
 1 

 

N-complex number, N-dimensional polar coordinate 
and 4D Klein bottle with 4-complex number 

Kuan Peng titang78@gmail.com 
4 June 2024 

 
Abstract: While a 3D complex number would be useful, it does not exist. Recently, I have constructed the N-complex 
number, which has demonstrated high efficiency in computations involving high-dimensional geometry. The N-complex 
number provides arithmetic operations and polar coordinates for N-dimensional spaces, akin to the classic complex 
number. In this paper, we will explain how these systems work and present studies on 4D Klein bottles and hyperspheres 
to illustrate the advantages of these systems 

 
 
 

Summary 

1 INTRODUCTION .......................................................................................................................................... 2 
2 N-COMPLEX NUMBER SYSTEM ............................................................................................................. 2 

2.1 THREE-COMPLEX NUMBER SYSTEM .......................................................................................................... 2 
2.1.1 One-complex Number System ........................................................................................................... 2 
2.1.2 Two-complex Number System ........................................................................................................... 2 
2.1.3 Three-complex Number System ........................................................................................................ 3 

2.2 N-COMPLEX NUMBER SYSTEM ................................................................................................................. 6 
2.2.1 Generalization .................................................................................................................................. 6 
2.2.2 Conversion of Zn ............................................................................................................................... 8 
2.2.3 Arithmetic Operations ...................................................................................................................... 8 

3 MÖBIUS STRIP AND KLEIN BOTTLE WITH THREE-COMPLEX NUMBER ................................ 8 
3.1 MÖBIUS STRIP ............................................................................................................................................ 8 
3.2 THREE-DIMENSIONAL KLEIN BOTTLE ....................................................................................................... 9 

3.2.1 Geometric Construction of a Klein Bottle ........................................................................................ 9 
3.2.2 Directrix and Generatrix Curves .................................................................................................... 10 
3.2.3 Three-complex Surfaces ................................................................................................................. 11 

4 FOUR-DIMENSIONAL KLEIN BOTTLE ............................................................................................... 13 
4.1 CONSTRUCTION ....................................................................................................................................... 13 
4.2 VISUALIZATION IN FOUR-DIMENSION ...................................................................................................... 14 

4.2.1 Slices in three-dimension ................................................................................................................ 14 
4.2.2 Klein Bottle Becomes Möbius Strip ................................................................................................ 15 
4.2.3 Rotation of a Four-dimensional Klein Bottle ................................................................................. 15 

5 GENERAL POLAR COORDINATE SYSTEM ....................................................................................... 17 
5.1 POLAR COORDINATE SYSTEM FOR N-DIMENSIONAL SPACE ................................................................... 17 
5.2 SOME PROPERTIES OF HYPERSPHERES .................................................................................................... 17 

5.2.1 Interior and Exterior of Hyperspheres ........................................................................................... 17 
5.2.2 Thicknesses of Hyperspheres .......................................................................................................... 18 
5.2.3 Holes in 2-sphere and Hyperspheres .............................................................................................. 18 
5.2.4 Remark about the Proof of the Poincaré Conjecture ..................................................................... 18 

5.3 UNIFICATION OF 3-DIMENSIONAL POLAR COORDINATE SYSTEMS .......................................................... 19 
6 DISCUSSION ................................................................................................................................................ 19 

REFERENCES ........................................................................................................................................................ 20 
LETTER TO READERS ..................................................................................................................................... 21 
 
  

mailto:titang78@gmail.com


 2 

 
1 Introduction 

The classic complex number system is a remarkable mathematical tool because it allows for the addition and 
rotation of vectors in two-dimensional space, following the same rules as real numbers for addition and 
multiplication. However, in three-dimensional space, it is impossible to manipulate vectors with similarly 
intuitive arithmetic operations because such a system does not currently exist. The development of a three-
dimensional complex number system, analogous to the two-dimensional one, would represent a significant 
advancement in mathematics. 
 
In 2022, I constructed a system of complex numbers for spaces with any number of dimensions, which I call the 
“N-complex number system.” Edgar Malinovsky used this system to create many beautiful 3D objects (see 
«Rendering of 3D Mandelbrot, Lambda and other sets using 3D complex number system»[4]). Figure 1 shows the 
3D Mandelbrot set he created. Computing 3D fractal objects is very time-consuming; he would not have 
succeeded in this work without the 3-complex number system. His work demonstrates that the 3-complex 
number system significantly accelerates computations in 3D space. 
 
I have worked on 4D Klein bottles by extending a 3D Klein bottle (see Figure 2) into 4D space. I rotated the 4D 
Klein bottles in 4D space and showcased the rotation in my video animation “Observing a 4D Klein Bottle in 4-
Dimension” [5]. This work would have been impossible without the 4-complex number system. In addition to N-
complex numbers, the new system provides a polar coordinate system for N-dimensional spaces, which was 
previously missing in mathematics. 
 

  
Figure 1 Mandelbrot set in 3D Figure 2 Klein bottle 

 
Below, I will briefly explain the principles of the N-complex number system, which I described in «Extending 
complex number to spaces with 3, 4 or any number of dimensions»[1]. Please refer to this article for more details. 
Then, I will present my work on 4D Klein bottles and the polar coordinate system for N-dimensional spaces. To 
make the presentation clearer and simpler, I will refer to a complex number in N-dimensional space as N-
complex, or as 2-complex, 3-complex, and 4-complex when N equals 2, 3, or 4, respectively. I will abbreviate N-
dimensional as ND, and use 2D, 3D, and 4D when N equals 2, 3, or 4, respectively. In the following discussion, 
all spaces are Euclidean 
 

2 N-complex Number System 
2.1 Three-complex Number System 

The N-complex number system is constructed recursively, meaning that the ND system is built from the (N-1)D 
system. First, we start with the 1-complex number system (the real number system) and construct the 2D system 
upon it. Then, we construct the 3D system upon the 2D system, and so on. 
 

2.1.1 One-complex Number System 

The 1-complex number system is based on the x-axis. A 1-complex number is simply a real number. 
 

2.1.2 Two-complex Number System 

To construct the 2-complex number system, we first create a 2D space by adding the y-axis to the existing 1D 
space. The y-axis is perpendicular to the x-axis. A point in the 2D space is defined by the 2-complex number Z2: 

https://www.academia.edu/92516029/Rendering_of_3D_Mandelbrot_Lambda_and_other_sets_using_3D_complex_number_system
https://pengkuanonmaths.blogspot.com/2022/04/rendering-of-3d-mandelbrot-lambda-and.html
https://www.youtube.com/watch?v=oy24d9Ge4J0
https://www.youtube.com/watch?v=oy24d9Ge4J0
https://www.academia.edu/71708344/Extending_complex_number_to_spaces_with_3_4_or_any_number_of_dimensions
https://www.academia.edu/71708344/Extending_complex_number_to_spaces_with_3_4_or_any_number_of_dimensions
https://pengkuanonmaths.blogspot.com/2022/02/extending-complex-number-to-spaces-with.html
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𝒁# = 𝑥 + 𝑖𝑦 (1) 

 
where x and y are real numbers, and i is the unit imaginary number. 
 
