> represented just the grade automorphism operation
(see 7.1).

8. APS, STA and Chirality

In my previous papers [5][6][63][75] | have always considered the time as the trivector in
Clsp. In the last papers | was considering that the time could be the trivector or the scalar
depending on context.
In APS [43][73][74] (Algebra of Physical Space) Clsothe time is considered to be the sca-
lars. In STA Cly 3 [1][3] time is considered to be a separate vector independent of the space
vectors.
In fact, there is a mapping between STA and APS.
In STA we have the following vectors (that are related to the gamma matrices). The square
of y° is +1 while the square of y* is-1 wheni=1,2 or 3.
Yoot
y'ox
y:-oy
y:-z
If we post multiply above vectors by y° we get the correspondence with APS:
%% - ¥")?2 > 1 (scalars) - t
Yy’ e o x
v’ -e oy
Yy —oe3—z
So, let’s say in APS the following elements define an entity or event (they include time via
the scalars and space direction via the three vectors):
1-t
e 2 X
e 2y
e3>z
In my previous papers | used a similar approach, but instead of using the scalars as time |
used the trivector:
€1p3 2t
e > x
ey
e; >z
After what | have checked, what | see is that somehow both are correct because we can
consider that any wavefunction has two parts that we can separate either the APS way like
this:
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Onepart: 1 e; e; eg

Second part: e;,3(1 e; e, e3) = €123 €33 €31 €1

Or you can separate this way:

One part: e; e; e; e;,3 (0odd grade elements)

Second part: 1 e,; e3; e;, (even grade elements)

The important thing is that you use the eight elements and you do not use only one of the

parts (you do not use only four of them),

In this paper (chapter 7), we have seen that in chiral basis[48][77][78], the elements that
behave left-handed are the odd grade elements:

Onepart: e; e; e5 €153

And the ones that behave like right-handed elements are the even grade elements:

Second part: 1e,35 e3; e

But what | have checked is that for example in the Dirac equation, the APS separation
(scalars and vectors in one side and bivectors and trivector in the other side) has more
sense.

So, depending in the context both could be used. In fact, if we consider that one part cor-
responds to a particle and the other part to an entangled antiparticle, this “mixing” in the
separation of elements depending on the interaction, could explain that somehow, they are
not never really separated. And the effects in one are affecting the other, as they have their
elements mixed depending on context. In fact, one of the most common interpretations is
that both particles are the same particle but one going into the future and the antiparticle
going reverse in time, in a Tenet-like way. Or could be that both particles go in the same
direction of time as the result of the density probability always being positive because of
the way that is calculated (original wavefunction by its reverse) independently whatever

values of the wavefunction.

As last comment, just to say that STA Cly 3 has been the option that have pushed the Geo-
metric Algebra universally, with David Hestenes as main head [1][3]. And for that, all who
we love Geometric Algebra will have an eternal doubt with him and all that have contrib-
uted to it.

Anyhow, STA leads to 16 free parameters that are not necessary in all the interactions or

disciplines | have checked (electromagnetism, Strong Force, Weak force, Gravity, Dirac
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equation, quantum probability and fermionic current). In fact, only the even subalgebra

coming from Cly 3 is used. This means, only 8 parameters of the 16 are used.

So, the 8 free parameters coming directly from Clsp are sufficient in all the areas | have
checked. Clsg includes the time as an emergent phenomenon emerging for the 3 spatial
dimensions (whether it is the scalar or the trivector) and it is not necessary to add it as an
ad-hoc new dimension as made in STA.

Following the Occam razor, Cls fits better for the purpose.

Another final point was regarding the possibility of using Clos instead of Clso. This is dis-
regarded, as in Clg rotations are available, but Lorentz boosts are not possible. As there
are no elements whose square is +1, hyperbolic functions cannot be formed, so we will lack
tools to make all the possible Lorentz Transformations. See [63] and [78 Eigenchris spinor
series].

9. Summary of interactions in Geometric (real Clifford) Algebra Cls,0

Maxwell Equation [26].

Being:
a d
V=—R+—P +—2+—
PR N PR T
F = E.& + Ey9 + E,2 + B,9% + B,2% + B,%9

] :]xf +]y5} +]zZA +]0

Lorentz Force equation [Annex A7 and [6]]
dp
— = IqFU
dt 1
With:
dp _dpo APy,  APax o APy, APx . APy . APz dPxye

dr  dr dt X+ dt y+ dt Z+Eyz+d‘rz dt

F = E,® + E,9 + E,2 + B,§2 + B 2% + B,&9
U= U+ Uk + Uy9+U,32
=292

Dirac Equation [Annex 5, [3][5][43][731[74]]
ople; = my Tt
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Being:

a d a d

d=—+e,—+e,—+e;—
de® 1gel 2 9e2 39e3

Y =9Y° +ept + e + e3® + e ' + €302 + e3P + ey
I =eqy3

Probability and fermionic Current [Annex Al, A2, A3, A4 [63][75]:

Y=y Pp=p+J
Being:

Y =9P° +ept + e + e3P® + e + e307% + e3P + ey
p =@+ @Y+ @D+ @)+ @2+ @) + @O + @7)?

