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I. SUMMARY

This study examines the implications of Planck scales on the causality of low-mass particles at very high energies. Using a
fractal approach to space-time, we propose new dynamics for the fabric of space-time and its effect on special relativity. Our
results suggest a convergence of physical values at the Planck scale and possible implications for quantum gravity and theories
of everything.
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II. INTRODUCTION 

As part of the quest for a unified theory of quantum gravitation, the examination of the fundamental properties of space-time on

the Planck scale has gained crucial importance. Planck time ( tp ) and Planck length ( lp ) considered as the minimum scales of

measurement, provide a discrete and invariant framework for examining the structure of space-time. This approach postulates

the existence of elementary temporal intervals  tp and spatial  lp where  e i represent the basis vectors in a four-dimensional

vector metric.

Efforts to reconcile the two main branches of physics, namely quantum physics and general relativity, have mainly taken two
paths: the quantization of gravity, i.e., the attempt to apply the principles of quantum physics to gravity, and the geometrization
of quantum physics, i.e., the attempt to formulate quantum physics in a geometric framework similar to general relativity. These
approaches tend to explore the properties of one theory through the prism of the other without achieving total unification. In
other words, a gap remains between the foundations of the two theories, making it difficult to create a unified framework that
integrates them coherently. 

III. METHODS

We explore an iterative,  self-similar approach to Planck-scale spacetime, using fundamental  axioms and assumptions.  The
fundamental spacetime metric and zero-point energy Ω are considered as a single constituent element in a Planck space-2 :

lp2=ℏ G

c3   (1) 



IV. RESULTS

Analysis of the properties on the Planck scale revealed a number of significant results:

1.  Self-similarity and Fractals :  The expression of the fundamental physical constants  ℏ ,  G, and c  in an iterative

framework shows that the sequence Sn tends asymptotically towards zero as n increases. This sequence, characterised
by fractal self-similarity, is bounded and compact, ensuring convergence to a limit value.

2. Vacuum permittivity on the Planck scale : By applying a fractal approach to vacuum permittivity ε 0 the results

show that for n=0 the fine structure constant α  is found in a theoretical framework. For n=1 a combination of the
electromagnetic  coupling  constant  and  the  reduced  gravitational  coupling  factor  is  obtained,  which  could  have
implications for quantum gravity theories.

3. Anomaly of the Cone of Light : This requalification of the Planck length, from a simple limit of space-time to a
granular fractal structure, leads to the observation of an anomaly in very high-energy low-mass particles. A hypothesis

is then put forward suggesting the existence of a second fermionic causality limit, distinct from the constant c , which

could explain this anomaly. 

4. Cosmological implications : The results show that the properties of the vacuum at the Planck scale could offer new
explanations for cosmic inflation and the Big Bang singularity, as well as implications for the nature of dark matter and
dark  energy.  A  fractal  approach  to  lp as  a  compact  object  with  iterative  properties  could  revolutionise  our
understanding of space-time at these scales.

These results show that the study of Planck-scale properties is not only consistent with known physics, but also opens up
promising avenues for future research into quantum gravity and theories of everything.

V. AXIOMS and FUNDAMENTAL ASSUMPTION

The axiom put forward here, potentially at odds with current research trends, postulates that the fundamental metric of

space-time on the one hand and the zero-point energy  Ω on the other, form one and the same constituent element,

unified at the base in a Planck space-2  lp
2=ℏ G

c3  

on which an iterative process such as :    S0 : ℏ G
1

c3      (2)

as c−3=tp3

lp3   ⇒  c
−3=tp3 1

lp
1

lp2   and thus  S0 : (ℏ G) tp3 1
lp

1

lp2    

if we assume that   S1 : (ℏ G ) tp3 1
lp

 then  S0 :S1
1

lp2

S1  becomes      S1 : (ℏ G ) tp2 1
c

   with  tp
2=ℏ G

c5  

S1   is simplified, which implies that   S1 : (ℏ G )2 1

c5

1
c

  then

                                           S1 : (ℏ G )2 1

c6    (3)



Following the same process, we find :

                                          S2 : (ℏ G )3 1

c9     (4)

                                                 S3 : (ℏ G )4 1

c12    (5)    

      Generalising, with    

                                                                Sn : (ℏ G
c3 )

n+1

     (6)  which tends to 0 when  n→+∞.  

We are therefore in the presence of a geometric process that is recursive (since we take as its basis  lp2 ) and exhibits self-

similarity 
ℏ G

c3 ,  and therefore have the characteristics of Self-Similar fractal (IFS). 