Moreover, Z2 can be represented as a vector of length r: 
 

𝑟 = |𝒁#| (2) 
 
With its direction determined by the angle θ between Z2 and the positive x-axis, the components of Z2 can be 
expressed as: 
 

𝑥 = 𝑟 cos(𝜃) 
𝑦 = 𝑟 sin(𝜃) (3) 

 
and Z2 expressed as r multiplied by the Euler's formula eiq: 
 

𝒁# = 𝑟(cos(𝜃) + 𝑖 sin(𝜃)) 
= 𝑟 ∙ 𝑒$% (4) 

𝑒$% = cos 𝜃 + 𝑖 sin 𝜃 (5) 
 
Geometrically speaking, Z2 is a vector in the 2D space and makes an angle q with the positive x-axis. Let us take 
the real number r as a vector along the positive x-axis and denote it by Z1: 
 

Z1 = r (6) 
 
When we rotate Z1 by the angle q towards the y-axis, we obtain Z2. So, the multiplication by Euler's formula eiq 
of a vector of the 1D space (Z1) is equivalent to rotating it by the angle q towards the y-axis (see (4)) : 
 

𝒁# = 𝒁& ∙ 𝑒$% (7) 
 
The unit complex number along Z2 is: 
 

𝑼# =
𝒁#
𝑟 = 𝑒$% 

= cos 𝜃 + 𝑖 sin 𝜃 
(8) 

 
2.1.3 Three-complex Number System 

To construct the 3-complex number system, we begin by introducing the z-axis to the existing 2D space. The z-
axis is orthogonal to both the x and y axes. We define a 3-complex number Z3 as: 
 

𝒁' = 𝑥 + 𝑖𝑦 + 𝑗𝑧 (9) 
 
where x, y and z are Cartesian components, i and j are the unit imaginary numbers along the y and z axes 
respectively, with i2=-1 and j2=-1. 
 
Currently, no 3-complex number exists; therefore, Z3 and x, y and z have to be constructed. Because the unit 
imaginary number j is perpendicular to the existing 2D space, it is perpendicular to any vector in this space. Let 
us take a 2-complex number (vector ) Z2, and rotate it by the angle f towards the z-axis, or alternately j (see 
Figure 3 ). The rotation is done in the plane (Z2, j) as shown in Figure 4. From this rotation we derive the 
expression of Z3 : 
 

𝒁' = 𝒁# cos(𝜙) + 𝑗 |𝒁#|sin(𝜙) 

= |𝒁#| ;
𝒁#
|𝒁#|

cos(𝜙) + 𝑗 sin(𝜙)< (10) 
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Figure 3 Figure 4 
 
The rotation does not alter the length of the rotated vector: 
 

|𝒁'| = |𝒁#| = 𝑟 (11) 
 
Then, the unit vector U3 equals: 
  

𝑼' =
𝒁'
|𝒁'|

=
𝒁'
|𝒁#|

 

=
𝒁#
|𝒁#|

cos(𝜙) + 𝑗 sin(𝜙) 
(12) 

 
Because 𝒁!|𝒁!| is the unit vector U2, the unit vector U3 equals:  
 

𝑼' = 𝑼# cos(𝜙) + 𝑗 sin(𝜙) (13) 
 
For extracting a general pattern from the construction of Z3, let us take the plane (Z2, j) as a complex plane with 
U2 and j being its basis vectors. In this complex plane U3 equals (see (13)): 
 

𝑼' = cos(𝜙) + 𝑗 sin(𝜙) (14) 
 
We notice that U3 is an Euler's formula with f	being the angle of rotation (the argument) and j	the unit imaginary 
number with j2=-1. So, in the plane (Z2, j), U3 can be written as : 
 

𝑼' = 𝑒*+ (15) 
 
Therefore, Euler's formula can define the rotation of a unit vector in any plane, provided that the basis vectors of 
the plane are the unit vector to be rotated (U2) and a unit imaginary number j perpendicular to U2. This means 
that using Euler's formula, we can rotate any unit vector U2 from the 2D space towards j, which creates the 3-
complex number U3. So, U3 is constructed in a similar way as previously for the 2-complex number Z2, which 
results from a multiplication of a 1-complex number Z1 by Euler's formula. 
 
Then, we define the rotation of a unit vector U2 from the 2D space into 3D space as the multiplication of U2 by 
Euler's formula with argument f and j. 
 
Definition 1: 3-complex multiplication 
 
Let U2 be a unit 2-complex number and j the unit imaginary number parallel to the z-axis. We rotate U2 by the 
angle f towards the z-axis ( the unit imaginary number j ). This rotation is defined by the Euler's formula ejf: 
 

𝑒*+ = cos(𝜙) + 𝑗 sin(𝜙) (16) 
 

j 

Z3 

Z2cos f 

j|Z2|sin f 

) f Z2 

q 

z 

y 

x 
Z2 

) ) f 

Z3 
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The 3-complex multiplication of U2 by ejf is defined as below: 
  

𝑼# • 𝑒*+ = 𝑼# • (cos(𝜙) + 𝑗 sin(𝜙)	) 
= 𝑼# cos(𝜙) + 𝑗 sin(𝜙) 

(17) 

 
We use the symbol • to designate the operator of this multiplication. 

End of the definition 
 
The unit 3-complex number U3 is the result of the rotation of U2 and equals 𝑼# • 𝑒*+: 
 

𝑼' = 𝑼# • 𝑒*+ 
= 𝑼# cos(𝜙) + 𝑗 sin(𝜙) 

(18) 

 
Because Z2 = r U2 and Z3 = r U3 ( see (11)), we multiply both sides of equation (18) by r : 
 

𝑟𝑼' = 𝑟𝑼# • 𝑒*+ (19) 
 
and obtain the 3-complex number Z3 expressed as the product of 3-complex multiplication of Z2 and e jf : 
 

𝒁' = 𝒁# • 𝑒*+ (20) 
 
We develop Z3 with (19) and (17) and get the expression for Z3: 
 

𝒁' = 𝑟𝑼' 
= 𝑟(𝑼# cos(𝜙) + 𝑗 sin(𝜙)) 
= 𝑟𝑼# cos(𝜙) + 𝑗	𝑟 sin(𝜙) 

(21) 

 
Because 𝒁# = 𝑟𝑼# and |𝒁#| = 𝑟, equation (21) gives: 
 

𝒁' = 𝒁# cos(𝜙) + 𝑗|𝒁#| sin(𝜙) (22) 
 
The expression in (22) is identical to that in (10). Therefore, the 3-complex multiplication is correctly defined 
and gives the correct result, and the 3-complex multiplication is equivalent to the rotation of the 2-complex 
number Z2 by the angle f towards j. 
 
Let us express Z3 with the modulus r and the two arguments q and f by replacing Z2 with its expression in (7) : 
 

𝒁' = 𝒁# • 𝑒*+ 
= 𝑟𝑒$% • 𝑒*+ (23) 

 
For the sake of simplicity, when there is no possible confusion, we can write the 3-complex multiplication 
without the operator symbol • : 
 

𝒁' = 𝒁#𝑒*+	
= 𝑟𝑒$%𝑒*+ (24) 

 
2.1.3.1 Conversion of Z3 

When we need Z3 in Cartesian form while we have Z3 in exponential form, Z3 should be converted. The formula 
for conversation is derived from the expression of U3 given by equation (18) in which U2 is replaced with its 
expression given in equation (8): 
 

𝑼' = 𝑼# cos(𝜙) + 𝑗 sin(𝜙)	
= (cos(𝜃) + 𝑖 sin(𝜃)) cos(𝜙) + 𝑗 sin(𝜙)	
= cos(𝜃) cos(𝜙) + 𝑖 sin(𝜃) cos(𝜙) + 𝑗 sin(𝜙) 

(25) 

 
For expressing Z3 in Cartesian form we multiply U3 by r: 
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𝒁' = 𝑟	𝑼' 
= 𝑟 cos(𝜃) cos(𝜙) + 𝑖	𝑟 sin(𝜃) cos(𝜙) + 𝑗	𝑟 sin(𝜙) (26) 

 
The Cartesian form of Z3 is then: 
 

𝒁' = 𝑥 + 𝑖𝑦 + 𝑘𝑧 (27) 
  

𝑥 = 𝑟 cos(𝜃) cos(𝜙) 
𝑦 = 𝑟 sin(𝜃) cos(𝜙) 
𝑧 = 𝑟 sin(𝜙) 

(28) 

 
Equation (26) is the formula that converts Z3 into Cartesian form and vice versa. 
 

2.1.3.2 Rule for Multiplication 
Multiplication of 3-complex numbers must be done in exponential form. For multiplying the two 3-complex 
numbers z1 and z2: 
 

𝒛& = 𝑟&𝑒$%"𝑒*+" 
𝒛# = 𝑟#𝑒$%!𝑒*+! (29) 

 
We write: 

𝒛& • 𝒛# = 𝑟&𝑒$%"𝑒*+" • 𝑟#𝑒$%!𝑒*+! 
= 𝑟&𝑟#𝑒$%"𝑒$%!𝑒*+"𝑒*+! 
= 𝑟&𝑟#𝑒$(%"-%!)𝑒*(+"-+!) 

