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Abstract 

It is known that both classical and Quantum Field Theory (QFT) are built on the 

fundamental principle of stationary action. The goal of this introductory work is to 

analyze the breakdown of stationary action under nonadiabatic conditions. These 

conditions are presumed to develop far above the Standard Model scale and favor the 

onset of Hamiltonian chaos and fractal spacetime. The nearly universal transition to 

nonadiabatic behavior is illustrated using a handful of representative examples. If true, 

these findings are likely to have far-reaching implications for phenomena unfolding 

beyond the Standard Model scale and in early Universe cosmology. 
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 1. Introduction 

Action invariance is the bedrock of classical and quantum physics, as both 

Lagrangian and Hamiltonian formulations of the theory stem from the 

stationary action principle and its consequences. What was (and continues 

to be) largely overlooked is that the action principle ceases to hold in strongly 

fluctuating settings, in unstable systems far from thermodynamic equilibrium, as 

well as in systems approaching critical behavior. It is for this (deceptively) 

simple reason that extrapolations of field theories beyond their effective 

approximations are doomed to fail near continuous phase transitions and in 

the limit of exceedingly large or exceedingly low energy scales. We briefly 

review here the breakdown of stationary action in nonadiabatic conditions 

present in the deep ultraviolet (UV) sector of high-energy physics and of 

early Universe cosmology. 

The paper is organized in the following way: Section two elaborates upon 

the breakdown of adiabatic invariance in Hamiltonians dependent on a 

generic parameter and evolving on ultrashort time scales. Next sections 
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illustrate the nearly universal transition to nonadiabatic behavior using 

several textbook examples. A summary discussion and concluding remarks 

are included in the last section. 

The paper is based on the following couple of assumptions: 

A1) Decoherence of quantum processes and the subsequent transition to 

classicality is expected to occur in the deep UV sector of energies, at some 

larger scale exceeding the Standard Model scale.  

A2) Canonical variables of Hamiltonian theory ( , )q p  represent classical 

fields and their conjugate momenta, i.e. ( , ) ( , )q p   . 

Our analysis confirms that the breakdown of stationary action in non-

adiabatic conditions overlaps with the onset of nonintegrability. The net effect 

of this scenario is the unavoidable emergence of fractal spacetime endowed 

with evolving deviations from four dimensions. 
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The reader is cautioned that our intent here is opening an unexplored 

research avenue that goes beyond the mainstream paradigms of 

foundational physics. Given its introductory nature, the paper must be 

approached with caution and a healthy dose of skepticism.  Independent 

work needs to confirm, develop or reject the body of ideas detailed below.   

 2. Adiabatic invariants in Hamiltonian dynamics 

Following [1, 6], consider a one-dimensional field model characterized by 

the Hamiltonian ( , ; )H q p  , which is dependent on a time-varying parameter 

( )t = . Assume that the field undergoes a finite periodic motion with 

period 0T  and that the parameter   is slowly varying during 0T , that is,  

 0d dt T   (1) 

If   were constant, the motion of the field would be strictly periodic with a 

constant energy 0( )E E T= . Since   is slowly varying, averaging the energy 

rate over 0T  yields the approximation,  
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dE d H
dt dt






=


 (2) 

For fixed E  and  , the canonical action of the system is the integral taken 

over the closed path C  in phase space, namely, 

 
2 2C

I
pdq dpdq

 
= =   (3) 

By (1) – (3), the rate of the action average is an adiabatic invariant defined by   

 0
dI
dt

=  (4) 

To fix ideas, consider a one-dimensional scalar field with parameter 

independent Hamiltonian,  

 2 2 21
( , ) ( )

2
H p q p q E= + =  (5) 

The phase space trajectory of (5) is an ellipse, and the adiabatic invariant is 

simply, 
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 0

2

ETE
I I

 
= = =  (6) 

In this case, (1), (4), (6) are held by default, and the canonical action (6) 

recovers the Lorentz invariant of classical and QFT. 

