Quantum evidential reasoning rule

Fuyuan Xiao^{a,*}

^aSchool of Big Data and Software Engineering, Chongqing University

Abstract

In this paper, we propose a quantum evidential reasoning rule in the framework of generalized quantum evidence theory.

Keywords: Generalized quantum evidence theory, Quantum evidential reasoning rule

1. Introduction

We develop a quantum evidential reasoning method in the framework of generalized quantum evidence theory[1] inspired by [2, 3]. A generalized quantum mass function $\mathbb{Q}_{\mathbb{M}_h}$ can be profiled by a quantum belief distribution (QBD), defined as follows

$$\mathbb{Q}_{\mathbb{M}_h} = \left\{ (\theta, \mathbb{P}_{\theta, h}), \forall \theta \subseteq \Theta, \sum_{\theta \subseteq \Theta} |\mathbb{P}_{\theta, h}|^2 = 1 \right\},$$
(1)

where $\mathbb{P}_{\theta,h}$ is a complex number.

 $^{^{*}\}mathrm{Corresponding}$ author at: School of Big Data and Software Engineering, Chongqing University

Email address: xiaofuyaun@swu.edu.cn (Fuyuan Xiao)

Then, the generalized weighted quantum belief degree (WQBD) is defined as

$$\mathbb{Q}_{\mathbb{M}_{\theta,h}} = \mathbb{Q}_{\mathbb{M}_{h}}(\theta) = \begin{cases} 0 & \theta = \emptyset \\ w_{h} \mathbb{P}_{\theta,h} & \theta \subseteq \Theta, \theta \neq \emptyset \\ 1 - w_{h} & \theta = P(\Theta) \end{cases}$$
(2)

where w_h is the weight of generalized quantum mass function $\mathbb{Q}_{\mathbb{M}_h}$.

After the WQBDs are calculated, the recursive combination rule of WQBDs is defined as follows:

$$\mathbb{Q}_{\mathbb{M}_{\theta,e(h)}} = [\mathbb{Q}_{\mathbb{M}_{1}} \oplus \dots \oplus \mathbb{Q}_{\mathbb{M}_{h}}](\theta) = \begin{cases} 0 & \theta = \emptyset \\ \frac{|\hat{\mathbb{Q}}_{\mathbb{M}_{\theta,e(i)}}|^{2}}{\sum_{D \subseteq \Theta} |\hat{\mathbb{Q}}_{\mathbb{M}_{D,e(i)}}|^{2} + |\hat{\mathbb{Q}}_{\mathbb{M}_{P(\Theta),e(i)}}|^{2}} & \theta \neq \emptyset \end{cases}$$
(3)

$$\hat{\mathbb{Q}}_{\mathbb{M}_{\theta,e(i)}} = \left[\mathbb{Q}_{\mathbb{M}_{P(\theta),i}} \mathbb{Q}_{\mathbb{M}_{\theta,e(i-1)}} + \mathbb{Q}_{\mathbb{M}_{P(\theta),e(i-1)}} \mathbb{Q}_{\mathbb{M}_{\theta,i}} \right] + \sum_{B \cap C = \theta} \mathbb{Q}_{\mathbb{M}_{B,e(i-1)}} \mathbb{Q}_{\mathbb{M}_{C,i}}, \quad \forall \theta \subseteq \Theta$$

$$\tag{4}$$

$$\hat{\mathbb{Q}}_{\mathbb{M}_{P(\Theta),e(i)}} = \mathbb{Q}_{\mathbb{M}_{P(\theta),i}} \mathbb{Q}_{\mathbb{M}_{P(\Theta),e(i-1)}}.$$
(5)

Finally, the generalized QER rule is represented as

$$\mathbb{P}_{\theta} = \mathbb{P}_{\theta, e(L)} = \begin{cases} 0 & \theta = \emptyset \\ \frac{|\hat{\mathbb{Q}}_{\mathbb{M}_{\theta, e(L)}}|^2}{\sum_{B \subseteq \Theta} |\hat{\mathbb{Q}}_{\mathbb{M}_{B, e(L)}}|^2} & \theta \neq \emptyset \end{cases}$$
(6)

where L is the length of quantum evidence set for combination.

References

- Xiao, F.. Quantum X-entropy in generalized quantum evidence theory. Information Sciences 2023;643:119177.
- [2] Yang, J.B., Singh, M.G.. An evidential reasoning approach for multipleattribute decision making with uncertainty. IEEE Transactions on systems, Man, and Cybernetics 1994;24(1):1–18.
- [3] Yang, J.B., Xu, D.L.. Evidential reasoning rule for evidence combination. Artificial Intelligence 2013;205:1–29.