Improper integrals of the second kind

Edgar Valdebenito
4 Jun 2024

ABSTRACT: This document briefly discusses improper integrals of the second kind.

I. Introduction

Integrals of functions that become infinite at a point within the interval of integration are improper integrals of the second kind.

II. Definition

1. If $f(x)$ is continuous on $(a, b]$ and is discontinuous at a then

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\lim _{c \rightarrow a^{+}} \int_{c}^{b} f(x) d x \tag{1}
\end{equation*}
$$

2. If $f(x)$ is continuous on $[a, b)$ and is discontinuous at b then

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\lim _{c \rightarrow b^{-}} \int_{a}^{c} f(x) d x \tag{2}
\end{equation*}
$$

3. If $f(x)$ is discontinuous at c, where $a<c<b$, and continuous on $[a, c) \cup(c, b]$, then

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x \tag{3}
\end{equation*}
$$

In each case, if the limit is finite we say the improper integral converges and that the limit is the value of the improper integral. If the limit does not exist , the integral diverges.

III. Special improper integrals of the second kind

1.

$$
\begin{equation*}
\int_{a}^{b} \frac{1}{(x-a)^{p}} d x \text { converges if } p<1 \text { and diverges if } p \geq 1 \tag{4}
\end{equation*}
$$

2.

$$
\begin{equation*}
\int_{a}^{b} \frac{1}{(b-x)^{p}} d x \text { converges if } p<1 \text { and diverges if } p \geq 1 \tag{5}
\end{equation*}
$$

These can be called p integrals of the second kind. Note that when $p \leq 0$ the integrals are proper.

IV. Convergence tests

The following tests are given for the case where $f(x)$ is unbounded only at $x=a$ in the interval $a \leq x \leq b$.
Similar tests are available if $f(x)$ is unbounded at $x=b$ or $x=c$ where $a<c<b$.

1. Comparison test for integrals with non-negative integrands.
1.1. Convergence. Let $g(x) \geq 0$ for $a<x \leq b$, and suppose that $\int_{a}^{b} g(x) d x$ converges. Then if $0 \leq f(x) \leq g(x)$ for $a<x \leq b, \int_{a}^{b} f(x) d x$ also converges.
1.2. Divergence. Let $g(x) \geq 0$ for $a<x \leq b$, and suppose that $\int_{a}^{b} g(x) d x$ diverges. Then if $f(x) \geq g(x)$ for $a<x \leq b$, $\int_{a}^{b} f(x) d x$ also diverges.
2. Quotient test for integrals with non-negative integrands.
2.1. If $f(x) \geq 0$ and $g(x) \geq 0$ for $a<x \leq b$, and if $\lim _{x \rightarrow a}\left(\frac{f(x)}{g(x)}\right)=A \neq 0$ or ∞, then $\int_{a}^{b} f(x) d x$ and $\int_{a}^{b} g(x) d x$ either both converge or both diverge.
2.2. If $A=0$ in 2.1, and $\int_{a}^{b} g(x) d x$ converges, then $\int_{a}^{b} f(x) d x$ converges.
2.3. If $A=\infty$ in 2.1, and $\int_{a}^{b} g(x) d x$ diverges, then $\int_{a}^{b} f(x) d x$ diverges.

V. Examples

1. Example 1.

$$
\begin{align*}
I= & \int_{0}^{1} \frac{2}{\sqrt{1-x^{2}}} d x \tag{6}\\
a=0, b=1, f(x)=\frac{2}{\sqrt{1-x^{2}}}, f(1) \longrightarrow & \infty, g(x)=\frac{1}{\sqrt{1-x}}, \lim _{x \rightarrow 1} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 1} \frac{2}{\sqrt{1+x}}=\sqrt{2} \tag{7}\\
& \int_{0}^{1} g(x) d x=2 \tag{8}\\
(7) \wedge(8) \Longrightarrow & \int_{0}^{1} \frac{2}{\sqrt{1-x^{2}}} d x \text { converges } \tag{9}
\end{align*}
$$

2. Example 2.

$$
\begin{equation*}
I=\int_{0}^{\sqrt{2}} f(x) d x \tag{10}
\end{equation*}
$$

where

$$
\begin{align*}
& f(x)=\sqrt{-1+\frac{1}{2 \sqrt{3}} \sqrt{\frac{4}{x^{2}}+\frac{16 \cdot 2^{1 / 3}}{h(x)}+\frac{h(x)}{2^{1 / 3} x^{4}}}+\frac{1}{2} \sqrt{t(x)-\frac{16 \cdot 2^{1 / 3}}{3 h(x)}-\frac{h(x)}{3 \cdot 2^{1 / 3} x^{4}}+\frac{\sqrt{3} s(x)}{4 \sqrt{\frac{4}{x^{2}}+\frac{16 \cdot 2^{1 / 3}}{h(x)}+\frac{h(x)}{2^{1 / 3} x^{4}}}}}} \tag{11}\\
& h(x)=\left(27 x^{4}+128 x^{6}+\sqrt{729 x^{8}+6912 x^{10}}\right)^{1 / 3} \tag{12}\\
& t(x)=8-\frac{2\left(-1+3 x^{2}\right)}{x^{2}}-\frac{2\left(-x^{2}+3 x^{4}\right)}{3 x^{4}} \tag{13}\\
& s(x)=-64+\frac{32\left(-1+3 x^{2}\right)}{x^{2}}-\frac{8\left(-1-4 x^{2}+4 x^{4}\right)}{x^{4}} \tag{14}\\
& a=0, b=\sqrt{2}, f(0) \longrightarrow \infty, g(x)=\frac{1}{x^{3 / 4}}, \lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0} x^{3 / 4} f(x)=0 \tag{15}
\end{align*}
$$

$$
\begin{gather*}
\int_{0}^{\sqrt{2}} g(x) d x=4 \cdot 2^{1 / 8} \tag{16}\\
(15) \wedge(16) \Longrightarrow \int_{0}^{\sqrt{2}} f(x) d x \text { converges } \tag{17}
\end{gather*}
$$

Recall that

$$
\begin{gather*}
\pi=\int_{0}^{1} \frac{2}{\sqrt{1-x^{2}}} d x \tag{18}\\
\pi=\int_{0}^{\sqrt{2}} \sqrt{-1+\frac{1}{2 \sqrt{3}} \sqrt{\frac{4}{x^{2}}+\frac{16 \cdot 2^{1 / 3}}{h(x)}+\frac{h(x)}{2^{1 / 3} x^{4}}}+\frac{1}{2} \sqrt{t(x)-\frac{16 \cdot 2^{1 / 3}}{3 h(x)}-\frac{h(x)}{3 \cdot 2^{1 / 3} x^{4}}+\frac{\sqrt{3} s(x)}{4 \sqrt{\frac{4}{x^{2}}+\frac{16 \cdot 2^{1 / 3}}{h(x)}+\frac{h(x)}{2^{1 / 3} x^{4}}}}} d x} \tag{19}\\
\pi=4\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\ldots\right) \tag{20}
\end{gather*}
$$

VI. References

1. Apelblat, A.: Tables of Integrals and Series. Verlag Harri Deutsch, 1996.
2. Apostol, T.: Mathematical Analysis. Addison-Wesley, Reading, Mass., 1957.
3. Arndt, J., and Haenel, C.: π unleashed. Springer-Verlag, 2001.
4. Gradshteyn, I.S., and Ryzhik, I.M.: Table of Integrals, Series and Products. 5th ed., ed. Alan Jeffrey. Academic Press, 1994.
