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Summary: In this paper, classical concepts of motion and momentum are revisited and a novel 

vision of these concepts is analyzed at a fundamental level of classical physics, whereby a new 

form of motion is presented and defined as “centrial motion.” Additionally, a practical theoretical 

concept of “centrial momentum” is determined and justified. 
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Abstract 

In classical physics, linear and angular motion as well as linear and angular momentum have long 

been defined. In this paper it becomes apparent through analysis that there is much need for the 

presence and denotation for a new type of motion. As such, centrial motion is introduced and 

described as another form of motion not previously presented. Furthermore, a new form of 

momentum called centrial momentum is defined and elaborated. As a result, the motion of 

complex bodies can be analyzed and studied with much more simplicity and ease than previously 

done via classical physics. Along with the discussion of centrial motion and momentum, the 

concepts of linear motion based on the motion of momentum is also studied and analyzed and the 

law of motion of momentum is defined. Additionally, complex scenarios are introduced where the 

discussions assist in the much simpler understanding of the classical scenarios of the motions 

presented. It becomes readily apparent that the use of centrial motion equations and relationships 

derived are the best suited for the purposes of the study of these types of motions. 

In addition, in this paper, motion scenarios that cannot be explained by classical physics are 

discussed and adequately explained by presenting new concepts. Through deeper analyses, it is 

found that momentum is not conserved. However, the kinetic energy of an isolated system, if not 

transformed to other forms of energy, remains conserved. 

Key words 

MM Theory, Linear motion, Linear momentum, Centrial motion, Centrial momentum 

1. Introduction 

As it has been shown classically, the motions of objects are focused on two forms, linear motion 

and angular motion. Linear motion is a motion of a body on a straight line, and angular motion is 

the motion of a body about a fixed point or fixed axis. These types of motions are classically 

analyzed and studied by Newtonian Mechanics [1], Lagrangian Mechanics [2], and Hamiltonian 

Mechanics [3]. In this paper, it will be shown that these motions are more precisely defined via 

the Law of Motion of Momentum which was introduced by the author in “The MM Theory: The 

Theory of Everything Part (1).” [4] 

Additionally, here, another form of motion being denoted as “Centrial Motion” which has not been 

studied in classical physics thus far is introduced and defined. To introduce and understand this 

form of motion, a stationary object that does not have any motion is considered. If an explosion 

takes place right in the center of that object and the object turns into smaller pieces, then all the 

pieces will be thrown apart from the center of the object. After the explosion, each of the pieces 

will have its speed and therefore will have certain linear momentum and possible angular 

momentum. In classical physics, this motion is not defined as a standard form of motion because 

the resultant sum of the linear momentums and also resultant sum of the angular momentums of 

all pieces as a whole is equal to zero. In considering the fact that all the pieces or parts are moving, 



3 
 

it is impractical to model or consider them as a stationary body. Therefore, it is necessary to define 

this type of motion. 

To demonstrate this in better clarity, the above centrial explosion scenario can be studied in another 

manner. [Fig. 1] shows a number of objects that are initially at rest next to one another. Now, if an 

explosion occurs in the center, all the objects will be thrown outwardly from the center at certain 

speeds. If, for example, the intensity or power of the explosion is doubled, then the speed of the 

objects increases and their speeds will be greater than the first explosion. The speed of motions of 

the objects after the explosion depends on the energy released from explosion. In all cases, the sum 

of the linear and the sum of angular momentums of the objects with respect to the center of the 

explosion is equal to zero, both before and after the explosion. For the sake of simplicity, we 

assume that all objects for this case are rigid and equal in mass and equally distributed about the 

center of explosion and can only gain linear momentum upon the explosion. As such, then the sum 

of the magnitudes of linear momentums and the speeds of all these objects relative to the center 

can be considered as characteristics of the explosion. As such, the value of the sum of the 

magnitudes of linear momentums along with their speeds are differentiating characteristics that 

depend on the energy of each explosion. It is here deemed practical to denote a new form of motion 

as each explosion scenario of a certain energy will have a corresponding sum of the magnitudes of 

linear momentums from that explosion. Therefore, “Centrial Motion” can accordingly be defined 

as this new form of motion. And to study this new type of motion, “Centrial Momentum” is defined 

as the momentum manifestation of “Centrial Motion.” 