J=2@° —*Y° + P3P + p*PT)es + 2(W°%? + Ply° — PPt +P°PT)e,
+ 2% — PSPt + PoyYT)e;

Strong Force (Gell-Mann matrices) [63]:

Being:

Y=o + X + Yy + P2+ Py 97 + P ZX + Pry XY + Py, XY2

The new '’ obtained when applying each of the Gell-Mann matrices A; is:

l/)’ = (/15 - l/)) = 1/’0 + Iszyf - lpyzé - ll’zW + lprj} + ll)xyzfyZA
1,0' = (’16 - 1/)) =Y+ Py + l/)yZA + l/)xyzAf + P XY + ll)xyzfyzl\
ll)l = (17 - 1,0) =Py + lpxyy — Y2 — P28 + 1/)3/55? + l/)xyzfyi
LT N PO SN RPON 05
Y= (AS - l»b) =1+ ﬁwxx + \/glljyy \/glpzz + \/glxbyzyz + \/ngxzx \/gwxyx:y + wxyzx:yZ (29)
Chirality (Weak interaction) [Chapter 7]:

Y= 1/J° + 1/Jle1 + 111232 + 1/’333 + 1/)23‘323 + 1/)31‘331 + 1/)12912 + 1/)1239123

In Chiral basis:

Y =19Ple +;l’zez + ¢3f3 + 1/)12?;’123
Yr =0 +P23ey; +1P3legy +Ytley,

In Pauli/Dirac basis:

1
Yo =5 (W2 0+ (FPH+ 9 Des + 2 = YP)e, + (B° + YP0es + (92 + Y™ )ess + (W1 +P*esy
+ @B+ Dey, + W12 + P1Dey,s)
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1
Yr =5 (P + 90 + (P =9 e + @2 + 9 e, + @ —Yes + (7 + 9 ez
+ (Pt P e + (PP e, + @1 - Y )ers)

Einstein equations and non-Euclidean metric [75][76][Chapters 3.2 and 3.3]:

In the paper [75] different candidates for the Einstein equations are defined being the more
coherent ones the following:

8nG h? 1
C—4T#v 1 _WR = R!W —Eg#VR +AgMV

1 h? P + « 1 h? 2 + c* 1
Ezguv (e V/;(Va(ll) 1/))e )) +Eguv ZR —mc® |PTyY _%(Ruv _EguvR +Agp.v> =0

The important thing here is that the sub and super indices do not go from 0 to 3. They go
from 0 to 7. This means, they include equations in the vectors and time (as usually) but
they also include four equations more in the 3 bivectors and the trivector.

This is one of the biggest walls to join quantum mechanics and gravitation. In the Einstein
equations we normally work with spacetime (4 dimensions) while the quantum world has
8 dimensions (see Dirac spinor for example). In the above equations the eight dimensions
(scalars, 3 vectors, 3 bivectors and the trivector) have to be used. See [75] for more details.

Another finding of using Einstein equations in Geometric Algebra Cls ids that the Energy-
momentum relation is modified adding a new element [75] [76]:

E? = m?c* + p2c? — Rh%c?

The other point is ones you have obtained the gravitational effects in one area of space
using above equations, you have to use the following product relation among vectors and
bivectors.

(e1)? =eje; = llegll* = gus

(€2)* = eze; = llezll* = 932

(e3)? = ezez = lesl|* = gs3
e18; = 291, — €6
€63 = 20,3 — €36,
eze; = 293, — e1€3

10. Conclusions

In this paper, we have obtained the left and the right-handed representation (chirality) of

the wavefunction using Geometric (real Clifford) algebra Clso. Having the wavefunction

Y.