(30) 

 
We notice that the exponentials for the unit imaginary number i ( ei1q1 and ei2q2) gather together, and those for j 
( ej1f1 and ej2f2) gather together. This is because the arguments for i correspond to the rotation towards i and those 
for j correspond to the rotation towards j. These rotations are for different dimensions which are independent, so 
the imaginary units i and j do not cross multiply, that is, i • j is not defined for 3-complex number system. 
 
Due to this property, if we reverse the order of z1 and z2 we will get the same result. Thus, 3-complex 
multiplication is commutative and associative, but not distributive. 
 

2.1.3.3 Rule for Addition 
Addition of 3-complex numbers must be done in Cartesian form. For adding the two 3-complex numbers z1 and 
z2: 

𝒛& = 𝑥& + 𝑖𝑦& + 𝑗𝑧& 
𝒛# = 𝑥# + 𝑖𝑦# + 𝑗𝑧# (31) 

 
The Cartesian components for each dimension add together: 
 

𝒛& + 𝒛# = (𝑥& + 𝑥#) + 𝑖(𝑦& + 𝑦#) + 𝑗(𝑧& + 𝑧#) (32) 
 

2.2 N-Complex Number System 
2.2.1 Generalization 

We summarize the steps of the construction of the 3-complex number systems as below: 
 

1. The 1-complex number system is the real number system on the x-axis. 
2. The 2D space is created by adding the y-axis perpendicularly to the 1D space. 
3. A 2-complex number Z2 is constructed by rotating a 1-complex number Z1 by the angle q towards the y-

axis. 
4. The rotation of Z1 is equivalent to the multiplication of Z1 by eiq. 
5. The 3D space is created by adding the z-axis perpendicularly to the 2D space. 
6. A 3-complex number Z3 is constructed by rotating a 2-complex number Z2 by the angle f towards the z-

axis. 
7. The rotation of Z2 is equivalent to the 3-complex multiplication of Z2 by e jf. 
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The steps 5, 6 and 7 construct the 3-complex number system from the 2-complex number system. By extension, 
an N-complex number is constructed from an existing (N-1)-complex number with the following recursive 
procedure: 
 

1. The ND space is created by adding the nth axis perpendicularly to the (N-1)D space. 
2. An N-complex number is constructed by rotating an (N-1)-complex number Zn-1 by the angle qn-1 

towards the nth axis. 
3. The rotation of Zn-1 is equivalent to the multiplication of Zn-1 by ein-1q n-1 resulting in the N-complex 

number Zn. 
 
The third step involves the multiplication for N-complex number, which we define below by extending the 3-
complex multiplication (see Definition 1). 
 
Definition 2: N-complex multiplication 
Let Un-1 be a unit (N-1)-complex number and in-1 the unit imaginary number parallel to the nth axis. The nth axis is 
associated with in-1 because the first axis is the real number axis. We rotate Un-1 by the angle qn-1 towards the nth 
axis. This rotation is defined by the Euler's formula below: 
 

𝑒$#$"%#$" = cos(𝜃/0&) + 𝑖/0& sin(𝜃/0&) (33) 
 
The N-complex multiplication of Un-1 by ein-1q n-1 is defined as: 
 

𝑼/0& • 𝑒$#$"%#$" = 𝑼/0& cos(𝜃/0&) + 𝑖/0& sin(𝜃/0&) (34) 
 

End of the Definition 
 
The result of (34) is the unit N-complex number Un in the ND space: 
 

𝑼/ = 𝑼/0& • 𝑒$#$"%#$" 
= 𝑼/0& cos(𝜃/0&) + 𝑖/0& sin(𝜃/0&) 

(35) 

 
For constructing the N-complex number Zn, we multiply both sides of equation (35) by r (modulus of Zn): 
 

𝑟𝑼/ = 𝑟𝑼/0& • 𝑒$#$"%#$" (36) 
 
Given that Zn = r Un and Zn-1 = r Un-1, the expression of Zn is (see (35) and (36) ):	
 

𝒁/ = 𝒁/0& • 𝑒$#$"%#$" 	
= 𝑟𝑼/0& cos(𝜃/0&) + 𝑖/0&𝑟	 sin(𝜃/0&)	
= 𝒁/0& cos(𝜃/0&) + 𝑖/0&|𝒁/0&| sin(𝜃/0&) 

(37) 

 
The N-complex number system is constructed upon the (N-1)-complex number system, which is constructed 
upon the (N-2)-complex number system and so on until the 1-complex number system. Let us construct Z2 from 
the 1-complex number Z1 which is the real number r: 
 

𝒁& = 𝑟 (38) 
 
We multiply Z1 by ei1q1 and obtain Z2: 
 

𝒁# = 𝒁& • 𝑒$"%" (39) 
 
We multiply Z2 by ei2q2 and obtain Z3: 
 

𝒁' = 𝒁# • 𝑒$!%! 
= 𝒁& • 𝑒$"%" • 𝑒$!%! 
= 𝑟𝑒$"%" • 𝑒$!%! 

(40) 
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We repeat the multiplications until Zn and obtain its expression: 
 

𝒁/ = 𝑟𝑒$"%" • ⋯• 𝑒$#$"%#$" (41) 
 
which can be written without the symbol • : 
 

𝒁/ = 𝑟𝑒$"%"⋯𝑒$#$"%#$" 
= 𝑟𝑒($"%"-⋯-$#$"%#$") (42) 

 
The unit imaginary numbers from the second to Nth dimension are i1, …, in-1, and are defined with the relations: 
i12=-1, …, in-12=-1.	
 

2.2.2 Conversion of Zn 

The formula for converting the N-complex number Zn from exponential form into Cartesian form is derived from 
equation (42), and is developed in the same way as equations (25) and (26): 
 

𝒁/ = 𝑟 ;CD(cos 𝜃& + 𝑖& sin 𝜃&) cos 𝜃# + 𝑖# sin 𝜃#E⋯F cos 𝜃/0& + 𝑖/0& sin 𝜃/0&< (43) 

 
The Cartesian expression of Zn is: 
 

𝒁/ = 𝑥2 + 𝑖&𝑥& +⋯+ 𝑖/0&𝑥/0& (44) 
 
By comparing the equations (43) and (44) we derive x0, x1, …, xn-1 from r and q1, …, qn-1 and vice versa. 
 

2.2.3 Arithmetic Operations 

Multiplication of N-complex numbers must be done in exponential form. Two N-complex numbers X and Y are 
expressed below: 
 

𝑿 = 𝑟3𝑒$"4" …𝑒$#$"4#$" 
𝒀 = 𝑟5𝑒$"6" …𝑒$#$"6#$" (45) 

They multiply as follow: 
 

𝑿 • 𝒀 = 𝑟3𝑒$"4" …𝑒$#$"4#$" • 𝑟5𝑒$"6" …𝑒$#$"6#$" 
= 𝑟3	𝑟5	𝑒$"(4"-6")⋯𝑒$#$"(4#$"-6#$") 
= 𝑟3	𝑟5	𝑒7$"(4"-6")-⋯-$#$"(4#$"-6#$")8 

(46) 

 
Addition of N-complex numbers must be done in Cartesian form. Let X and Y be: 
 

𝑿 = 𝑥2 + 𝑖&𝑥& +⋯+ 𝑖/0&𝑥/0& 
𝒀 = 𝑦2 + 𝑖&𝑦& +⋯+ 𝑖/0&𝑦/0& (47) 

 
They add as follow: 

 
𝑿+ 𝒀 = (𝑥2 + 𝑦2) + 𝑖(𝑥& + 𝑦&) +⋯+ 𝑖/(𝑥/0& + 𝑦/0&) (48) 

 
For more details about the N-complex number system, please see «Extending complex number to spaces with 3, 
4 or any number of dimensions»[1]. 