 
Fig. 1. Number of objects initially at rest, and subsequently thrown outwardly with certain equal speeds after an 

explosion at the central point of reference.   
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In addition to the above example, the following example case study is considered as another 

compelling reason for the need to introduce centrial motion. This example may seem overly-simple 

and unnecessary, but it will later be seen that it will be essential and required as a stepping stone 

to studying such motions.  

Assuming that bodies (1), (2), (3), and (4), all of which have equal mass (𝑚), are moving with 

equal speed and in the directions shown in [Fig. 2]. The entire set of bodies can be considered as 

an isolated system. As such, the linear momentum of this system is equal to zero, while the kinetic 

energy of the entire system is non-zero. That such a system has kinetic energy while it does not 

have momentum is a result based on the classical laws of physics. However, it does not make sense 

to accept that a system without momentum has kinetic energy. When we think about motion, we 

are actually thinking about momentum. Any object or system that has motion and accordingly 

kinetic energy has momentum; and vice-versa, any object or system that has momentum has 

motion and kinetic energy. It is meaningless to say that a system does not have momentum while 

it has motion and kinetic energy. Therefore, the definitions and laws of fundamental physics should 

be revised.  

 
Fig. 2. An isolated system with total summation of linear momentum at zero, where the kinetic energy of the system 

is non-zero.  

While these flaws with classical physics as described are presented here, there are also other cases 

where classical physics falls short to thoroughly explain the scenarios presented. Thus, for a 

broader and more general case to illustrate the need for a fundamental revision in the laws of 

physics, the scenario of the two bodies as shown in [Fig. 3] are considered.  

We assume an isolated system where two bodies are rigid, in a gravity-free, frictionless 

environment and are freely moving in space. As is shown in [Fig. 3(a)], we denote them as the two 

bodies (1) and (2) in 3-D space, where each is moving towards one another with the same 

momentum, (𝑝). Additionally, we next assume that a spring system is placed between the two 

bodies as shown in [Fig. 3(b)]. 
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Fig. 3. (a) two rigid bodies (1) and (2) moving towards one another each with equal momentum, (𝑝), (b) a spring 

system is placed between the two bodies, (c) the time at which the energy of the momentums have in totality been 

transferred to the spring system, (d) a torque causes change in the axis AB to CD of the two bodies, (e) ultimately 

the spring system is released, (f) each body moves with momentum (𝑝) along the CD axis. 

Then, in such a scenario, it can be depicted as per [Fig. 3(c)] the instant in time where the linear 

momentums reduce to zero due to their associated energies being transferred to the spring system. 

At such an instant, we assume that for the system at the AB axis we freeze it and employ energy 

via an applied torque such that the two bodies are reoriented and will be stopped along the CD axis 

as shown in [Fig. 3(d)]. At CD, we gain back the energy that we applied to the system resulting in 

a net zero energy change in the system and thus no energy is expended to achieve this. If, then the 

spring system is released, the end result of this case is that the two bodies move along the CD axis 

and the initial momentums are restored as shown in [Fig. 3(e)]. In the end, the bodies will each 

continue to move opposite to one another with momentums (𝑝) along the CD axis as shown in 

[Fig. 3(f)]. 

Now in the above scenario, two items of note cannot be adequately explained by classical physics. 

First, it is unexplained how all the momentums from [Fig. 3(a)] reduce to zero in [Fig. 3(c)]; in 

other words, it is observed that all the initial momentums in the system vanishes in [Fig. 3(c)].  

Second, it can be noted here in this scenario, as the orientation of linear momentums is altered, it 

becomes unfit to be analyzed as compared to the basic linear scenarios presented in classical 

physics. In the application of classical physics, it is unclear how linear momentums can be 
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readopted along a new axis that is considered and solved for, where such a new alignment falls 

outside the confines of classical theory itself. Classical physics cannot be used to solve for such a 

system as the axis of the momentums are now in a new orientation where it contradicts the classical 

principal of momentum being conserved in a given direction. 

As a result of the above scenario in [Fig. 3], it can clearly be noted that new concepts and revisions 

are required in classical physics to aid us in the studying and solving of such cases and systems.  