Y =9° +Ple; +Pe, +Pies + P* ey +P3lesy +PPep; +1PtPPe

In Chiral basis, the separation between left and right-handed elements is explicit:

Y, = 1/);el +;/;262 + 1/’2163 + 1/)12;3123
Yr =Y +PpTe;3+ 1P ey +P ey,
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In Pauli/Dirac basis, this explicit separation is not possible, and the result is as follows:
1
Yo =5 (@ Y0 + YT+ P e + @ = P)ep + (7 +0es + (P +PP)eps + W1 + Y ey,
+ @ PP e, + @ + Y1 )ess)

1
Yr =5 (P + 90 + (P =9 e + @2 + 9 e, + @ —Yes + (7 + 9 ez
+ (Pt P e + (PP e, + @1 - Y )erss)

Also, a summary of how all the interactions can be calculated and represented using Geo-

metric (real Clifford) Algebra is shown.

Bilbao, 31% May 2024 (viXra-v1).
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Al. Annex Al. Bra-Ket product in Euclidean metric

The bra-ket product of a reversed spinor (in orthogonal metrics is the same as reverse) can
be calculated as:

iy = yref e, = (Yool + el + el + el +ef + el +ylel + el )Wle, +Ple, + e,
+pes + Ple, + Pes +Yoes +7e;) =P =
= (e + Yle, + e, + ey — Ple, — Yies —Ples —e,) (e + YPley + e, + e +te,
+ies +Pes +P7e;) =
= @ +Ple; +Ple, +Pie; —Prese; — Piese; —Poere, —PTeree) (WO +Ple; + Ple, +Ple;
+1Ptese; +1Piese; +1ptese, +P7e e e;) =
W) + Y Ple; + YOPPe, + YOYde; + P Ptees + P Uiese + OYceie, + YOPe e e, +
Y'ple, + (W)* +PlpPeje, —plpieze, +Plite ee; —Plipies +PlPte, + Pl e e; +
Y:Poe, — pPYlese, + (W) + PPle e + pPYtes +PPPie e e; — PPPte; + PP ese +
Y3YPe; + Y3Plese; — P3PPeses + (Y32 — Y3hte, + Y3Pe +YP3Yce e es + Y3 ee,
—P*pe,e; — prle eye;s + ptple; —PriPle, + (WM +Prptere, — Wrtpese + YtyTe, —
—P5Plese; — piiple; — pihPe e e + PiPie; — PiPtese, + (W) + pSptee; + YpYTe, —
—peleie, + YoPle, — Yoihte, — POPieee; + POPtese — YOS eyes + (PO + YOyPTes —
—P7Pleiee; — PP ese5 — WP ese; — PpTp3e e, +PTPtes +PTPe, + Y70 + (P7)?

Please, take into account that for simplification | have considered directly e, = 1. Ifin the
end, it has another value, it has just to be considered in the operations.

Continuing with the operation. If we separate from the result above only the scalars, we
have:

@22+ @H? + @2+ @D + @2+ @ + @) + @")?
We will call this sum p (probability density):
p=WN%+@H+ @2+ @)+ @2+ @)+ @) + @)
If we separate the components that multiply by e; we get:

PP+ PO — PP + P3PS + YT + PP — oY + YTyt
=2("Y° — p*P° + PPP° +PryY7)
In e, we get:
POP? + PPt + P20 — 3Pt — P + PPy + PSPt +YTYR
=2°%* + P'® — PPt +PSyY7)

In e; we get:
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1p01~p3 _ wllps + 1p21p4 + lpSwO + l/J41l)2 _ wslpl + l/)6l/J7 + l/J7l/J6
= 2p°P° —P1yY° + YRyt + YY)
In e,e;:
273 lpﬂlptl— + 1,1111IJ7 + 1p21lj3 _ 1/)31/J2 _ l/J41l)0 + ¢51p6 _ l/)6l/J5 _ l/)7l/J1 =0
In ese;:
YOS — P13 + PPy, + PP — PP — Y0 + POt — PP = 0
In e;e,:
12 lpOwG + lpllpZ _ 1p21ljl + 1p31lj7 + 1l)4l/J5 _ lpSwél— _ l/Jﬁl/)O _ l/)7l/J3 =0
In e eyes:
12 IZO¢7 + ¢1¢4 + lpzlps + ¢3¢6 _ ¢4¢1 _ 7«,[}51/)2 _ 1,[}61,03 _ lp71l}0 =0
If we call vector j (fermionic current) the sumin e;, e, and e;, we get:
J =200 — 2 + P33 + P*PT)e; + 2% + P1Ys — PPyt + Sy T)e,
+ 23 — Y1 Y° + PPt + Yo7 )e;
So, in total we have:
V=9 P=p+j (29.1)
With:
; p =%+ @Y%+ @)+ @)+ @M+ @) + @)* + @7)?
And:
J=2@"° — 2yl + 3> + prPT)e + 2% + iyt — P3Pt + PPyYPT)e,
+ 2% — M5 + PPt + PeiPT)e;
Anyhow, in general we can always say that whatever the final result is, the product will
have the following shape:

iy = jte,

Where j# are just scalar coefficients (or functions that output a scalar) and the e, are the
basis vectors as they have been defined throughout the paper.