Examination of this expression reveals that the sequence  {Sn} tends asymptotically towards zero as the index  n increases

indefinitely, signalling convergence of the sequence. This behaviour results from the specific values of the physical constants

ℏ ,G, et c , where the ratio  
ℏ G

c3  represents an extremely small  positive number in the physical  context.  As a result,  the

sequence is {Sn} bounded and, moreover, closed because it contains its own limit point, namely zero. 

By virtue of these properties, {sn} is therefore compact.

More specifically, if we subject the permittivity of the vacuum to this fractality, such as : 

ε 0=( e2 c
4 π α ℏ ) 1

c2   with μ0=
4π α ℏ
e2 c

   

 by replacing c2  by 
lp2

tp2

  ε 0=( e2 c
4 π α ℏ ) tp

2

lp2
 ⇒  ε 0=( e2c

4 π α ℏ 2G )tp2c3

we obtain  ε 0=( e2 c2

4 π α ℏ 2G )lp2
    

or as  S0 : lp2=ℏ G

c3   or  Sn : (ℏ G
c3 )

n+1

⇒   ε n=( e2 c2

4 π α ℏ 2G )(ℏ G
c3 )

n+1

 

⇒   ε n=( e2

4 π α )(ℏ
n−1 Gn

c3n+1 )   (7)



 Thus at iteration  n=0 we find the fine structure constant posed in a theoretical framework α=( e2

4 π ε n
)( 1
ℏ c ). (8)

 For n=1 we obtain α ke kG
=( e2

4 π ε n
)(Gc4)  (9)

which is the product of an electromagnetic coupling constant 
e2

4 π ε0

 multiplied by the gravitational coupling factor 
G

c4

reduced.  

This combination may be particularly relevant in theories that attempt to unify fundamental forces, such as quantum gravity or
theories of everything. It could give clues as to how electromagnetic energy scales compare to energy scales where gravity
becomes significant, especially when looking at extreme astrophysical phenomena or conditions in the primordial universe. 

 Finally, when n→+∞ : ε n=( e2

4 π α )(ℏ
n−1 Gn

c3n+1 )  tends to zero, the fine structure constant can be defined as an 

emergent value on the Planck scale.

A . Discussion 

1) Quantum gravity: 

If the Planck scale is no longer a limit but a gateway to new physics, this could imply new dynamics for the fabric of
space-time itself.  This  could  affect  the  formulation  of  quantum gravity,  because  the  quantum fluctuations  of  the
vacuum and the fundamental interactions at these scales could be radically different from what is envisaged in current
models.

2) String theory and theories of everything: 

These theories, which attempt to reconcile gravity with quantum mechanics, could be directly affected. The extra
dimensions of string theory, for example, could interact in unexpected ways with these new properties of the vacuum.

B. Implications for Cosmology

4) Big Bang and Inflation: 

The extreme conditions at the beginning of the universe could be better understood if the properties of the vacuum
could vary beyond the Planck scale. This could offer new explanations or mechanisms for cosmic inflation or the Big
Bang singularity.

5) Dark Matter and Dark Energy: 

If the modified Planck scale affects the structure of the vacuum, it could also affect theories on the nature of dark
matter and dark energy, which are deeply linked to the structure of space-time.

To conclude this chapter, we will therefore pose lp and tp no longer as a limit on the metric of space-time, but rather as a

compact fractal object with intrinsic iterative properties. 

This approach could be interpreted as an extension of scale relativity, where it could open a door to the sub-Planckian scale.[1]



VI. QUANTIFICATION and PHYSICAL IMPLICATIONS

 The fractal object defined by sn  will be considered unbreakable if any attempt to subdivide it into smaller parts (in

particular a subdivision involving( l p2k ) with (k∈ N )) destroys the fundamental fractal properties of (Sn). Since lp2 is

the smallest definable metric value, the operation is impossible. This can be interpreted as a restriction preventing any
subdivision from maintaining the fundamental property of the system. 

Consequently, lp2 is therefore unitary and non-divisible. (condition 1)

 In order to reconcile this perspective with conventional physics, and to re-establish a continuous description of space-

time compatible with the foundations of differential geometry, the sum ∑ lp2 must be envisaged with characteristics

of  overlap, dissociation and connection  that allow the transition to a structure of continuous varieties on a larger
scale. These properties must ensure coherence with adjacent space-time elements at the Planck scale, while respecting
the constraints imposed by quantization at this scale.

 Similarly,  if  lp2 can  be  considered  as  a  fundamental  compact  object,  any  measure  of  magnitude,  expressed  as

k ⋅ lp2  >  lp2 with k ∈ ℝ  will have to be reduced to the k  fundamental structural element of dimension lp2. 

This implies that the Planck-scale structure, although discrete, behaves like a variety in terms of its metric and topological
properties on a larger scale, making it possible to integrate the concepts of quantization with the geometric continuity required
by classical differential geometry.