From the overall discussions presented for centrial motion in [Fig. 1], it may be pondered and 

argued that it is not needed to define such motion as the movement of each individual object can 

be independently studied and examined to derive the overall output using concepts from classical 

physics. However, it should be noted that first of all, such a task is very difficult and, in some 

cases, impossible. Secondly, in classical physics, the angular motion can theoretically be analyzed 

based on the laws of linear motion. However, since the study of angular motion based on the laws 

of linear motion was practically deemed by physicists as very difficult and sometimes impossible, 

it was needed to study and present the laws of angular motion. Similarly, then, here in the same 

line of reasoning, it can be deemed necessary to define and study centrial motion. Finally, as per 

the scenarios presented in [Fig. 2] and [Fig. 3], we also need to study the concepts of momentum 

and revise the law of conservation of momentum. 

2. Theory 

2.1. Concepts of Momentum 

For studying the concepts of momentum, we begin with the following scenario, 

 
Fig. 4. Body (1) with (a) initial momentum 𝑝→

1𝑖
 and with (b) initial velocity 𝑣→1𝑖 colliding with body (2), resulting in 

the horizontal momentums 𝑝→
1𝑓𝑥

, 𝑝→
2𝑓𝑥

, and momentum velocity vectors 𝑣→1𝑓𝑥, 𝑣→2𝑓𝑥. Notably there are generated 

centrial momentums in the form of 𝑝→
1𝑓𝑦

 and 𝑝→
2𝑓𝑦

. The corresponding velocity vectors 𝑣→1𝑓𝑦 and 𝑣→2𝑓𝑦 are also 

shown in the figure.  
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In [Fig. 4], we envision a fundamental scenario where momentum is created and where we witness 

how momentum is not conserved. In addition to momentums being shown in the [Fig. 4(a)], there 

are also corresponding velocities that are being depicted in [Fig. 4(b)]. In such a scenario, an initial 

momentum 𝑝→1𝑖 with corresponding velocity 𝑣→1𝑖 is moving via body (1). Body (1) moves along 

the illustrated path of motion until it collides with the second body (2). Following the impact, body 

(1) then continues to travel along at an angle α from its original path of motion. In turn, body (2) 

then travels along at an angle β. Following this, based on classical physics it can be derived that 

body (1)’s final momentum when projected along the original path of motion is 𝑝→1𝑓𝑥. Similarly, 

it can be noted that the final momentum of body (2) when decomposed utilizing angle β yields 

𝑝→2𝑓𝑥. As a result, the sum of 𝑝→1𝑓𝑥 and 𝑝→2𝑓𝑥 is equal to the initial incoming momentum from 

body (1), 𝑝→1𝑖. However, what is also apparent is that there are new momentum components 

perpendicular to these that are created as seen in [Fig. 4] and which are denoted as 𝑝→1𝑓𝑦 and 𝑝→2𝑓𝑦. 

Uniquely, these components are created and recognized as momentums from a simple impact 

scenario. In other words, new momentums perpendicular to the initial momentum direction were 

created in this collision scenario and thus, momentum is not conserved. They are considered, 

understood, and explained via the concept of “Centrial Momentum” as was discussed earlier. In 

classical physics these new components are dealt with via momentum vector cancellations. 

It should be noted that in applying classical physics to [Fig. 4], only the sum of the two final 

momentum components in the direction of the initial momentum is considered and mathematically 

shown as equal to the initial momentum. While classical physics calculations hold that 

momentums in a given direction add up to the same value, they are intrinsically not in fact the 

same as to the initial momentum. That is, if they were the same, their energies must also be equal 

to each other’s and this is clearly not the case.  

Now, based on the new concepts of momentum introduced, we can more precisely solve for 

scenario [Fig. 4] as follows, 

We can state that for any considered initial momentum, the magnitude of the momentum in its 

initial direction is always constant, and therefore,  

 𝑝1𝑖 = 𝑝1𝑓𝑥 + 𝑝2𝑓𝑥 (2.1) 

For the newly created centrial momentum, 

 𝑝1𝑓𝑦 = 𝑝2𝑓𝑦 (2.2) 

Energy of the system before collision is, 

 𝐸𝑖 =
1

2
𝑝1𝑖𝑣1𝑖 (2.3) 

Energy of the two final momentums in the direction of the initial momentum is,  

 𝐸𝑓𝑥 = 𝐸1𝑓𝑥 + 𝐸2𝑓𝑥 =
1

2
𝑝1𝑓𝑥 ∙ 𝑣1𝑓𝑥 +

1

2
𝑝2𝑓𝑥 ∙ 𝑣2𝑓𝑥 (2.4) 
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Energy of the centrial momentum, (𝐸𝑐.𝑚), is calculated as, 