An interesting extension is the case of the one-dimensional scalar field 

whose Hamiltonian has a slowly varying frequency [10] 

 
2

2 2 2 2

2

1 1
( , , ) [ ( ) ] [ ]

2 2 ( )

q
H p q p t q p

t
 


= + = +  (7) 

Here, the driving parameter is 1( ) ( ) [ ( )]t t t   − = . Introducing a new set of 

canonical variables 

 I H= ;   1

2
sin

2

q

H




−=  (8) 

and relabeling the new action as 

 
2

0

1

2
J Id





=   (9) 

implies the condition 
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 ( )
d

J I O
dt


− =  (10) 

Analysis shows that the rate of (9) takes the form [10] 

 
2

2

2
[ ; ( ) ]

dJ d d
O

dt dtdt

 
=  (11) 

It follows that, if the time rate of   is adiabatically slow, integrating (11) leads 

to  

 ( ) (0) 1J t J−   (12) 

and 

 ( ) (0) 1I t I−   (13) 

In summary, (4) and (13) show that, over suitably defined extended periods of 

time, action I  acts as adiabatic invariant, a conclusion consistent with the 

concept of integrability in Hamiltonian dynamics [14]. The opposite 

conclusion is that, over sufficiently short time scales labeled as 0 (1)t t O = , (4) 
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and (13) are not guaranteed to hold. Specifically, if the rate of the action is 

comparable with the parameter rate, 

 ( ) ( )
dI dI d

O O
dt dt dt


= =  (14) 

the action I  no longer plays the role of a Lorentz invariant. These 

considerations strongly hint that (14) has far-reaching implications for 

phenomena occurring beyond the Standard Model scale and in early 

Universe cosmology [12 – 13, 15 – 16]. 

3. Field theory under nonadiabatic conditions  

The goal of this section is to expand the analysis of nonadiabatic behavior to 

more realistic parameter-driven models. 

3.1) First off, consider a statistical mechanics context where the rate of 

parameter ( )t  follows a Langevin-type equation [5], 

 
( )

( ) ( ) ( )
d t

t s t f t
dt


+ = +  (15) 
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Here,   is the dissipation parameter, ( )s t  and ( )f t  denote the slow and fast 

fluctuations with constant and zero mean values, respectively, 

 0 1( )s t s =  (16) 

 ( ) 0f t =  (17) 

If the parameter ( )t  is taken to be nearly-vanishing upon averaging, a 

minimal extension of adiabatic invariance embodied in (1), (2), (4) and (13) 

may be derived from     

 0 0

( )d t
s

dt



−=  (18) 

where 

 0( ) 1t =   (19) 

A typical hypothesis behind the Langevin equation is that the fast 

fluctuations ( )f t  represent uncorrelated “white” noise, as in  



10 | P a g e  

 

 1 2 1 2( ) ( ) ( )
f

f t f t g t t= −  (20) 

Here, g  is a characteristic strength factor given by 

 
2

g



= ;  1T −=  (22) 

and T  is the temperature, assumed to be a time-independent quantity. If  

 ( ) ( )
t

L t t dt=   (21) 

it can be shown that, in the long-time limit 0 (1)t t O = , the mean square of 

(21) assumes the form  

 2 2 2( ) (0)L t L t = −   (22) 

which shows that parameter fluctuations are prone to grow over time and 

eventually destabilize the adiabatic invariance conditions set by (4). 

The takeaway point of this derivation is that long-term adiabatic invariance 

is likely to break down regardless of initial conditions (16) – (19). Yet, this is 
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hardly surprising since, by construction, the Langevin equation describes 

the behavior of out-of-equilibrium statistical systems [  ].   

3.2) We next analyze the case where the dynamics contains two sets of 

canonical variables, each evolving on two independent time scales.  

Consider the “slow-fast” Hamiltonian [2 - 3] 

 
2

( , , , , ( )) cos( ) cos ( ) ( )
2

p
H p q t q q t    = + + − +   (23) 

(23) describes a “pendulum-like” oscillator whose fast and slow conjugate 

variables are, respectively,   

 ( , )p q  fast variables (24a) 

    ( , )   slow variables (24b) 

Here, the external parameter   represents an angle with a time-varying 

frequency  ( )t . Note that, in the absence of slow variables, (23) reduces to 

the dynamics of the classical pendulum covered, for instance, in [8]. 
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Fig. 1: Poincaré section of flow (23) for 6.2 =  [2]. 