A2. Annex A2. Bra-Ket product in non-Euclidean metric (Orthogo-
nal but not orthonormal)

We apply the following relations, when performing the multiplication:
(e0)? = lleoll* = goo
(e1)? = lleall® = g1

(32)2 = ||(=‘2||2 =022
(e3)* = llesll* = g33

€0€; = €i€g
€63 = —€36;
€36, = —e,€3
€16; = —€6

For simplification we will consider directly e, = 1. If in the end, it has another value, it
just will have to be considered in the operations.
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Py =yrelpe, = (Yoel +plef +y2el +ylel +yrel + yiel +ylel +yel)We + Yle; + Y2,
+e; +pte, + Pies + e +Pe;) =
@ +ley +pPe, +Ples +Plese, +Poeies +Yoese; + P esee) W0+ Ples + Ple, + Ples + Pteses + Pese, +Peie, +Terez0;) =
1;002 +YoPle +POPie, +YPOPies + YoPteses + POPese; +POPlese, +Y Y eseze; +
Pipe, + 9V lles|12 + pipPese, — piplese, +piteseses — piySlleslPes + piyllle;lIPe, + iy lles Pe es +
2YPle, — Pp*Plese, + 11122”‘32”2 +2Pie e + PpPtleyllPes + YYteeye; — wzwéwxy‘fl‘fzea + 937 le;l%es e,
—phplese; —Pprpleseses + Prptlielltes — prpdllesliPe, + 9 llelPllesll? + prpSlleslPese, — prullle,lPeses + 7 llesllesliPe, —
—pSPOese; — poiptllelle; — poipleieses + PPllleslPer — P lleslPese, + S  lleslPllenll® + poipClleslPeses + Yoy llesllles l2e, —
—popoese, + ot lleslle; — poullle,llPe, — PeyYieieses + poptlielPese, — popSliel|eses + vl lles P llell? + oy lles 2 lle,l|%e; —
—Y7PCeezes — Py ledllPeres — YTP lleslPeser — Py lleslere, + YTY  lleolPlleslPer + Y70 lleslPllesli*e;, + Ty llesl?lle,llPes
+ 97 lleulPllez P lles 2

If we separate from the result above only the scalars, we have:
p ="+ @911 + @) gz + 1) gss + @2 g22933 + )2 g33911 + @)* 911922 + @) 911922933

We will call above sum p (probability density).

Now, if we separate by e, :

PO+ PIY° —2Olles|® + PyClles|® + YHY7 lley I lesl? + o 3llesl? — o lle,ll
+ 7Y e | [les]I?

2"t — P2YPCle,ll? + Y33 les|* + 7 lle, I lles]1?)
YOP! + PP — PP ga, + YIS gas + Y7 gpugss + PP gas — WO Gs, + Y4 G20053
20t — WP YOGy, + P3P gss + P17 gp2933)
By e, :
TP+ P 8 lesl|® + PP — YiPtles | — w3 llesll? + w3y lesll*lleqll* + wouptlles I
+ P75 leq [I?[les I
2(+9°P + P pollell* — w3tiles|® + w3y lleslllell®)
FYOY? + P PO gyy + P20 — PPt gss — Y3 gas + YIP7 g3g11 + YUY gis + Y5 G113
2(+Y°P2 + PPy — P PP gss + Y Y7 g33911)
By e; :

+POP° = PrpSlles |12 + Pytlle; |12 + 9 Y0 + pryptlles I — Yoy tlledll® + 9oy lles || le,ll?
+P7YClelPlle,|I?

2(+9°P° — P leg | + pPptilelI* + oy llesll*lle,ll?)
FYOU® — P Y3 gay + PPt gy + WY + Y2 g,, — P3P gys + YU G110, + PO G11922

2(+°P — PP gy + YPPtgy, + oY g11952)
In e,e; plane:

HPOP P llen 12+ PP — YRR — 0+ PPCilenll? —pyCllenll? — w7 el =
In e;e; plane:

HPOPS =Y+ PR el + YRt = yClesll? — YO + Yoytile ]l — pRle Il = 0
In e,e, plane:

PP P2 — PRt llesll? +ptySlesl — pptlleslt — oyt — pTyRlesll? =
In eje,e; plane:

FYOPT + Pt + PR+ PR — Yt —YSP? — Yo — YTy’ =0

So, in this case, we can sum up the result as:

Yy =p+j
Being:

p =%+ WH2%911 + W3)?go + W*)2g33 + @)% 922933 + ®°)2 933911 + W°)*G11922
+ (W7)? 911922933

33



J. Sanchez

J= 2@t — p*POga, + 3PP gss + Y7 ga0933)e;
+ 2(+p°yP% + P POgy — v P3gs3 + PP gszgi1)e;
+ 2(+P°P3 —PMPP g1y + PPt gay + YO g11g22)es

Anyhow, in general we can always say that whatever the final result is, the product will
have the following shape:

Pl = jhe,

Where j# are just scalar coefficients (or functions that output a scalar) and the e, are the
basis vectors as they have been defined throughout the paper.

