Goldbach’s conjecture

Bassera Hamid*

June 7, 2024

Abstract

In this article I try to make my modest contribution to the proof of
Goldbach’s conjecture and I propose to simply go through its negation.

Let E be the prime numbers set.

The Goldbach conjecture states that :

\[\forall k \in \mathbb{N}^*/\{1\} \quad \exists (p, p') \in E^2 / \quad 2k = p + p' \]

Suppose this statement is false, then :

\[\exists k \in \mathbb{N}^*/\{1\} \quad \forall (p, p') \in E^2 / \quad 2k \neq p + p' \]

Let's consider the cases :

\begin{itemize}
 \item \[2k \neq p + p' \] is equivalent to either \[2k < p + p' \] or \[2k > p + p' \]
 \item in the case \[2k < p + p' \], as p and p’ are arbitrary we can set the value of p’ to 2 for example then, \[2k - 2 < p \] but \[k \geq 2 \] then \[2 \leq 2k - 2 \] so \[\forall p \in E \quad 2 < p \] it does mean that 2 is not prime! which is absurd
 \item in the case \[2k > p + p' \] then for \[p' = 2, \] \[p < 2k - 2 \] so E is bounded and this is absurd too.
\end{itemize}

So, the negation of Goldbach statement is false.

Conclusion : The Goldbach’s conjecture is true.

*freelance, graduate school mathematics teacher, email : bh4hamid@gmail.com