3 Möbius Strip and Klein Bottle with Three-Complex Number 
The N-complex number system is very convenient for describing geometric forms in higher-dimensional spaces. 
For demonstrating the capability of this new tool, let us first create a Möbius strip and a Klein bottle. 
 

3.1 Möbius strip 
Our Möbius strip is generated by a vector moving on a circle, with the circle serving as the directrix and the 
moving vector as the generatrix. In Figure 5, the generatrix (depicted by the blue arrows) rotates half a turn as it 

https://www.academia.edu/71708344/Extending_complex_number_to_spaces_with_3_4_or_any_number_of_dimensions
https://pengkuanonmaths.blogspot.com/2022/02/extending-complex-number-to-spaces-with.html
https://en.wikipedia.org/wiki/M%C3%B6bius_strip#Constructions
https://en.wikipedia.org/wiki/Klein_bottle
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completes a full rotation on the directrix (represented by the black circle). 
 

 

 

  

Figure 5, Möbius strip with generatrix vectors   Figure 6, 3-complex 
numbers for Möbius strip  

 
The directrix is defined by a vector of length 1 that rotates in the plane (x, y). Therefore, the directrix circle is 
defined by the unit complex number d (see Figure 6): 
 

𝒅 = 𝑒$% (49) 
 
where q is the angle between d and the positive x-axis. 
 
The generatrix is the vector g that moves along the directrix (see Figure 6). Meanwhile, g rotates in the plane  
(d, z) or alternately the plane (d, j). Therefore, g is defined by the 3-complex number below (see (20)): 
 

𝒈 = 𝑝	𝒅 • 𝑒*+ 
= 𝑝	𝑒$%𝑒*+ (50) 

 
where f is the angle between g and d (see Figure 6) and p the distance between a point and the directrix (circle) 
along g. 
 
The rate of rotation of f equals half that of q, so f = q/2 and g equals: 
 

𝒈 = 𝑝	𝑒$%𝑒*% #⁄  (51) 
 
The sum of d and g defines a point on the Möbius strip (see  Figure 6), which we denote by s: 
 

𝒔 = 𝒅 + 𝒈 
= 𝑒$% + 𝑝	𝑒$%𝑒*% #⁄  (52) 

 
where 0 < q < 2p and -0.2 < p < 0.2. 
 
Because g is a 3-complex number, s is also a 3-complex number. As g and d are well defined by q, f and p, all 
points of the Möbius strip are well defined by s. The radius of the Möbius strip is 1, and the width of the strip is 
0.4. 
 
Compared to the usual definition of a Möbius strip1, the 3-complex function (52) is much simpler and more 
intuitive, thereby demonstrating the advantage of the 3-complex number system. 
 

3.2 Three-dimensional Klein Bottle 
3.2.1 Geometric Construction of a Klein Bottle 

A 3D Klein bottle comprises two parts: the neck and the body (see Figure 2 ). The neck is a curved tube 
connected to the bottle-like body. For constructing the neck, we first define its center line, which is the curve 
shown in Figure 7. Then we draw circles centered on the center line, creating the mesh of the neck as depicted in 
Figure 8. The markers (small circles) on the curve represent the centers of the circles, which are perpendicular to 
the local tangent of the center line. These circles serve as the generatrix of the neck. 
 

 
1 Möbius strip, https://en.wikipedia.org/wiki/M%C3%B6bius_strip#Sweeping_a_line_segment 

Directrix 

q 
g Generatrix  y 

x d 

) 

) f 

s 

z 

https://en.wikipedia.org/wiki/M%C3%B6bius_strip#Sweeping_a_line_segment
https://en.wikipedia.org/wiki/M%C3%B6bius_strip#Sweeping_a_line_segment
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Figure 7 Directrix curve of the neck  Figure 8 Neck of the Klein bottle 

 
The surface of the body is created by rotating a generatrix around a directrix. As shown in Figure 9, the 
generatrix is represented by the blue curve, and the directrix is depicted as the red straight line. When the blue 
curve is rotated, it creates a surface around the red straight line, forming the surface of the body, as illustrated in 
Figure 10 ( the blue surface ). The markers (small stars) draw circles of different radii, which together constitute 
the mesh of the surface of the body.  
 

  
Figure 9 Directrix and generatrix of the body Figure 10 Body of the Klein bottle 

 
3.2.2 Directrix and Generatrix Curves 

The curve in Figure 11 is a Lemniscate of Bernoulli. The directrix ( Center line ) of the neck is represented by 
the red part of this curve, while the generatrix ( Rotating curve ) of the body is its blue part. This curve is defined 
by the function below: 

𝜌 = ±𝑏Qcos(2𝛽)	 (53) 
 
A point on the Lemniscate of Bernoulli is defined by the complex number B: 
 

𝑩 = 𝜌𝑒$6	 (54) 
 
We replace r with its expression (see (53)) in (54) and obtain the expression for B: 
 

𝑩 = ±𝑏Qcos(2𝛽) (cos(𝛽) + 𝑖 sin(𝛽))	
= ±𝑏Qcos(2𝛽) cos(𝛽) ± 𝑖	𝑏Qcos(2𝛽) sin(𝛽) 
= 𝑥: + 𝑖𝑦: 

(55) 

 

  
Figure 11 Lemniscate of Bernoulli Figure 12 Red lines : directrix of the neck and body  

https://www.bibmath.net/dico/index.php?action=affiche&quoi=./l/lemniscate.html#:~:text=La%20lemniscate%20de%20Bernoulli%20est,14FF%E2%80%B22
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3.2.3 Three-complex Surfaces 

3.2.3.1 The Neck 
The surfaces of the neck and the body are specified by 3-complex functions that we will define below. The 
radius of the neck is denoted by rN, which is a constant. To ensure that the neck is seamlessly connected to the 
body, we shift the red curve downward along the y-axis by a distance of rN. This connects the directrix of the 
neck (red curve) to that of the body (red straight line, see Figure 12). 
 
The lowered red curve is defined by the complex function below (see (54)): 
 

𝒅 = ±𝑏Qcos(2𝛽) 𝑒$6 − 𝑖	𝑟;	 (56) 
 
The generatrix of the neck is described as a circle perpendicular to the local tangent of the red curve, thus also 
perpendicular to the (x, y) plane. The plane of the circle is determined by its intersection with the (x, y) plane. Let 
U represent the unit complex number along the intersection line. U is defined by Euler’s formula below: 
 

𝑼 = 𝑒$%% 	 (57) 
 
where qN signifies the angle the intersection line makes with the positive x-axis. 
 
The unit imaginary number along the z-axis is j and is perpendicular to U. Thus, the plane of the circle is defined 
by U and j and is denoted as (U, j ) plane. Let g be the 3-complex number that represents the circle. The length of 
g equals the radius of the neck rN, and the angle g makes with U is f. Therefore, g is defined in the (U, j) plane as 
the product of the 3-complex multiplication of the the 3-complex number rNU by Euler’s formula e jf: 
 

𝑒*+ = cos(𝜙) + 𝑗 sin(𝜙)	 (58) 
  

𝒈 = 𝑟;𝑼 • 𝑒*+ 
= 𝑟;𝑼cos(𝜙) + 𝑗𝑟; sin(𝜙)	 

(59) 

 
In (59) we replace U with its expression (see (57) ) and write g without the symbol • : 
 

𝒈 = 𝑟;𝑒$%%𝑒*+	 (60) 
 
The angle qN depends on the parameter b of each marker, and the angle f varies from 0 to 2p to draw a full 
circle. 
 