A3. Annex A3. Bra-Ket product between the reverse of a spinor
and a spinor in non-Euclidean metric (Non orthogonal and non or-
thonormal).

We should do the following operation again:

Yhyp = yrelpe, = (Y0el +yle] + el +yiel + el +yoel +yoel +y7el)(Wle, + Yle, + e,
+ s + Yhe, + Poes +Ple +Pe;) =
W° +Ple, +PPe, +Ple; + Plese, +PSere; + Plesey + P ezee ) (PO + hle; +PPe, + Ple; + Pileye; +Poese; + Yoeie, + PTeje,e;) =

But using the following rules commented in chapter 3.3.

(e)* = eie; = llegll* = gy
eiej = Zg’-J - ejei = Zgjl - ejei
€€ =¢€i€ =J0ij=JYji
el-e]- :ei‘ej+ei/\ej:gij+ei/\6j

(91)2 =66 = ”"31”2 =011
(32)2 = €6, = ”"32”2 =022
(e3)* = eze3 = |lesl|” = gs3

e18; =291y — €361 = 20y — €€
€83 = 20,3 — €38, = 23, — €3€;
ese; = 2¢gsq — €183 = 2gy3 — e,€3

I am not going to do it (you have a start of these calculations in[63]), but anyhow, you can
understand that the result, whatever it is, will have this form:

Php = jhe,

Where j# are just scalar coefficients (or functions that output a scalar) and the e, are the
basis vectors as they have been defined throughout the paper.

A4.Annex A4. Bra-Ket product between the inverse of a spinor and
a spinor in non-Euclidean metric (Orthogonal but not orthonor-
mal).

If instead of multiplying by the reverse, we multiply by the inverse (in orthogonal but not
orthonormal metric), we should use the following rules from previous chapters:

(e0)* = lleoll* = goo

(e)? = lleyll* = g1
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(e2)? = llezll* = g2
(e3)? = llesll* = gs3

€€ = €;€g

€63 = —€3€;

€361 = —€41€3

€16, = —€z6;
T S

L
i llell?
ejei eje,-

O

eItz 95

Where all the above relation we have seen in previous chapters.
Operating:

€€ €163 €26y €3€,€, )

w0+ g g % +y° %
T ™ ¥ e ™ ¥ e+ el ¥ Tl ™ Tl ¥ TePles Pl

@ +le, +Ple, + Ples + Pleses + Poese; +YPleie, +Teseze;)

€ €263 €361 €162 €1€2€3

0y)2 0
0 49 o U o W s~ i e Y e~ Y e e Pl

€263

0,7,1 1Y2 _ of,24/,1 ) 3,163 6. _
PO+ W ey U e — W e e W e W o

€

€3 €3 €3 € €3
POPRe, + PR, + (P2 — PR, b e, e, ey gy B
: e e, s 2 P el REE
e, e, e, e, e, e, e,
0. Ke — 1 Ke + 2,/0,3 e. +( 3)2_ 4,0,3 + 5,1,3 —_ 6.0,3
VoW YW o U e+ O Y e U e e Y R

+pOPte,es + Py ”ellzeze?"'wlpez PY3Pre, + W — oy ||e||2€2+'/”/’e*||e||2+w'/’||e||2
e, e ) €2
+pOPiese; —PPtes + P Yie; Telz & +yiPe, + 1/J41/J591W + @) - wslﬁsmfs + W#’ﬁw +

+pOPeie, + e, — Pripe, + ¢3¢69192“:ﬁ phpe “e ”2 ey + PiPle, — “e “2 + @O+ y7p° ||63||2

PP eseses + P W eses W eses + W ere, + Y es YW ey 1 W es + (W)

The scalar part is the same as the one multiplying by the reverse in a Euclidean orthonormal
metric:

p=@N%+ @Y+ @D+ @2+ @+ @)+ @) + @)
This could be a hint, that probably this is the real operation that has to be done in general,
instead of the reverse. The issue is that in orthonormal metric, the inverse and the reverse
are the same operation. But this is not true in general, in non-orthonormal metrics.