This proposal suggests that space, defined by lp2 at this scale would have tiling properties, meaning that two lengths lp2 and

lp2 '  could, by sliding, overlap locally and thus increase the energy level by accumulation. (2)

In this context, the idea of "overlap" can be interpreted as the phenomenon whereby the physical properties or phenomena
observed in one region of space-time, defined by a Planck length, are identical or consistent with those in another adjacent
region of similar size. 

This implies a certain uniformity or homogeneity of the properties of space-time on the scale of the Planck length, thus calling
into question the uncertainty principle. We shall see that this is not the case. 

This property of overlap or "tiling" could define a limit of curvature for space-time, making it possible to specify a state of

maximum overlap tending towards  lp the  sum of the unified energies of which would correspond to the Planck energy

EPlanck.  (condition 2)

This postulate introduces an invariant tensor of order 2, Λ j
i =  lp ei  which is consistent with our axiom.

Let Δt  be any time interval and a speed ε⃗  defined by : ε⃗ Δ t=lp e⃗ we want to study the variation of ε⃗  as a function of Δt  to
begin with.

In this context, the value Δt=1 appears to be an increased limit, because for all Δt  > 1, this would result in a value less than

lp . s− 1 which, under the conditions set out above, is impossible.

On the other hand, Δt=tp  is a minor limit since, by definition, c= lp
tp

.

If we now propose to define the norm of ε⃗  as a function of lp on the major boundary Δt=1 given that lp is of granular type,
an integer summation n is necessary, such that :

ε⃗ . Δt=∑
n

nlp e⃗

With  ct= Δt
tp
⋅ lp we are interested in the boundary of n = 

Δt
tp

.



If we round off to the nearest inverse of the Planck time :  ⌊ 1
tp
⌋  

a quick dimensional analysis reveals that tp∗ ⌊ 1
tp
⌋≈1, which implies a relative deviation

 σ er=1−⌊ 1
tp
⌋ lp
c

 very close to zero. Consequently, we can postulate that n= Δt
tp

 is 

comparable to the set of natural integers ℕ  when Δt →1 s. 

This particular case n= Δt
tp

 raises the possibility of "quantifying" the speed c by n . lp since :

c . Δt=n lp  (10)

Thus the length ct   can be defined as n elements lp contiguous 

Conversely, when Δt  deviates from 1 and tends towards the minor limit  tp the relative deviation tends towards 1. 

n can therefore no longer be integrable to the set of natural integers  and any metric defined by n . lp leads to fractional values
of lp which by definition is impossible. (condition 1)

We therefore propose a mechanism for tiling space-time at the Planck scale in order to satisfy condition 1, i.e., an
unstable   equilibrium   position  where   it   could,   transiently   and   completely,   be   contained  within   the  metric
observed by overlap. This model thus proposes a chaotic small-scale space-time with large-scale smoothing
consistent with the continuum principle.

 If the metric is an open, i.e. an edgeless subspace X in E, the measurement performed by an observer to satisfy the
above  condition  must  randomly  lead  to  the  emergence  of  creation  and  annihilation  operators,  satisfying  the
commutation relations. 

       



 Assume lp2 as the unit tile. Given a closed metric with a perimeter X <ct, where n⋅ lp is always less than X and lp is
indivisible, this tiling process transitions from being transient to becoming permanent. This permanent tiling process
induces a local energy mass, represented by a tensor, which generates a secondary tiling effect on the contiguous space,
analogous to gravity.

For a given metric, if its maximum overlap state corresponds to the Planck energy, then, when the overlap state is minimal,
this energy, which must be conserved, is distributed over the entire length C⋅Δ t. It is then possible to calculate the value of
the fundamental energy on the Planck scale by summing the constituent units.

Thus, if we assume 
EPlanck

n
 the minimum energy value in the ground state is the reduced Planck constant :

EPlanck⋅( Δt
tp )

−1

=Δ t− 1√ c5ℏ
G

⋅ ℏ G

c5
     ⇒    EPlanck⋅( Δt

tp )
−1

= ℏ
Δt

Simplifying by Δt  under the boundary conditions :

EPlanck⋅(tp )=ℏ   (11)

With ΔE<EPlanck and Δt>tp for ∀ n< Δ t
tp

 the two integers framing n play the role of standard deviation, which brings

us back to Heisenberg's principle : ΔE⋅Δ t⩾ ℏ
2

Finally, to conclude on a fundamental note, this quantitative approach leads, when n tends towards 1, to a speed limit extremely
close to c: 

V limit=c−n . ε  with  lp=ε Δt    (12)