 𝐸𝑐.𝑚 = 𝐸1𝑓𝑦 + 𝐸2𝑓𝑦 =
1

2
𝑝1𝑓𝑦 ∙ 𝑣1𝑓𝑦 +

1

2
𝑝2𝑓𝑦 ∙ 𝑣2𝑓𝑦 (2.5) 

Based on the above, it can be shown that the addition of the energy of centrial momentum to that 

of the two final momentum components in the direction of the initial momentum equates to the 

total energy of the two bodies (1) and (2) combined. This can be illustrated as follows: 

 𝐸𝑓 = 𝐸𝑓𝑥 + 𝐸𝑐.𝑚 (2.6) 

 

 
𝐸𝑓 =

1

2
( 𝑝1𝑓 cos 𝛼 ∙  𝑣1𝑓 cos 𝛼 +  𝑝2𝑓 cos 𝛽 ∙  𝑣2𝑓 cos 𝛽 +  𝑝1𝑓 sin 𝛼

∙  𝑣1𝑓 sin 𝛼 +  𝑝2𝑓 sin𝛽 ∙  𝑣2𝑓 sin 𝛽) 
(2.7) 

 

 
𝐸𝑓 =

1

2
( 𝑝1𝑓 𝑣1𝑓 cos

2 𝛼 +  𝑝2𝑓 𝑣2𝑓 cos
2 𝛽 +  𝑝1𝑓 𝑣1𝑓 sin

2 𝛼

+  𝑝2𝑓  𝑣2𝑓 sin
2 𝛽) 

(2.8) 

 

 𝐸𝑓 =
1

2
( 𝑝1𝑓 𝑣1𝑓(cos

2 𝛼 + sin2 𝛼) +  𝑝2𝑓 𝑣2𝑓(cos
2 𝛽 + sin2 𝛽)) (2.9) 

 

 𝐸𝑓 =
1

2
𝑝1𝑓𝑣1𝑓 +

1

2
𝑝2𝑓𝑣2𝑓 (2.10) 

As such, Eq. (2.10) shows the energy equivalency as has been stated. This result shows the 

perpendicular momentums cannot be ignored in our analysis. In doing so, we would merely be 

considering the momentum in its initial direction - conservation of energy of the system would 

then not be satisfied. 

Now if we go back and reverse the whole scenario such as the incoming bodies are the final two 

bodies moving in the reverse directions, then we see that body (2) will stop at the center of the 

Cartesian axes. In this case, the initial magnitude of momentum of the system is the sum of the 

magnitudes of momentums of bodies (1) and (2) which is (𝑝1𝑓 + 𝑝2𝑓), and the final momentum of 

the system is 𝑝1𝑖. As a result, for such a scenario, the final momentum is less than the initial (i.e., 

momentum is destroyed) and again we note that the momentum is not conserved. 

Despite this, the energy of a system is always conserved. If the kinetic energy of an isolated system 

is not transformed to other forms of energy or vice versa, then the kinetic energy remains 

conserved; since the kinetic energy is dependent on momentum and also the speed of momentum, 

(𝐾𝐸 =
1

2
𝑝𝑣 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡), then if the momentum of a system is varied then the speed of the 

momentum changes as well and vis-versa.  

 

Next, we will perform a deeper analysis of the concept of momentum. It will be shown that rather 

than considering the momentum components only, if we consider the momentum velocities’ 
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vectors as well, then we will find that the sum of the energies of the final momentum(s) is equal 

to that of the initial. 

To examine this in detail, [Fig. 5] is considered. In [Fig. 5(a)] vector, 𝑂𝐴
→  

, shows the momentum, 

(𝑝→), on a body at origin, O, in a 2-axis Cartesian coordinate system. In this Figure, a separate 

vector, 𝑂𝐵
→  

, is shown representing the velocity, (𝑣→), of this momentum.  

 
Fig. 5. The decomposition of a momentum vector in (a) 2D space passing through origin, (b) 3D space passing 

through origin, and (c) 3D space where the momentum vector does not pass through origin, demonstrate that energy 

of the momentum is equal to the sum of its components’ energies.  