 

Fig. 2: Poincaré section of flow (23) for 5 =  [2]. 
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Figs. 1 and 2 are phase space (Poincaré) sections of the flow induced by (23) 

for different values of  . The interlaced structure of chaotic regions and 

islands of stability is a typical signature of Hamiltonian chaos and the 

emergence of fractal spacetime, per [7, 12 – 13.] Fig. 2 shows the structure of 

the flow almost entirely covered by chaotic regions.  

3.3) Next model looks at the case where   is a constant driving force acting 

on a nonlinear oscillator with cubic interaction. The equations of motion are 

given by [11]  

 3 cos
dp

q q t
dt

 = − +  (25a) 

 
dq

p
dt

=  (25b) 

These equations describe a periodically driven Duffing oscillator. As in the 

previous model 3.2), the phase space plots clearly show the onset of 

Hamiltonian chaos and fractal spacetime. 
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Fig 3: Duffing oscillator for different values of   [11] ( ;x q p v= = ). 

3.4) The previous model can be generalized to the case where both periodic 

forces ( ) and dissipation ( ) are added to a standard oscillator.  

3.4.1) As traditional prototype of Hamiltonian chaos, the conservative 

Standard Map models a “kicked rotor” system whose evolution equations are 

given by [4, 7] 

 ' sinI I  = +  (26a) 

 ' sinI   = + +  (26b) 
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where ,I   are action-angle variables. Likewise, the dissipative Standard Map 

is defined by  

 ' (1 ) sinI I   = − + +  (27a) 

 ' (1 ) sinI     = + − + +  (27b) 

in which   represents a drift parameter, independent of   and  . 

 

Fig. 4: The conservative Standard Map [4] 
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Fig. 5: Dissipative Standard Map with parameter drift [4] 

Once again, both Figs. 4 and 5, illustrate the coexistence of unperturbed 

dynamics and Hamiltonian chaos. 

3.4.2) Finally, consider the classical conservative pendulum with 

Hamiltonian 

 
2

( , ) (cos 1)
2

p
H p q q= + −  (28) 

Its phase space plot exhibits a hyperbolic fixed point and cycles winding 
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around the elliptic center (fig. 6). In the presence of dissipation ( ) and 

periodic forcing ( ), the pendulum equations take the form [4], 

 sin sin
dp

p q t
dt

 = − + +  (29a) 

 
dq

p
dt

=  (29b) 

Fig. 7 shows the genesis of a point attractor replacing the elliptic fixed point 

of Fig. 6. 

 

Fig. 6: Conservative pendulum [4, 7 - 9] 
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Fig. 7: Dissipative pendulum and the formation of a point attractor [4]. 

 

Fig. 8: Chaotic attractors under both dissipation and forcing [4] 
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A key observation is that, when dissipation and forcing are coexisting, the 

route to Hamiltonian chaos is NOT universal. Specifically, dissipation 

creates attractors that inhibit diffusion, while periodic forcing can overcome 

the effects of dissipation. The net effect is a competition between the 

formation of attractors and Hamiltonian chaos [4]. The dissipation losses are 

however expected to be negligible over ultrashort time scales, commensurate 

with the UV sector of high-energy physics and early Universe cosmology. It 

is in this regime that the onset of Hamiltonian chaos and fractal spacetime 

becomes a likely occurrence. 

4. Summary and concluding remarks 

Under certain conditions, the breakdown of the action invariance in non-

adiabatic conditions overlaps with the onset of nonintegrability and chaos in 

Hamiltonian dynamics. The nearly universal transition to nonadiabatic 

behavior has been illustrated using several examples from nonlinear 

dynamics literature. As extensively discussed over the years, our findings 
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may have far-reaching implications for the complex behavior of UV field 

theory and early Universe cosmology [17].  
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