VII.  ANGULAR ANOMALY in the LIGHT CONE LOW-MASS PARTICLES at VERY HIGH ENERGIES

In this work, we do not address the problem of renormalization of particle braking as defined by quantum electrodynamics
(QED). Renormalization, as a crucial technique in QED, allows for the treatment of infinite divergences that appear in the
calculations  of  interactions  between charged particles.  Although this  method is  fundamental  for  a  deep understanding of
radiative  braking phenomena and associated corrections,  our  study  focuses  on other  specific  aspects  of  particle  physics.
Therefore, we deliberately omit the application of renormalization concepts in the context of our current analyses. The primary
objective  of  our  research  is  to  explore  the  possible  breaking  of  the  equivalence  principle  at  speeds  approaching  c.  This
approach allows us to simplify our model without the additional complications introduced by renormalization.

Replacing V limit in the angular parameter of the Lorentz factor with  c −n . ε gives us

 
c−nε

c
=tanh (θ ) 

using trigonometric transformations, we obtain the logarithmic expression for θ: 



 θ=
1
2

ln( 1+ c−n ε
c

1−
c−nε

c
)  which implies, after simplification   θ=1

2
ln(2C

nε
−1)

or as  
2c
nε

≫ 1  we obtain 

  θ≈
1
2

ln(2c
nε )  (13)

This simplification is justified by the fact that, in the high-energy limits, the term (2c
nε ) becomes very large compared with

unity. 
Table I

m0 (kg) m0  (eV) n nε θ

e 9,22E-31 5,11E+05 1 1,62E-35 50,161° M0 < 3.9606 MeV

 m- 1,91E-28 1,06E+08 712 1,15E-32 46,877°

M0 ≥ 3.9606 MeV
speed limit at 
Planck mass

π- 2,52E-28 1,40E+08 1242 2,01E-32 46,599°

p 1,69E-27 9,38E+08 56123 9,07E-31 44,692°

n 1,70E-27 9,40E+08 56274 9,10E-31 44,693°

n:maximumsummationoperatorforanacceleratedparticle

In the framework of the Standard Model of Special Relativity, the 45° limits delimiting the cone of light represent the causal
boundary for all events, designated by "e". One notable observation, as illustrated in the above table, concerns an anomaly
relating to low-mass particles. Although these particles adhere to the principles of relativity by maintaining speeds below the
speed of light, they nevertheless appear to violate this limit.

There are two possible solutions to this anomaly: 

 This quantification of c  by lp may not accurately reflect the phenomena observed at very high energies. To verify this
hypothesis,  we will  use  a  heuristic  approach by examining whether,  as  a  function of  p⃗  and  λ it  is  possible  to
reconstruct the known or expected physics at high energy levels. We start with the following basic equation : 

 V limit=c−n . ε

 If  this  quantification  is  consistent  with  known or  expected  physics  for  p⃗ and  λ then  a  bold  hypothesis  can  be
considered: a violation of causality as an edge effect when V limit→c. 

A strong convergent index that can validate this angular anomaly on the light cone is one of the conclusions of Charles
Marteau, in his 2020 thesis awarded by the SFP. He demonstrates that when the curvature of anti-de Sitter space tends
towards zero, a flattening of the light cone implies a probable loss of causality. [2]

A. General solution for a theoretical limit velocity very close to c, non-asymptotic, for all particles of non-zero mass.

So let V limit=c−n . ε then the inverse Lorentz factor :



  γ−1=√(1−
(c−nε )2

c2 )    ⇒ γ− 1=√ 2nε c− (nε )2

c2
     

we can neglect  (nε )2   since   2nε c≫ (n ε )2  and  (nε )2→0

The Lorentz factor becomes : γ ≈
c

√2nε c
  either : 

γ ≈√ c
2nε

      (14)

B. Special solution

In general relativity, the Planck mass is frequently linked to a mass scale beyond which the effects of quantum gravity become
manifest.  It  thus  marks  a  boundary where,  for  a  relativistic  particle  reaching this  energy threshold,  it  would constitute  a
particular solution to this theoretical speed limit. 

Consider the particular solution, when a moving particle of mass m0 reaches 

Planck's mass : Mplanck=
m0 c

√2nε c
     ⇒  ( m0 c

Mplanck)
2

=2n ε c    

m0²C ²

ℏ C
G

=2nε c
  

finally       nε=
m0 ²G

2ℏ
⇒       V limit=c−

m0 ²G

2ℏ
  (15)

Note that  
m0²G

2ℏ ε
⩾ 1 since n≥1

  ⇒  For a rest mass m0<√ 2ℏ ε
G

  (3.9606 MeV; 7.15E-30 kg) this limit becomes invalid,  

Any particle with an initial mass < 3.9606 MeV will never reach Planck mass.