If continuing with the operation, for example, we separate by e; we can see that the result
is not as compact and in orthonormal or orthogonal solutions.

e, e, e €,
A AR P A P A A R

Even we can see that the result in the planes is not zero. Example e,e5:

NV e VY e VY e T e e VW et W e o U s

Or e;e,e; , also different from zero:
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€1€2€3

Zllezll*llesll?

AP

€263 €3 2% €2 21 €2
Phple —PSpPee — o3 e + iyt eye5 + PPPSe e
ezl lles]12 T lesl? llexII? lle. 112 = lle 2 7272 el
e

3
+ e e, el +P°Y7e e,e;
3

Anyhow, in general we can always say that whatever the final result is, the product will
have the following shape:

lp_lllJ = jﬂeﬂ

Where j# are just scalar coefficients (or functions that output a scalar) and the e, are the
basis vectors as they have been defined throughout the paper.

In case that we perform this operation (multiplying by the inverse) in an orthonormal met-
ric, we will get the same result as in Annex Al (as the inverse is the same as the reverse in
this case).

In case, that we perform this operation in a non-orthogonal (and therefore non-orthogonal
case), we will have to follow the rules in chapter 3.3.

Anyhow, the result will always have this form:

P = jle,
A5. Annex A5. Dirac equation

In [5] I already made a mapping between Matrix Algebra and Geometric Algebra Clsp. |
will put it here again with another nomenclature (1,2,3 instead of x,y,z) and using the op-
erations we commented in chapter 4 to make it even more clear. Similar approaches have
been done by Baylis, APS [43][73][74].

A5.1. Dirac equation in Geometric Algebra

We will start with the Dirac Equation as defined by APS [43][73][74], similar one defined
by [3][5]:

ople; = mpt
Being I the trivector. Now just operating and changing to the nomenclatures of this paper:

ople; —mpt =0

oYl —mypte; =0

10y —mipte; =0
e1230 —mite; = 0

Now, if deploy the equation element by element:

a a a a
(9123 Je0 G231 " 15,7 T w2 ﬁ) WO + e p' + e h® + e3P® + e, + €3 + €33!

123
+ e1239**%)
+m(=° + ey Pt + e P? + esh? — e Y1 — ep3h®? — e3P + €539 )e; = 0

Making the multiplication element by element, we get:

61/}0 61/11 61/)2 81,03 61!)12 alpZS awSl alp123
€123 560 T 23500 T €31 5,0 T 25,0 T €500 T 100 T 2950~ oo
611)0 611)1 61/12 81/)3 81[112 61/)23 al/)31 61/)123

~€23 del €123 del tes del €2 del €31 del + del tern del te del
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aO 61 aZ 63 612 623631 6123
_9311_93i_e1231+e1l+323 d — e d + d € d -
de? de? de? de? de? de? de? de?

alpo 81,[)1 alpz 61,03 61,012 alp23 61/)31 a¢123
~é12 de3 + 62@_ €1 de3 €123 de3 + de3 tes de3 €23 de3 tes de3
_m¢033 - 331"“,[’1 + ez3m¢2 + m1l)3 - 6123m1l)12 - ezml/)23 + elmlpSl + "3127”1/)123
=0

If we separate the equations depending on the element they are multiplying (the vector,
bivector, trivector or scalars) we get these 8 equations:
oY’ oyt oayY?r oY
de® 0del Qde? Qde3
61/)1 a¢o a¢12 61!)31
ﬁg B ﬁﬂlZ aez() B 66233
oY= oY oY 0y 1
3¢9 0e1 9e2 T ges ™ =0
alpS alp31 alp23 alp()
def 1 del , de? . 663123
o 0wt oyl ow
aez‘; 661123 de? , de?
oY oY gy 0y,
ded del de? 0Oe3
a.‘l}Bl al/JZ a.‘l}123 a.‘l}l
66133 a8123 66231 ae312
oY oY= o> 0y
ded del de? de3

A5.2. Dirac equation in Matrix Algebra

For this chapter 5.2 | will use the old nomenclature in which | used t,x,y,z instead of 0,1,2,3
and used subscripts instead of superscripts.

