Goldbach's conjecture

Bassera Hamid*

June 7, 2024

Abstract

In this article I try to make my modest contribution to the proof of Goldbach's conjecture and I propose to simply go through its negation.

Let E be the prime numbers set.
The Goldbach conjecture states that:

$$
\forall k \in \mathbb{N}^{*} /\{1\} \quad \exists\left(p, p^{\prime}\right) \in E^{2} / \quad 2 k=p+p^{\prime}
$$

Suppose this statement is false, then :

$$
\exists k \in \mathbb{N}^{*} /\{1\} \quad \forall\left(p, p^{\prime}\right) \in E^{2} / 2 k \neq p+p^{\prime}
$$

$2 k \neq p+p^{\prime}$ is equivalent to either $2 \mathrm{k}<\mathrm{p}+\mathrm{p}^{\prime}$ or $2 \mathrm{k}>\mathrm{p}+\mathrm{p}{ }^{\prime}$
in the case $2 \mathrm{k}<\mathrm{p}+\mathrm{p}$,
as p and p^{\prime} are arbitrary we can set the value of p^{\prime} to 2 for example then, $2 \mathrm{k}-2<\mathrm{p}$.
but $k \geq 2$ then $2 \leq 2 k-2$ so $\quad \forall p \in E \quad 2<\mathrm{p}$, it does mean that 2 is not prime! which is absurd
in the case $2 \mathrm{k}>\mathrm{p}+\mathrm{p}$ ' then for $p^{\prime}=2, \mathrm{p}<2 \mathrm{k}-2$, so E is bounded and this is absurd too.

So, the negation of Goldbach statement is false.

Conclusion: The Goldbach's conjecture is true.

[^0]
[^0]: *freelance, graduate school mathematics teacher, email : bh4hamid@gmail.com