If we take an electron with mass 5.11 KeV < 3.9606 MeV, the speed limit should show c −2 ,7 .10−37 m . s−1  at Planck

mass, which is strictly impossible because it is less than 
lp
t

.   this limit reduced to n = 1 due to (1) becomes v limit=c −ε  and

the Lorentz factor can then be written as γ ≈
1

√2 t p t
− 1   where t = 1 s     (16)

VIII. Heuristic consistency with known physics

Here, we will investigate, in a heuristic way, whether it is possible to reformulate the momentum and wavelength of a particle
using this quantification of C. The aim is to validate this reformulation of the RR by checking the concordance of the results or
by detecting any anomalies.

A. Quantity of motion  

by replacing in the relativistic expression of the momentum : p⃗=γ m0 v⃗   



γ m0   by Planck mass   √ ℏ c
G

and   v⃗    by  (c −
m0²G

2ℏ )i⃑  we find

        √ ℏ c
G (c −

m0 ²G

2ℏ )=p

             C√ ℏ c
G (1−

m0 ²G

2ℏ c )=p  posing    X=−
m0 ²G

2ℏ c

as X →0  by development  limited of  c √ ℏ C
G

(1+X )=p  we obtain

ℏ c3

G
(1+2 X )=p2

  and replacing X again gives

ℏ C3

G
−(m0

2c2)=p2
      (17)

which once homogenised by  c2   

 gives us the energy-impulse quadrivector   E2 −c2 p2=m0
2 c4  

 or  
ℏ C5

G
−(c2 p2)=m0

2 c4   

There is therefore agreement with known physics and no edge effect for p⃗

  Ecmaximale

2 =ℏ c5

G
−m0

2c4  (18)

 for m0  > 3.9606 MeV

EcMaximun
=( 1

√2t p

−1)m0 c
2
  (19)

 for m0   ≤  3.9606 MeV

By applying this non-asymptotic speed limit close to c, we do away with the idea of infinity associated with special relativity.

B. Verification via Wavelength 

Consider a particle whose wavelength λ is defined on the axis λz of motion. De Broglie's relation gives us : 

 λZ=
h
p

The momentum previously defined by p2=ℏ c3

G
−(m0

2 c2) can be reduced to 

  p2=ℏ c3

G
  



Since   
ℏ c3

G
≫ (m0

2 c2)  this implies that   m0
2 c2 can be ignored and  λz becomes : 

 

 λZ=2 π √ ℏ G
c3 =2 π lp

Considering the uncertainty on λz and using Heisenberg's uncertainty principle Δ λZ⩾
ℏ

2 p
 we can assume that, simplified by

the wave vector 2π  :

 λZ=lp ±Δ λZ

and under the conditions of our study : 

as  Δ λZ⩾8 ,08 .10− 36m  or  Δ λZ<lp , Δ λZ  must be reduced to the value  lp 

Thus we model  λz as a harmonic oscillator with two states |lp> and |2lp>, the |0> state being unobservable since it is less than

lp. 

We then look for the proper duration of the oscillation of  λz in observable space, i.e. over the half base length  λZ=2 π lp
becomes :

 λZ=π lp ,  (20)

or as  λZ=π c . tp  and  f=
c
λZ

  we find

  tO=π tp. 

This natural oscillation period can be compared with the Schwarzschild time t s  given by :

  ts=
π GM P

c3  

with a strictly similar result:

 tO=ts=1,6937.10−43 s  

To continue, let's see if it's possible to go further by finding Hawking's entropy applied to a particle.

The standard model gives us the Schwarzschild radius, for a Planck mass with no momentum,  

 RS=MP⋅
2G

c2  ⇒     RS
2=4ℏ ⋅ G

c3   

 i.e. a spherical model with radial value :   RS=2 lp .  

Here, as we are dealing with the case of a moving particle close to C, we assume that λxyz is isotropic in ℝ 3 when the particle's
momentum is small. For relativistic dynamics, since the contraction of lengths only takes place along the axis of displacement,

Rs will take the form of a flattened ellipsoid of revolution, with half major axis  λxy  and half minor axis |2lp> = R⃗S    

The probability amplitude Ψ  is that of a membrane of unit thickness lp and |Ψ |² becomes homeomorphic to



an ellipsoid of revolution contracted along the minor z axis.