In matrix algebra the solution to Dirac equation has this form:

1
V2
V3
12

Where the 1, are complex functions. If we consider that they can be divided in the real

1/):

and the imaginary part of the function, the wavefunction would have the form:

Yy Y1 + iy
1/) — 1:02 — lpzr + ilpzi
Y3 Yar + i3

12 Var + 1

Now, we apply the Dirac equation in matrix algebra according [48]:

d a .0 d
la—m 0 l& la @
0 ii— li_i —ii /21 0
at dx Oy 0z P\ [0
d d d i) P 0
% ey e ° v/ \o
. d d ) .0
—La+@ lE 0 —La—m

Applying the division in real and imaginary parts commented, we have:
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d d .d 0
La—m 0 15 la @
.0 _a 0 .0 + iU,
I o A - AN b
.0 0 9 0 Yar+ihz || 0O
% Tay ™0 Yur + b/ \O
.0 0 .0 4]
—la+@ L 0 —la—m

And now, performing the matrix muItipIication, we have for the first line;

. alplr az1[}11' . . a¢3r a11[}31' . alpzl-r all)zu' alpzl-r . alpzl-i
Lo "o T MW iyt i i T T oy Ty
=0
Dividing in two equations, one for the real part and another one for the imaginary part, we
get:
a'l’u a11[}31 a¢4i al/)4r _
Tt ™, T oy 0
all)lr a¢3r a¢4r al/)zti _
ot M+ 0z + ox + dy =0

For the second line of the matrix, we get:

(5= m) Qa4 020+ (15 = 2 ) G 4 30+ (—122) G+ 0 = O

ialp2r _ al»l’zi _ ml/) _ iml/) 4 ia¢3r _ al/)31' _ al/)37‘ _ iall)3i —i al/)zl-r al/)zu
at ot r 2 ax  dax  dy dy 9z ' 0z

=0

Again, dividing in two equations (real and imaginary part):

0y 03 0z 0y
Tt ™ Ty "y Tz
alpzr al/)3r al/)31' al/)zlr _
1/)21 - =0
ot dy 0z

For the third line of the equation, you have

(<1a2) W 20 4 (== ) G+ ) + (5= ) G+ 030 = 0

—i all}lr alpll _ ialpzr + all’zi _ 61/12r _ ialpzi _ alpSr + al/)Si _ ml/J _ iml/) )
0z 0z dx dx dy dy at at 3r 3
=0

Dividing in real and imaginary part, we get:

alpll alpZL alpzr al:[}3i _
oz T ox oy T ot ™ =0
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_ alplr _ aler _ al,bzi _ alpSr
0z dx dy at

And for the fourth line:

—myz; =0

<_i:_x + %) W1r + i) + (l%) (Y2r + 20) + (_i% - m) (Yar + ithy) = 0

. alplr alpli alplr . alpli . aler al,bzi . alp4—r al/J4i .
ox Tox Yoy Ty Tz T oz T Var TTar T ™ T b

=0

Getting these two equations:
0y 0Py, 0y Oy
ox "oy "oz T or =0
Wy, WP Oy Oy
0x dy 0z at
Putting all the equations together:

—miy; =0

O O O O
ot ' 9z  odx = dy
01y 0Py 0y | Oy
g Mt T Ty =0
0,; 0ps; 03, 0y
T ™y Ty Taz 0
0y, 03, 03 0y
gt ™MWt 5 T T, 0
0y | 0y Oy | 0y _
0z T ox oy T or  ™War=0
_61/)1r_01/)2r_a¢2i _a¢3r —ml/) =0
0z ox Oy ot 3t
0y 0Py, 0y 0y _
ox "oy "oz T or =0

9 oy, 0 )
_ lplr + 1,011 + 1;021‘ _ 1/14_7« _ ml/)4_i =0

0x dy 0z at

If we transform the nomenclature txyz to 0123 and we put superscripts to be coherent with
the rest of the paper and order the elements we have:

alpli a¢4i alp4r al/)3i
T 9e0  detl + de?  de3
alplr alpz}r 61[1‘” 81/)3r u
def + del + de? + de3 —mypt =0

alpzi al/)3i alp3r a¢4i .
9% del  de? + ded —mypT =0

6¢2r a¢3r a¢3i a¢4r

—ml,b” =0

_ _ _ 2i _
de® del de? de3 myp 0
61/13i 61/)2i aer 81/1“ -
del + del  Qde? + de3 —mpT =0

39



J. Sanchez

6¢3r aler awzi alplr

"~ 9e® 9el  Qde?  Qed
a¢4i alpli alplr all)2i
def + del + de2  9ed
alpzlr 61/)” N 61/1“ aller