3.2.3.2 The Body 
The body is formed by rotating the blue curve around the red straight line, which is positioned below the 
Lemniscate of Bernoulli at a distance rN (see Figure 12). The minimum y-value of the Lemniscate of Bernoulli is 
denoted by ymin. Thus, the y-coordinate of the red straight line is determined as follows: 
 

𝑦 = 𝑦<$/ − 𝑟;	 (61) 
 
The x coordinate of each marker on the blue curve is the xB defined by equation (55): 
 

𝑥 = ±𝑏Qcos(2𝛽) cos(𝛽)  (62) 
 
As the blue curve rotates, each marker draws a circle. Because the circle is perpendicular to the directrix, the x 
coordinate of its center equals that of the marker (see (62)). Moreover, since the center lies on the directrix, its y-
coordinate equals that of the directrix (see (61)). Let the complex number d define the center of the circle: 
 

𝒅 = 𝑥 + 𝑖𝑦 
= ±𝑏Qcos(2𝛽) cos(𝛽) + 𝑖(𝑦<$/ − 𝑟;) 

(63) 

 
Let rB denote the radius of the circle. Then, rB equals the y coordinate of the marker (see (55)) minus that of the 
directrix (see (61)) : 
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𝑟: = 𝑏Qcos(2𝛽) sin(𝛽) − (𝑦<$/ − 𝑟;)	 (64) 

 
The plane of the circle is perpendicular to the x-axis, so it intersects with the (x, y) plane on a line that is 
perpendicular to the x-axis. Let U be the unit complex number along the intersection line. U makes an angle of 
p/2 with the positive x-axis: 
 

𝑼 = 𝑒$= #⁄ 	 (65) 
 
Therefore, the circle is defined by the 3-complex number g, which equals the product of the 3-complex 
multiplication of rBU and e jf : 
 

𝒈 = 𝑟:𝑼 • 𝑒*+ 
= 𝑟:𝑒$= #⁄ 𝑒*+	
= ;𝑏Qcos(2𝛽) sin 𝛽 − (𝑦<$/ − 𝑟;)< 𝑒$= #⁄ 𝑒*+ 

(66) 

 
where f is the angle between g and U (with 0 < f < 2p ), and rB is the radius of the circle. 
 

3.2.3.3 The Klein Bottle 
The surfaces of both the neck and the body of the Klein bottle are formed using a directrix and a generatrix, 
denoted by the complex functions d and g. The general expression of the 3-complex function g is: 
  

𝒈 = 𝑟𝑒$%𝑒*+ (67) 
 
Therefore, a point on the surface of the Klein bottle is defined by the sum of d and g: 
	

𝒔 = 𝒅 + 𝒈	
= 𝒅 + 𝑟𝑒$%𝑒*+	 (68) 

 
where q is defined by equation (57) for the neck and equals p/2 for the body, while r is defined by equation (64) 
for the body and equals rN for the neck. 
 
The functions d is defined by equations (56) for the neck and (63) for the body. Then the surface of the Klein 
bottle is defined by the 3-complex functions sneck, dneck and gneck for the neck, and sbody, dbody and gbody for the 
body, as shown below: 
	

𝒔>?@A = 𝒅>?@A + 𝒈>?@A 
𝒅>?@A = ±𝑏Qcos(2𝛽) 𝑒$6 − 𝑖	𝑟; 
𝒈>?@A = 𝑟;𝑒$%%𝑒*+ 

b: the red markers 
qN: angle of U  
f = 0 ® 2p 

(69) 

	   
𝒔BCDE = 𝒅BCDE + 𝒈BCDE 

𝒅BCDE = ±𝑏Qcos(2𝛽) cos 𝛽 + 𝑖(𝑦<$/ − 𝑟;) 

𝒈BCDE = ;𝑏Qcos(2𝛽) sin 𝛽 − (𝑦<$/ − 𝑟;)< 𝑒$= #⁄ 𝑒*+ 

b: the blue markers 
f = 0 ® 2p (70) 

 
The definition of the surface of the Klein bottle with s, d and g is much simpler and more intuitive than the usual 
formula for a Klein bottle2. 
 

 
2 Formula For A Klein Bottle, https://en.wikipedia.org/wiki/Klein_bottle#Bottle_shape  

https://en.wikipedia.org/wiki/Klein_bottle#Bottle_shape
https://en.wikipedia.org/wiki/Klein_bottle#Bottle_shape
https://en.wikipedia.org/wiki/Klein_bottle#Bottle_shape
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4 Four-dimensional Klein Bottle 
4.1 Construction  

The previous Klein bottle is a 3D surface where the neck intersects the body. A true Klein bottle possesses four 
dimensions and does not intersect with itself. However, no concrete representation of 4D Klein bottle exists 
because the fourth dimension of such a structure has never been properly defined. Now, with the advent of the  
4-complex number system, we have the capability to define a function for the fourth dimension of a 4D Klein 
bottle by transforming the 3-complex function s of the 3D Klein bottle (see (68)) into a 4-complex function. 
 
To define the fourth dimension of a 4D Klein bottle, we utilize a 4-complex function obtained by applying 
Euler’s formula eky (as described in equation (71). This formula defines the rotation towards the fourth 
dimension: 
 

𝑒FG = cos(𝜓) + 𝑘 sin(𝜓)	 (71) 
 
where k is the unit imaginary number of the fourth dimension, and y signifies the angle of rotation towards the 
fourth dimension. 
 
To transform the 3D Klein bottle, we rotate the 3-complex function g (see (69) and (70)) by multiplying it by eky 
resulting in the 4D generatrix function g4: 
 

𝒈H = 𝒈 • 𝑒FG 
= 𝑟HD𝑒$%𝑒*+E • 𝑒FG 
= 𝑟HD𝑒$%𝑒*+ cos(𝜓) + 𝑘 sin(𝜓)E	
= 𝑟H 	cos(𝜓) 𝑒$%𝑒*+ + 𝑘	𝑟H sin(𝜓) 

(72) 

 
where r4 is the modulus of g4 still to be defined. 
 
The generatrix function g4 can be further divided into a 3-complex function g3 and a function for the fourth 
dimension gw : 
 

𝒈H = 𝒈' + 𝒈I 
𝒈' = 𝑟H cos(𝜓)	𝑒$%𝑒*+ 
𝒈I = 𝑘	𝑟H sin(𝜓) 

(73) 

 
The 4D Klein bottle is defined by s4, which is the sum of d and g4: 
 

𝒔H = 𝒅+ 𝒈H 
= 𝒅+ 𝒈' + 𝒈I 
= 𝒅+ 𝑟H cos(𝜓)	𝑒$%𝑒*+ + 𝑘	𝑟H sin(𝜓)	

(74) 

 
From equation (74), we derive the function sp, which defines the projection of the 4D Klein bottle onto the 
subspace (x, y, z) of (x, y, z, w): 
 

𝒔J = 𝒅+ 𝒈' 
= 𝒅+ 𝑟H cos𝜓	𝑒$%𝑒*+	

(75) 

 
For the 4D Klein bottle to be coherent with the 3D Klein bottle, the function sp should equal s (see (68)): 
 

𝒔J = 𝒔 ⇒ 	𝒅 + 𝑟H cos(𝜓)	𝑒$%𝑒*+ = 𝒅+ 𝑟𝑒$%𝑒*+	 (76) 
 
 Thus, the 4D Klein bottle must respect this condition: 
 

𝑟H cos(𝜓) = 𝑟  (77) 
 
where r4 is the modulus of the 4-complex function g4 and r is that of the 3-complex function g of the 3D Klein 
bottle. 
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To fulfill this condition, we initially opt for the simplest function for r4, which is a constant: 
 

r4 = r0 (78) 
 
Then, we determine the angle y using the relation provided in equation (77): 
 

cos(𝜓) =
𝑟
𝑟2

 (79) 

 
The function for the fourth dimension is established as described in equation (73): 
 

𝒈I = 𝑘	𝑟 sin(𝜓) 
= 𝑘	𝑟2Q1 − cos#(𝜓) 

(80) 

 
With this function in place, the 4D Klein bottle is defined accordingly, as shown in equations (73) and (80): 
 

𝒔𝟒 = 𝒅+ 𝑟2 cos(𝜓) 𝑒$%𝑒*+ + 𝑘	𝑟2Q1 − cos#(𝜓) (81) 
	
When y varies in accordance with r to fulfill the condition (79), the sum of the first two terms in equation (81) 
mirrors that in equation (68) ensuring that the projection of the 4D Klein bottle onto the 3D space (x, y, z) 
remains identical to that of the 3D Klein bottle. 
 