The interaction with the zero-point energy field will depend on the effective cross-section of the ellipsoid in the direction of

motion: the effective cross-sectional area  A=π λ XY
2    using here   λXY=

2π ℏ
p

 or the values not affected by movement, 

i.e. 
A
π
=4 π2ℏ 2

p2

Now, as we have established, above, the form not homogenized by momentum   
ℏ C3

G
−(m0

2c2)=p2  

with 
ℏ C3

G
⩾ (m0

2 c2)⇒ ℏ C3

G
≈ p ² finally : 

A c3

4 ℏ G
=π3 (21)

What we're looking for here is entropy, so if we homogenise by Boltzmann's constant :

A c3

4 ℏ G
k B=π3 k B

we find the Bekenstein-Hawking entropy of a black hole given by  SBH=
kB

4
Ac3

ℏ G
 

Finally, the particle acquires an entropy of :

 S=π3 k B=4,281.10−22 J K− 1  

Entropy here means the amount of Hawking radiation confined between the effective cross-section and the limiting velocity c .

This leads to the conclusion that, for any particle with a rest mass greater than 3.9606 MeV, evaporation can be anticipated in a
probable time of 8.67160 × 10-40 s when its dynamics reaches Planck mass. 

There is therefore concordance with known or expected physics and no edge effect  concerning the momentum
and wavelength of an observed particle.

This validates the possible use of V limit=c−n . ε

C. Light cone anomaly

It therefore seems that the RR behaves as expected when V limit=c−n . ε except for this anomaly concerning the cone
of light.

To resolve this paradox, and in the absence of other explanations, we assume that there is a second limit, a fermionic
causality limit, which is not confused with C and can be redefined by :

if we extract nε  by the inverse of   θ≈
1
2

ln(2c
nε ) we obtain 

2C

e(2θ )
=nε  

The existence of this hypothetical limiting velocity V limit  is less than C and does not alter the opening angle of the light

cone, i.e.   θ=45 °



we place  nε=2c

e90
   or  V limit=C(1−

2

e90 )=c −4,913.10
−31

m . s
−1

  (calculation by W.A.)    (22)

Since V limit<c is a crossable limit, this implies  fermion of mass ∀ m0   ≤  3.9606 MeV can become a non-observable
with no possibility of interactions with the external universe at this energy level.

VIII. SIMPLIFIED INVOLVEMENT IN EXTREME ENVIRONMENTS

Since V ζ  cannot be reached under normal conditions, we will assume that it could be reached under extreme circumstances,
such as below the event horizon of a black hole. This is based on three assumptions: 

1. The decrease in angular momentum  J⃑  in favour of gravitational waves during the formation of a black hole is a
gradual process. Consequently, the extraction of energy from angular momentum can never be complete; a residual
velocity must remain, so that J⃗ ≠0 when the radial distance of the collapsing mass reaches the event horizon.

2. The expression of the energy gradient remains strictly positive beyond this horizon, since any emission would violate
the constant c . This observation implies the conservation of angular momentum, so that it is respected again, together
with the Planck mass being exceeded for any particle with an initial mass greater than 3.9606 MeV. 

3. In accordance with the first  part,  it  should be noted that the gravitational compression cannot exceed the Planck
density.  At  this  limit,  the  volume of  the collapsing mass reaches a  constant  value,  allowing us to  determine the
minimum value of the radius rl.

In  condition 2, we set a limit to the curvature of space-time, characterized by maximum tiling at Planck energy. The
notion of singularity is therefore no longer relevant, and a more classical geometry could be envisaged, such as the
calculation of three-dimensional volume in constant time slices, i.e. a 4 ellipsoid such as : 
   

∂V ol

∂ t
=1

2
π2 r3 (t ).   (postulates 1 & 2) 

This gives, when the collapse stabilises at the Planck density. :

V ol=π2 (ηlp )2lp t       η∈ℕ *
+ 

The final result is an oblate ellipsoid of revolution with lp as the polar and (η lp)2 equatorial, M the mass of the compressed

core and  
c5

ℏ G ²
 the Planck density (postulate 3).

       
2M

π 2 (ηlp )2lp
= c5

ℏ G ²
   

 ⇒    
1

π √ lp √M
2G
c2 =η 

  ⇒    
√lp Rs

π
=rl      with    rl=ηlp  (23)



According to this model, by integrating Planck's limits as simple properties inherent to space-time, M  rl then acquires a
quantifiable spatial dimension, whatever M :  product of the Schwarzschild radius and the Planck length.

A . Comparison of collapse times

It is obviously difficult to estimate the duration of the collapse below the event horizon, as it cannot be measured by an outside
observer.

However, by a quick and naive calculation, it is possible to compare the duration t ζ radiale (necessary for the collapse speed to

reach  V ζ radiale=c(1−
2

e90) ) to the time it would take  t l compression would take to reach Planck density :  rl=
√ lp R s

π
 .   

