Quantum evidential reasoning rule

Fuyuan Xiao ${ }^{\text {a,* }}$
${ }^{a}$ School of Big Data and Software Engineering, Chongqing University

Abstract

In this paper, we propose a quantum evidential reasoning rule in the framework of generalized quantum evidence theory.

Keywords: Generalized quantum evidence theory, Quantum evidential reasoning rule

1. Introduction

We develop a quantum evidential reasoning method in the framework of generalized quantum evidence theory[1] inspired by $[2,3]$. A generalized quantum mass function $\mathbb{Q}_{\mathbb{M}_{h}}$ can be profiled by a quantum belief distribution (QBD), defined as follows

$$
\begin{equation*}
\mathbb{Q}_{\mathbb{M}_{h}}=\left\{\left(\theta, \mathbb{P}_{\theta, h}\right), \forall \theta \subseteq \Theta, \sum_{\theta \subseteq \Theta}\left|\mathbb{P}_{\theta, h}\right|^{2}=1\right\} \tag{1}
\end{equation*}
$$

where $\mathbb{P}_{\theta, h}$ is a complex number.

[^0]Then, the generalized weighted quantum belief degree (WQBD) is defined as

$$
\mathbb{Q}_{\mathbb{M}_{\theta, h}}=\mathbb{Q}_{\mathbb{M}_{h}}(\theta)= \begin{cases}0 & \theta=\emptyset \tag{2}\\ w_{h} \mathbb{P}_{\theta, h} & \theta \subseteq \Theta, \theta \neq \emptyset \\ 1-w_{h} & \theta=P(\Theta)\end{cases}
$$

where w_{h} is the weight of generalized quantum mass function $\mathbb{Q}_{\mathbb{M}_{h}}$.

After the WQBDs are calculated, the recursive combination rule of WQBDs is defined as follows:

$$
\mathbb{Q}_{\mathbb{M}_{\theta, e(h)}}=\left[\mathbb{Q}_{\mathbb{M}_{1}} \oplus \cdots \oplus \mathbb{Q}_{\mathbb{M}_{h}}\right](\theta)= \begin{cases}0 & \theta=\emptyset \tag{3}\\ \frac{\left|\hat{\mathbb{Q}}_{\mathbb{M}_{\theta, e(i)}}\right|^{2}}{\sum_{D \subseteq \Theta}\left|\hat{\mathbb{Q}}_{\mathbb{M}_{D, e(i)}}\right|^{2}+\left|\hat{\mathbb{Q}}_{\mathbb{M}_{P(\Theta), e(i)}}\right|^{2}} & \theta \neq \emptyset\end{cases}
$$

$$
\begin{equation*}
\hat{\mathbb{Q}}_{\mathbb{M}_{\theta, e(i)}}=\left[\mathbb{Q}_{\mathbb{M}_{P(\theta), i}} \mathbb{Q}_{\mathbb{M}_{\theta, e(i-1)}}+\mathbb{Q}_{\mathbb{M}_{P(\theta), e(i-1)}} \mathbb{Q}_{\mathbb{M}_{\theta, i}}\right]+\sum_{B \cap C=\theta} \mathbb{Q}_{\mathbb{M}_{B, e(i-1)}} \mathbb{Q}_{\mathbb{M}_{C, i}}, \quad \forall \theta \subseteq \Theta \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\hat{\mathbb{Q}}_{\mathbb{M}_{P(\Theta), e(i)}}=\mathbb{Q}_{\mathbb{M}_{P(\theta), i}} \mathbb{Q}_{\mathbb{M}_{P(\Theta), e(i-1)}} \tag{5}
\end{equation*}
$$

Finally, the generalized QER rule is represented as

$$
\mathbb{P}_{\theta}=\mathbb{P}_{\theta, e(L)}= \begin{cases}0 & \theta=\emptyset \tag{6}\\ \frac{\left|\hat{\mathbb{Q}}_{\mathbb{M}_{\theta, e(L)}}\right|^{2}}{\sum_{B \subseteq \Theta}\left|\hat{\mathbb{Q}}_{B, e(L)}\right|^{2}} & \theta \neq \emptyset\end{cases}
$$

where L is the length of quantum evidence set for combination.

References

[1] Xiao, F.. Quantum X-entropy in generalized quantum evidence theory. Information Sciences 2023;643:119177.
[2] Yang, J.B., Singh, M.G.. An evidential reasoning approach for multipleattribute decision making with uncertainty. IEEE Transactions on systems, Man, and Cybernetics 1994;24(1):1-18.
[3] Yang, J.B., Xu, D.L.. Evidential reasoning rule for evidence combination. Artificial Intelligence 2013;205:1-29.

[^0]: *Corresponding author at: School of Big Data and Software Engineering, Chongqing University

 Email address: xiaofuyaun@swu.edu. cn (Fuyuan Xiao)