4.2 Visualization in Four-dimension 
4.2.1 Slices in three-dimension 

Since we cannot directly perceive 4D objects, even though we can calculate all the points of the 4D Klein bottle 
defined by equation (81) in the 4D space (x, y, z, w), we cannot produce a visual representation encompassing all 
four dimensions. However, we can project its geometry onto the 3D subspaces (x, y, z), (x, y, w), (x, w, z), and 
(w, y, z). Notably, the last three of these four subspaces fully incorporate the fourth dimension. Therefore, we can 
observe the fourth dimension of the 4D Klein bottle in these 3D projections. 
 
A common way to represent the fourth dimension of the 4D Klein bottle is by showing slices of it with 
increasing values of the fourth dimension. Each slice is a 3D object that we can see. The slices are defined by 
equation (81) with various values of y and are shown one at a time. As the value of the fourth dimension 
increases, the slices move in 3D space. The best way to show the motion of the slices is through video 
animation, which we have created and posted on YouTube, see 0:27 of “Observing a 4D Klein Bottle in 4-
Dimension” [5]. 
 
Figure 13, Figure 14 and Figure 15 show three slices corresponding to the values of y: 
 

0° < y < 7°, 32° < y < 52° and y = 77° 
 
respectively. The cyan bands represents the slices, and the mesh of the 3D Klein bottle serves as a reference for 
the position of each slice. 
 

   
Figure 13 0°	<	y	<	7° Figure 14 32°	<	y	<	52° Figure 15 y	=	77° 

 
These three figures effectively illustrate why the neck does not intersect the body in 4D space: the slice of the 
neck does not simultaneously appear with any slice of the body, meaning that they are not at the same value of 

https://www.youtube.com/watch?v=oy24d9Ge4J0&t=27s
https://www.youtube.com/watch?v=oy24d9Ge4J0
https://www.youtube.com/watch?v=oy24d9Ge4J0
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the fourth dimension (w). Consequently, the neck and the body cannot intersect each other in the 4D space. 
 
The fourth dimension of each slice is best shown with the projections of the 4D Klein bottle onto the subspace 
(x, y, w), where the z dimension is replaced by the w dimension. Figure 16, Figure 17 and Figure 18 display these 
projections, which reveal that the 4D Klein bottle forms a closed strip without self-intersection. As w increases, 
the slices ascend along the strip. The ascension of the slices along the fourth dimension is well demonstrated in 
the video animation we have created and posted on YouTube. see 0:43 of “Observing a 4D Klein Bottle in 4-
Dimension” [5]. 
 

   
Figure 16 0°	<	y	<	7° Figure 17 32°	<	y	<	52° Figure 18 y	=	77° 

 
4.2.2 Klein Bottle Becomes Möbius Strip 

Upon close examination of the projection of the 4D Klein bottle onto the subspace (x, y, w), we notice that the 
two faces of the strip are inverted after a turn, indicating that this strip is a Möbius strip. However, it possesses 
an angular turn. 
 
Equation (77) represents the condition that the 4D Klein bottle should adhere to in order to remain coherent with 
the original 3D Klein bottle. Because the dimensions x, y and z are independent from w, the function gw (the 
fourth dimension of the 4D Klein bottle, see (73)) can have any value without altering the projection onto the 
subspace (x, y, z). Consequently, one 3D Klein bottle can be extended into an infinite number of 4D Klein bottles 
because gw can take any function. 
 
To illustrate the multiplicity of 4D Klein bottles associated with a single 3D Klein bottle, we will define the 
following function for the fourth dimension of the 4D Klein bottle: 
 

gw = g0 cos (a), with g0 being constant,  a = 0 ® 2p  (82) 
 
This gw is different from that given in (80), and the resulting 4D Klein bottle is referred to as the second 4D 
Klein bottle. Its projection onto the 3D subspace (x, y, w) is a smooth Möbius strip (see Figure 19). Figure 20 
displays its projection onto the subspace (x, w, z), where the dimension y is replaced by the fourth dimension w. 
This projection reveals that the neck maintains its tubular form in this subspace. 
 

  
Figure 19 Projection (x, y, w) Figure 20 Projection (x, w, z) 

 
4.2.3 Rotation of a Four-dimensional Klein Bottle 

The Möbius strip in Figure 16 appears far from resembling a bottle, despite being a view of a Klein bottle. This 
phenomenon arises because the projection of a 4D Klein bottle onto different subspaces takes various forms. One 

https://www.youtube.com/watch?v=oy24d9Ge4J0&t=43s
https://www.youtube.com/watch?v=oy24d9Ge4J0
https://www.youtube.com/watch?v=oy24d9Ge4J0
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might feel confused: how can a view of a bottle-like Klein bottle appear as a strip? 
 
To clarify this concept, let us consider the circle shown in Figure 21. This circle represents the projection of a 3D 
object onto the plane (x, y). When the circle is rotated around the y-axis, it manifests as a spiral (see Figure 22 ); 
a rotation of 90° reveals a sine curve (see Figure 23 ). In reality, this object is a helix: the circle represents its 
projection onto the plane (x, y), and the sine curve its projection onto the plane (y, z). We have created a video 
animation showcasing the rotation of the helix; see 1:21 of “Observing a 4D Klein Bottle in 4-Dimension” [5]. 
This example illustrates that the projections of the same object onto different subspaces can take entirely 
different forms, providing a concrete understanding of the diverse views of a 4D Klein bottle. 
 

   
Figure 21 Figure 22 Figure 23 

 
Since the bottle-like Klein bottle and the Möbius strip are different views of the same 4D Klein bottle, we can 
create a continuous transformation of views from one to the other. Let us consider the coordinate system: S1 with 
coordinates (x, y, z, w), which is the coordinate system of the 4D Klein bottle, and S2 with coordinates  
(X, Y, Z, W). Initially, the axes of both systems are aligned as follows: 
 

X = x, Y = y, Z = z, W = w  (83) 
 
We observe the subspace (X, Y, Z ) of S2. At the start, we see the subspace (x, y, z) of S1, the projection we see is 
the familiar bottle-like Klein bottle. The 4D Klein bottle is immobile in the coordinate system S1, which we 
rotate in the (Z, W) plane. Upon reaching an angle of -90°, the axes align as follows: 
 

X = x, Y = y, Z = w, W = -z (84) 
 
At this point, the projection we see in the subspace (X, Y, Z) of S2 is that onto the subspace (x, y, w) of S1, which 
forms the Möbius strip. 
 
By computing 20 images of the intermediate steps of the rotation, we have created a video animation that 
demonstrates the transformation of the projection resulting from the rotation of the 4D Klein bottle in the (Z, W) 
plane. You can view this animation at 1:05 of “Observing a 4D Klein Bottle in 4-Dimension” [5]. In 3D space, 
this transformation appears as a morphing of the bottle-like Klein bottle into the Möbius strip. 
 
Additionally, below are three images depicting key steps of the rotation: the bottle-like Klein bottle before the 
rotation (Figure 24 ), an intermediate step (Figure 25), and the Möbius strip at the end (Figure 26 ). The rotated 
4D Klein bottle is the second Klein bottle, whose fourth dimension is defined in equation (82). These three 
figures, along with the video animation, provide a more intuitive understanding of the 4D Klein bottle in four 
dimensions. 
 

   
Figure 24 Figure 25 Figure 26 

https://www.youtube.com/watch?v=oy24d9Ge4J0&t=81s
https://www.youtube.com/watch?v=oy24d9Ge4J0
https://www.youtube.com/watch?v=oy24d9Ge4J0&t=65s
https://www.youtube.com/watch?v=oy24d9Ge4J0
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5 General Polar Coordinate System 
5.1 Polar Coordinate System for N-Dimensional Space 

An N-complex number specifies a geometric point by its radial distance from the origin and its angles of rotation 
in the ND space (see (41) and (42)). Therefore, the N-complex number system serves as a polar coordinate 
system for N-dimensional space, extending from the classic polar coordinate system in 2D plane and the 
spherical coordinate system in 3D space without an upper limit. This provides a significant advancement to 
mathematical systems that mathematicians have sought for a long time. I propose to name this system the 
“General polar coordinate system”. 
 