If t l⩾ t ζradiale   then the causal limit  V ζ    would be considered accessible. 

 then for t ζ radiale : 
c(1−

2

e90 )= g t

√1+
(g t )2

c ²

  

                  ⇒      
g2

c2 (( e90

e90 −2)
2

−1)=1
t 2

by replacing k=( e90

e90 −2)
2

−1=3,27761E-39   (W.A. calculation) 

      we find   
1

√k
c
g
=t ζ radiale 

      for t l : 
r l

RS

=√1−
v ²
c ²

 

⇒   v ²=c ²(1−
rl

2

RS
2 )  with v=g t 

which finally gives t= c
g √(1−

rl
2

RS
2 ) 

 by replacing rl et RS   t l becomes   t l=
c
g √(1−

lp

π2 R s
) 

or as  
lp

π 2 Rs

≪ 1     ⇒ t l≈
c
g

 (24)



Finally  t l≪ t ζ radiale  the causal limit can never be reached in radial velocity, whatever the mass of the black hole. 

We now check V ζ tangentielle∝ V ζradiale  

As a basis, when    r=√ lp R s

π
then   V ζ tangentielle=c(1−

2

e90 )m . s
− 1

For   J⃗= r⃗∧ (k M⊙V ζ ) i⃗   from r=√ lp R s

π
   to  r=R s the conservation of angular momentum, as shown in the following

table for 3 typical TN masses, leads us to extremely low initial velocities V s , probably below the reality compatible with
postulates 1 & 2.

 Table II

k k M⊙ Rs
rl Vs

1,00E-13 1,98850E+17 2,95338E-10 2,199198E-23 2,23E-05
10 1,98850E+31 2,95338E+04 2,199198E-16 2,23E-12

1,00E+09 1,98850E+39 2,95338E+12 2,199198E-12 2,23E-16

This makes  V ζ tangentielle for r⩾ √ lp R s

π
  theoretically accessible to the 3 categories of black holes.

In order to rigorously respect the principle of equivalence, it is crucial to go beyond the traditional conception of acceleration,
which is usually limited to a single frame of reference. It is proposed to consider acceleration as having a dualistic nature,
manifesting itself in both inertial and gravitational states. In a context where the space-time metric has a weak curvature, these
two states are practically indistinguishable. However, passing through this hypothetical causal limit should lead to a break
in the equivalence principle, with only the gravitational state becoming observable. 

It is important to stress that this  violation of causality  mainly affects the frame of reference associated with inertial mass. In
such a context, in the absence of energy dissipation, the conservation of potential energy remains a primary consideration. This
raises a pertinent question about the possibility of energy dispersion in this process.

As far as dispersion is concerned, if we calculate the collapse time of a black hole in a non-exhaustive way :

by taking   dg=∫ GM

r2
dr    ⇒    g=[− GM

r ]
Rs

√ lp R s

π    

 as  
1
R s

≪ π

√lp R s

    ⇒   g=
π GM

√ lp Rs

   

we find for ⇒ t l≈
c
g
→t p  when g→

c
t p

  (Planck acceleration).  (25)

B. GTS assumption

It is conceivable that the process of quantum degeneracy could slow down the collapse time, as calculated above, to make it
compatible with the observation time of accretion disks. However, according to our current understanding of physics, once a
mass collapses to form a black hole, with the creation of an event horizon, it appears that quantum degeneracy, as we know it in
less extreme contexts such as neutron stars, is probably not sufficient to counter the effect of gravitational attraction. 

Nevertheless,  the  tiling  process,  presented  as  a  fundamental  axiom,  predicts  that  lp ² superposition  at  this  scale  remains
consistent with quantum gravity models, thus delineating a locus where quantum fluctuations in spacetime become significant.
Consequently,  the  effects  of  quantum  gravity  could  generate  a  region  of  repulsion  increasing  the  collapse  time.  This
significantly modifies the naive result obtained for the calculation of the collapse time of a black hole core. 



However, in the absence of data, we will speculate here on a time close to the formation of the event horizon, as obtained by
simulation of GW170817 observations, i.e. of the order of a second.[6]

The timescale is incompatible with the observation of accretion discs over long periods, which runs counter to the idea of
dispersion.

In accordance with the model shown here , we need to put forward a new hypothesis: 

We then postulate the existence of a new class of topological soliton structured around a gradient of potential energy and zero
angular momentum : R⃗ot J⃗= 0⃗, and for which, for an incoming particle  p⃗ ≠0, there is no longer any possible radial

acceleration but only tangential acceleration, in other words a simple curvature of its trajectory. [4]

 
The Schwarzschild metric must therefore be adapted.

Using the heuristic method, for a test particle of mass m falling towards a black hole of mass Mwe need to consider that the
gravitational potential energy at a distance of r  from the black hole is equal to the maximum kinetic energy that the particle
could have just before falling into the black hole. 