_ _ _ 4i _
del del de? + ded mp 0

—-myp3 =0

-my* =0

A5.3. Matching Dirac equation in Geometric Algebra with Matrix
Algebra

If we put the equations obtained in 5.1 and 5.2 together (changing sometimes the order for
better understanding), from 5.1:

de® Q9el 09e% Qe3

alpl alpo awlZ alp31

ded gel = Qe? de3

90 91 9e? t ger ™V =
alpS alp31 a¢23 alp()
de% = Qgel de?  Qe3

a.‘l}12 alpz a.‘l}l alp123

- r ,-r 7' _ 0 —
s ger, 92 [oe T
oY oY oy /2% 31
T3¢0t oet T ez " ges T =0
al/)31 alpz 61/1123 N 61/}1 . 0
661(2)3 06123 06231 ae312 m¢
G| 0 2 2
_w + Ld + Ld + Ld +my? =0

de® del de? de3

From 5.2:
6¢4i alpli alplr all)Zi ar
_ _ =0
3¢ " 3¢t T dez  ded my

61/)” alp4i alp4r 01/J3i
— — + —

— 1r —

de®  Qdel de? ded my 0
alplr all}ztr 61[1‘” 61/)3r u

de” + del + de? + de3 —mpT =0
alpzi al/)3i alp3r a¢4i .

_6eo_ael_aez+ae3_m¢ =0

alp4r alplr 61[1“' alpzr ;

T 9e®  del + de? + de3 —mypt =0
a¢3r alpzr 61/)2i alplr
def del de? de3

61/)31' N al/)2i aer 61,0”

_ 3r — 0
ded del de? + de3 my

alpzr N alp3r 61[13i 81/)4r
de® del de? de3

—my3 =0

—my? =0

You can see that there is a one-to-one map that corresponds to:
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l/Jlr — _1p2
1pli — —llJl
ler — .¢)123
l/JZl — llj3
lp'a’r — _1/)23
3i = 31
lp4r — .¢)12
1/)41' — IPO

This means considering the solution in geometric algebra as:
Y =9° +ept + e + e3P® + e '? + ey3Y?% + e3Pt + eyt

And the solution in matrix algebra as:
(lpw + il,bli
3 I,DZT + il,bZi
)= ¢3r + il,l}3i
\¢4T + il,b4i/
-2 —ip!
lp123 + i.‘l}3
—1/)23 + i!,l)31
lplZ + “pO
To be noted that when we try to make other mappings like getting the fermionic current as
the result of a wavefunction by its reverse Annexes Al1-A4 [63] we obtain the mapping of

Y° and 123 with different sign as follows. The mapping to use will depend on the con-
text:

'll):

ler — _lp123
1/141' — _l/)0

A6. Relation between standard nomenclature and Geometric Alge-
bra

During my studies of Geometric Algebra Cls,. | have got to the following relations. When
a + means that could be a + or — sign depending on context. This mainly happens with
y% and y5 depending on if they pre or post multiply in the original equations before mak-
ing the mapping. The o; are the sigma matrices and the y¢ the Dirac matrices.

The imaginary unit is in general converted to the trivector. But when it is implying a direc-
tion (like can be in linear momentum in quantum mechanics) could be substituted by a

bivector (but as commented this is a very special case, trivector should work in general).

o =yv’>e
o, =7Y" > e
03 =7y° > e;
i = +0y0,03 = 1y°yy?y3 - tejy; = tejeje;
[ > tej = teje j#k (forvery specific cases)

Yo -+l
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yl > t+e; or +e,e; (depending on context)
y2 > +e, or +eze; (depending on context)

y3 > +e; or +eje, (depending on context)

y® - £( B ) (or another special transformation depending on context see chapter 7)

A7. Lorentz Force

In [6] | used a different equation that was:

Where U was defined as:

U=U, 292+ U2+ U, z2X+U,2y  (18)

In fact, an exact equation that does not oblige us to change the naming of the U elements

is the following:

dp
— = IqFU
dt 1
With:
dp dpo dpyz A dpzx ~ dpxy A dpx ~ A dpy A~ dpz A~ dpxyz AAA
dt  dr @ dr X+ dt y+ dt Z+d‘ryz+d‘rzx+drxy+ dt xyz

F = E,& + Ey9 + E,2 + B,92 + B 2% + B,&y
U = Uy + Uk + Uy 9+U,2
I =292

As we can do (the trivector is commutative):

dp
— =qFIU
dt d
Getting the magnitude:
U = Upxyz + U, Y2 + Uy2X+U, Xy
So, obtaining the same result in the end.

The other difference is the Clifford reversion in the momentum p . This is to be able to

accommodate the final equations, without having to change any sign, see [6]:

dpo _ dps dp, _ _dpx _ _dp, dp,  dpy,  dp, dp, _ dp, _ dps

Tdr dr dt dt dt

dt dt dt dt dr dr
So:
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dpo _ dps dp, _dp, dpy _dp; dp, _dps

dr  dr dr  dt dr ~ dr dr  dr
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