For this new system to be valid, it must be able to specify all points in N-dimensional space. The formulas by 
which the N-complex number specifies a point in space are given below (see (43)): 
 

Arbitrary point in 
the general polar 
coordinate system 

𝒁% = 𝑟𝑒&!'!⋯𝑒&"#!'"#! 	
= 𝑟 '()(cos 𝜃( + 𝑖( sin 𝜃() cos 𝜃) + 𝑖) sin 𝜃)4⋯5 cos 𝜃%*( + 𝑖%*( sin 𝜃%*(6 (85) 

   
Arbitrary point in 
the Cartesian 
coordinate system 

𝒁/ = 𝑥2 + 𝑖&𝑥& +⋯+ 𝑖/0&𝑥/0& (86) 

 
Equation (85) defines an N-complex number Zn (see (43) ), while equation (86) expresses it in Cartesian form. 
Both equations specify the same point in an ND space. In my paper «Extending complex number to spaces with 
3, 4 or any number of dimensions»[1] I have proven that the expressions in equations (85) and (86) are 
equivalent. This equivalence arises from our ability to derive the modulus r and the arguments q1, …, qn-1 from 
the Cartesian components x0, x1, …, xn-1, and vice versa. Thus, the ND polar coordinate system is a valid 
coordinate system. 
 
To demonstrate the advantages of the new ND polar coordinate system, let us investigate hyperspheres. 
 

5.2 Some Properties of Hyperspheres 
5.2.1 Interior and Exterior of Hyperspheres 

In 3D space, a sphere (2-sphere) is a closed surface because a point cannot move from inside to outside without 
crossing its surface. Therefore, we say that the sphere separates its interior from the exterior. However, when 
placed in 4D space, the 2-sphere becomes an open surface because a point can transition from inside to outside 
without crossing its surface. Given that hyperspheres exist in higher-dimensional space, it is uncertain whether 
they separate their interior from the exterior. 
 
Let us consider the case of a 3-sphere in 4D space. A point in 4D space is defined by the 4D-complex number: 
 

𝒁H = 𝑟𝑒$%𝑒*+𝑒FG (87) 
 
A unit 3-sphere is defined by keeping r = 1 in (87): 
 

𝑼H = 𝑒$%𝑒*+𝑒FG (88) 
 
When the point Z4 is inside the unit 3-sphere its modulus r is smaller than 1, (r < 1). To transition from inside the 
unit 3-sphere to the outside, r must continuously increase until it becomes greater than 1, (r > 1). In this process r 
must pass through the point where r = 1, at which Z4 crosses the surface of the unit 3-sphere. 
 
Because the arguments q, f and y are arbitrary, the direction of Z4 is arbitrary. Therefore, regardless of its 
direction, Z4 cannot avoid encountering the surface of the the unit 3-sphere, meaning that no point can transition 
from inside the unit 3-sphere to the outside without crossing it. Thus, the unit 3-sphere effectively separates its 
interior from the exterior in 4D space, or the hypersphere is completely sealed. 
 

https://www.academia.edu/71708344/Extending_complex_number_to_spaces_with_3_4_or_any_number_of_dimensions
https://pengkuanonmaths.blogspot.com/2022/02/extending-complex-number-to-spaces-with.html
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We extend this property to N-sphere (hyperspheres) using equations (85) and (86), and conclude that N-spheres 
separate their interior from the exterior in (N+1)D space. 
 

5.2.2 Thicknesses of Hyperspheres 

A 2-sphere is a 2D surface and thus inherently possesses zero thickness. Hyperspheres, being higher-dimensional 
spaces, constitute volumes rather than mere surfaces. Intuitively, volumes should possess a non-zero thickness. 
However, as previously discussed, an unit N-sphere is defined by all points where r = 1. Consequently, its 
thickness equals that of a point, which is indeed zero. This observation leads to the counterintuitive conclusion 
that the thickness of the unit N-sphere, and by extension the ND space it occupies, is zero. 
 
This conclusion may seem perplexing at first glance. How can a surface with zero thickness be a space with 
more than two dimensions? To address this question, let us consider the three free arguments q, f and y of the 
unit 3-sphere (see (88)). If the unit 3-sphere were limited to two dimensions, one of these arguments, let us say 
y, would need to remain constant. Consequently, the points on the unit 3-sphere corresponding to the free ψ 
could not be reached by U4. Therefore, the unit 3-sphere is incompletely defined with only two dimensions, and 
to fully encompass all its points, the unit 3-sphere must possess three dimensions. 
 

5.2.3 Holes in 2-sphere and Hyperspheres 

Spheres are typically closed surfaces, meaning they do not have holes. However, when a sphere is placed in 4D 
space, points can move from the inside to the outside without crossing it. This suggests the existence of “holes” 
through which points pass. First, let us define a unit 2-sphere in 4D space using (88) with y kept at zero: 
 

𝑼#L = 𝑒$%𝑒*+𝑒F2 (89) 
 
Now, consider the trajectory of a point initially inside the unit 2-sphere: 
 

𝒁#L = 𝑟#L𝑒$%𝑒*+𝑒F2 (90) 
where r2s < 1. 
 
To exit the unit 2-sphere, we add to Z2s a new 4-complex number with nonzero ψ and obtain a new point Z’2s : 
 

𝒁M#L = 𝒁#L + 𝑟M𝑒$%𝑒*+𝑒FG	
= 𝑟#L𝑒$%𝑒*+𝑒F2 + 𝑟M𝑒$%𝑒*+𝑒FG	
= 𝑟′#L𝑒$%M𝑒*+M𝑒FGM 

(91) 

 
The value of r’ increases until the modulus of Z’2s (r’2s) exceeds 1. We then rotate Z’2s back to ψ=0, returning it 
to the space that the unit 2-sphere occupies. The final Z’2s is outside the unit 2-sphere because the modulus of 
Z’2s is bigger than 1, (r’2s > 1). However, the trajectory of Z’2s doesn't intersect the unit 2-sphere because ψ is 
nowhere zero on the trajectory except at the start and the end. This suggests that the trajectory of Z’2s passes 
through a “hole” in the unit 2-sphere. 
 
Points passing through non-existing “holes” appears intriguing. To gain an intuitive sense of this concept, let us 
consider a circle, which is a 1-sphere in a plane. The interior of a circle forms a disc, but when viewed from a 3D 
space (see Figure 21), the disc is a hole. Similarly, the interior of a 2-sphere forms a ball, but from a region in the 
4D space where ψ is not equal to zero, the ball is a hole. Thus, 2-spheres do have holes when placed in 4D space, 
even though they are invisible to us 3D beings. 
 
By generalizing this idea to N-spheres, we conclude that all N-spheres have holes when placed in (N+1)D 
spaces. Extending this concept to a 3D Klein bottle, we can think that the neck passes into the body of a 3D 
Klein bottle through a hole that exists only in 4D space. 
 

5.2.4 Remark about the Proof of the Poincaré Conjecture 

All these explorations about hyperspheres make me think of the Poincaré conjecture, the proof of which was 
quite laborious. Now that we have N-complex numbers and N-polar coordinate systems, could a simpler proof 
be within reach? Perhaps the development of more straightforward and concise proofs would pique the interest 
of mathematicians seeking to tackle this challenging problem. 
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5.3 Unification of 3-Dimensional Polar Coordinate Systems 
We live in a 3D space, and our work involves the frequent use of 3D polar coordinate systems. The spherical 
coordinate system is the most commonly used, but there are multiple other spherical coordinate systems in use as 
well. For instance, to specify the orientation of a rigid body, such as an aircraft, we use two different systems of 
angles: Euler angles and Tait–Bryan angles. Similarly, to specify the orbit of a celestial body around the Sun, we 
use the system known as Keplerian elements. 
 