In Newtonian mechanics, gravitational potential energy is given by 
−GMm

r
 and the kinetic energy is given by 

1
2
mv2

. At the

event horizon, the speed of liberation is equal to the speed of light  C  so we can postulate  
1
2
mc2=GMm

r
 which gives the

Schwarzschild radius 
2GM

c2

It is no longer possible to find an equivalence between  
1
2
mc2

 and 
GMm

r
however, it should be noted that this soliton would

not be sensitive to any of the other 3 forces of the Standard Model, so its energy balance could be summarised as Ep=Mc2. 

The same heuristic method can then be applied to find the Schwarzschild metric such that :

ds2=−(1−
GM
c2 r )c2dt 2+(1−

GM
c2r )

−1

dr2+r (d θ2+sin2 θdφ2) (26)

The radial value of the event horizon would therefore be reduced by a factor of 2, and there is no other way to distinguish a
classical black hole from a topological gravitational soliton (GTS). The accretion disk, with its non-zero momentum, could
become the inertial mass of the topological object. In the absence of an accretion disk, the topological gravitational soliton acts
as a gravitational lens.

IX. CONCLUSION

A. Falsification

In  the  context  of  falsifying  this  study,  we  examine  the  potential  formation  of  molecular-sized  gravitational  solitons  by
hypothetical primordial micro black holes. These solitons, characterized by non-inertial mass, absence of electric charge, and
magnetic spin, would have no immediate effect on baryonic matter on a local scale. However, they are expected to exhibit
notable dynamics in the presence of this matter, influenced by the curvature of spacetime, showing oscillations around mass
centers.

An interaction with matter would then be conceivable, particularly with the fundamental rotational state of the para water
molecule |000 , where gravitational coupling could occur at this minimal energy level.〉



It would then be possible to anticipate a deviation of photons above the predicted refractive index, observed during the ortho-
para water isomeric transition at ultra-low temperatures down to its fundamental rotational state. This phenomenon could be
attributed to a high concentration of gravitational topological solitons (GTS) around the para water molecule compared to its
immediate surroundings.

By extension, the distribution of dark matter in galaxies that can be correlated with the distribution of cold hydrogen. 
Specifically, studies have suggested that the radial distribution of dark matter density correlates with cold atomic hydrogen of 
extremely low density in its lowest fundamental state (i.e., the ground state HI with antiparallel electron spin). This correlation 
is often interpreted as an artifact explained by the proportionality between the surface density of the gas and the critical density 
for gravitational stability.  A coupling between HI and GTS would bring a new perspective to this debate, invalidating this idea 
of artifact.[3]

B. Research avenues

The results of this study suggest that exploring the properties of the Planck scale, through a fractal approach to space-time,
opens up new and promising perspectives for understanding quantum gravity and theories of everything. In particular,  the
redefinition of the fundamental constants and metrics of space-time in an iterative and self-similar framework proposes new
dynamics that could have profound implications for special relativity, light-cone anomalies, and the fundamental structure of the
universe.

1)   Compatibility with the Holographic Principle :

To explore  how the  fractal  properties  of  space-time at  the  Planck scale  can be  compatible  with  the  holographic
principle. In particular, to study whether information encoded fractally on a two-dimensional surface ( lp2) can provide
a complete description of the universe, as proposed by the holographic principle. [5]

2. Extension of AdS/CFT :

Investigate the application of the results of this study to the AdS/CFT correspondence. To examine whether higher
dimensional space (HDS) can be seen as emerging from the fractal properties of conformal field theory (CFT), and
what the implications of this perspective would be for string theory.

3. Quantum Gravity :

To study in more detail the implications of the fractal properties of the Planck scale for quantum gravity. In particular,
to analyse how these new dynamics can influence the fundamental interactions and the structure of space-time at very
high energies.

4.  Fermionic causality limit :

Continue research into the light-cone anomaly and the possible existence of a second fermionic causality limit. Assess
the implications of this limit for low-mass particles at very high energies and for the formulation of special relativity at
these scales.

5.  Cosmology and Particle Physics :

To explore the cosmological implications of the properties of the Planck scale, in particular with regard to the soliton
hypothesis (GTS) and the link they could have with dark matter. To study how a fractal approach to space-time could
offer new explanations and mechanisms for these phenomena.

In conclusion, this study proposes an innovative redefinition of the fundamental concepts of theoretical physics, opening up 
multiple and diversified avenues of research. The results obtained, although preliminary, provide a solid basis for future 
investigations aimed at unifying quantum gravity and theories of everything, while remaining compatible with the established 
principles of modern physics.D 
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