Each of these systems works well for its specific purpose. However, despite the fact that the direction of a point 
in space is mathematically the same across all fields, each system follows different conventions for the angles. 
Therefore, specific methods and algorithms are required for each field. The multiplicity of spherical coordinate 
systems complicates the work within each field and hinder communication and exchange of ideas among 
scientists from different disciplines. 
 
To address this problem, I propose our 3D polar coordinate system to be the standard polar coordinate system for 
3D space. Can we simply retain the classic spherical coordinate system? No, because the system of angles of the 
classic spherical coordinate system follows a convention different from that used in the 3-complex number 
system. Therefore, the classic spherical coordinates of a point cannot be manipulated with 3-complex arithmetic 
operations. 
 
Another advantage of our 3D polar coordinate system is that it maintains coherence among all N-complex 
number systems, as the following list shows: 
 

• The 1-complex number system (real number system) works with the 1D polar coordinate system 
(number line). 

• The 2-complex number system (classic complex number system) works with the 2D polar coordinate 
system. 

• The 3-complex number system works with the 3D polar coordinate system. 
• ... 
• The N-complex number system works with the ND polar coordinate system. 

 
If we retain the classic spherical coordinate system, this coherence would be broken. 
 
Our 3D polar coordinate system would unify spherical coordinate systems across different fields. Furthermore, it 
would introduce arithmetic operations to 3D space akin to the classic polar coordinate system, marking a 
breakthrough in 3D geometry. Adopting the 3D polar coordinate system would simplify mathematical 
formulations, enhance 3D geometry with arithmetic operations, and accelerate numerical computations, as 
demonstrated by the work of Edgar Malinovsky[4]. Therefore, implementing the 3-complex number system in 
general-purpose computer software would immediately enhance numerical computations worldwide. 
 
In my articles, « Computing orientation with complex multiplication but without trigonometric function »[2] and 
«Determination of the relative roll, pitch and yaw between arbitrary objects using 3D complex number»[3], I have 
explained methods for computing the orientation of rigid bodies. These techniques could prove useful to 
scientists working with computing the orientation of rigid bodies. 
 

6 Discussion 
In this article, we have provided a brief overview of the new N-complex number system, which extends the 
classic complex number system to ND space (see «Extending complex number to spaces with 3, 4 or any number 
of dimensions»[1]	). The introduction of the N-complex number system has facilitated the creation of a Möbius 
strip in 3D space and two different 4D Klein bottles. Furthermore, we have demonstrated the computation of 
their projections onto subspaces of the 4D space (x, y, z, w). Additionally, we have computed the rotation of the 
4D Klein bottles in the subspaces (x, y, w) and (x, w, z), and produced a video animation titled “Observing a 4D 
Klein Bottle in 4-Dimension” [5]. This animation illustrates the result of the rotation in 4D space, revealing a 
morphing of the familiar 3D Klein bottle into a Möbius strip. 
 
The N-complex number system is equipped with arithmetic operations that function in ND geometry similarly to 
the classic complex number system in 2D plane. Additionally, it provides the long-missing polar coordinate 
system for ND space. Through this framework, we have deduced three properties of hyperspheres: 
 

https://www.academia.edu/80277267/Computing_orientation_with_complex_multiplication_but_without_trigonometric_function
https://pengkuanonmaths.blogspot.com/2022/05/computing-orientation-with-complex.html
https://www.academia.edu/92242546/Determination_of_the_relative_roll_pitch_and_yaw_between_arbitrary_objects_using_3D_complex_number
https://pengkuanonmaths.blogspot.com/2022/12/determination-of-relative-roll-pitch.html
https://www.academia.edu/71708344/Extending_complex_number_to_spaces_with_3_4_or_any_number_of_dimensions
https://pengkuanonmaths.blogspot.com/2022/02/extending-complex-number-to-spaces-with.html
https://pengkuanonmaths.blogspot.com/2022/02/extending-complex-number-to-spaces-with.html
https://www.youtube.com/watch?v=oy24d9Ge4J0
https://www.youtube.com/watch?v=oy24d9Ge4J0
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1. The surface of hyperspheres serves as a boundary, separating their interior from the exterior or 
completely sealing them off. 

2. Despite having more than two dimensions, hyperspheres possess zero thickness. 
3. An N-sphere, when placed in an (N+1)D space, exhibits at least one hole. A point initially located 

inside the N-sphere can traverse to the outside through this hole without crossing the N-sphere itself. 
 
We propose the adoption of the 3D polar coordinate system as the standard polar coordinate system in 3D space. 
Standardization offers the advantage of reducing the undesirable complexity associated with the multiplicity of 
spherical coordinate systems. Furthermore, it enables arithmetic operations for 3D geometry and has the 
potential to accelerate numerical computations in 3D space. 
 
The 3-complex number system and 3D polar coordinate system could be particularly beneficial for CAD 
(Computer-Aided Design) software used in mechanical and architectural design, control software for polar 
robotic arms, and electronic game development. These applications extensively utilize spherical coordinate 
systems to generate 3D images from numerical positions of points. Conversely, the new systems can be helpful 
for image recognition software that computes 3D geometric positions of points from 2D images—a complex 
computation in spherical coordinate systems. Image recognition plays an essential role in automatic driving, AI, 
and various other fields. 
 
In conclusion, the N-complex number system and ND polar coordinate systems have significant potential for 
mathematical and engineering applications, promising to streamline computations and enhance problem-solving 
capabilities across various disciplines. 
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Letter to readers 
 
Dear readers,  
 
The purpose of this article is to provide examples of the use of my N-complex number system, which I 
constructed in 2022. Indeed, without concrete examples of its application, no one can fully appreciate the 
potential of a new theory. 
 
A concrete representation of a 4D Klein bottle has been desired by many but has never been presented. So, I 
decided to dive into the Klein bottle. Working with the Klein bottle was my first opportunity to practice with this 
system. To my surprise, the ease with which it allowed me to create 4D Klein bottles was remarkable. The 4D 
Klein bottles were generated smoothly without the slightest hitch. My video animations of the rotating 4D Klein 
bottle in 4D space, as well as the 3D slices ascending in the 4D space, were also computed effortlessly. 
 
Edgar Malinovsky was the first to use my N-complex number system. He created many beautiful 3D fractal 
objects, which are showcased in «Rendering of 3D Mandelbrot, Lambda and other sets using 3D complex 
number system» . 
 
When I created the N-complex number system, my aim was to develop a system that enables arithmetic 
operations in 3D space. Initially, I was not aware that the system I had created also functions as a polar 
coordinate system for ND space; it just happened to work out that way.  
 
Since I was already exploring 4D space with the Klein bottle, I decided to use it to investigate hyperspheres. This 
led me to discover three surprising properties. I believe the N-complex number system has the potential to yield 
many more discoveries in hypergeometry. For example, it might offer a simpler proof for the Poincaré 
conjecture. 
 
As I am not a professional mathematician, I do not know of other interesting conjectures in hypergeometry. 
However, the new hypergeometric tools—my N-complex number system and the polar coordinate system for 
ND space—will surely be helpful in solving some of them. 
 
In fact, because I’m not a professional mathematician, I’m not able to write my articles in rigorous academic 
form. For example, the three properties of hyperspheres could be considered new theorems, but I lack the 
appropriate training to formulate them in theorem form. Consequently, all my previous articles were rejected by 
the editors of mathematical journals, which really hurt me. So, I have decided not to submit to mathematical 
journals but instead to post them online. 
 
Since my articles are not published through academic channels, you cannot cite them in the reference list if you 
develop upon my work. Nevertheless, you can still mention my work in a footnote if it had been useful to you. 
 
 

Kuan Peng, 4 June 2024 
 
 
 
 
 

https://www.academia.edu/92516029/Rendering_of_3D_Mandelbrot_Lambda_and_other_sets_using_3D_complex_number_system
https://pengkuanonmaths.blogspot.com/2022/04/rendering-of-3d-mandelbrot-lambda-and.html
https://pengkuanonmaths.blogspot.com/2022/04/rendering-of-3d-mandelbrot-lambda-and.html