First, from its basic conceptualization, momentum always has an intrinsically velocity at any point 

in time that is in the same direction as that of itself. As a result, if the momentum of the body is 
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denoted as 𝑝→ and its velocity 𝑣→, then we deduce and consider a momentum that moves with the 

speed of 𝑣. The energy of this momentum (𝑝) with the speed of 𝑣 is calculated as per the below 

relationship: 

 𝐸 =
1

2
𝑝𝑣 (2.11) 

Here, angle 𝛼 as shown in [Fig. 5(a)], represents the angle between the momentum or velocity 

vector to the x-axis. It is noted that the momentum vector and velocity vector can be decomposed 

into X and Y vector components in the Cartesian coordinate system. To be able to conduct a more 

detailed analysis of the momentum vector’s energy, we must determine the components of the 

velocity in addition to the components of the momentum. To do so, the Cartesian components of 

the momentum and velocity can be derived from the below geometric relationships:  

 𝑝𝑥 = 𝑝 cos 𝛼,            𝑝𝑦 = 𝑝 sin𝛼  (2.12) 

 

 𝑣𝑥 = 𝑣 cos 𝛼,            𝑣𝑦 = 𝑣 sin𝛼 (2.13) 

Next, let’s assume for a moment that kinetic energy is directional. If so, then in the case of [Fig. 

5(a)], we will consider this energy being directed in the same orientation as the momentum 𝑝→ and 

velocity 𝑣→.  We can then decompose it in the Cartesian coordinate system of X and Y axes. 

Notably, based on this assumption, we find that the sum of the energies in the two directions of X 

and Y will be equivalent to that of the whole based on the below mathematical calculations:  

 𝐸𝑥 + 𝐸𝑦 =
1

2
𝑝 cos 𝛼 ∙ 𝑣 cos 𝛼 +

1

2
𝑝 sin 𝛼 ∙ 𝑣 sin 𝛼 (2.14) 

 

 𝐸𝑥 + 𝐸𝑦 =
1

2
(𝑝𝑣 cos2 𝛼 +  𝑝𝑣 sin2 𝛼) (2.15) 

 

 𝐸𝑥 + 𝐸𝑦 =
1

2
𝑝𝑣(cos2 𝛼 + sin2 𝛼) =

1

2
𝑝𝑣 (2.16) 

Based on the above result, it is concluded that given any considered momentum, its vector and its 

velocity vector can always be decomposed into Cartesian components. Such decomposition 

components can subsequently be utilized in energy calculations as per the above, and their 

combination shown to be equivalent in energy as to that of the considered momentum’s. 

Similarly, this analysis and argument can be made for a 3-dimensional system.  To begin, we 

assume here the Cartesian coordinate axes of X, Y, and Z. As shown in [Fig. 5(b)], an initial vector 

𝑂𝐴
→  

 is utilized to represent the vector of momentum 𝑝→, and can also be utilized for the analysis of 

the velocity vector 𝑣→. Our analysis is a geometric one and it is noted that the angle created between 

vector 𝑂𝐴
→  

 and the plane XZ is represented in [Fig. 5(b)] by 𝛼. Similarly, the angle between vector 

𝑂𝐴
→  

 and plane YZ is denoted by 𝛽. If we draw a line from point A perpendicular to the plane XZ 

(i.e., 𝐴𝐶
→  

), then the plane OAC would be perpendicular to the XZ plane. Therefore, the angle ∠AOC 
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as described earlier would be 𝛼. In addition, if we draw a line from point A perpendicular to plane 

YZ (i.e., AB), then the plane OAB would be perpendicular to the YZ plane. Accordingly, the angle 

∠AOB as described prior would be 𝛽. Based on geometric theorems, the decomposition of 𝑂𝐴
→  

 can 

be then accomplished in the three Cartesian directions of X, Y, Z as 𝑂𝐹
→  

, 𝑂𝐸
→  

, and 𝑂𝐷
→  

. Hence, the 

following can be seen and deduced from [Fig. 5(b)]: 

 𝑂𝐹 = 𝐷𝐶 = 𝐵𝐴 = 𝑂𝐴 sin𝛽 (2.17) 

 

 𝑂𝐸 = 𝐷𝐵 = 𝐶𝐴 = 𝑂𝐴 sin𝛼 (2.18) 

 

 𝑂𝐷 = √𝑂𝐶2 − 𝐷𝐶2 = √(𝑂𝐴 cos 𝛼)2 − (𝑂𝐴 sin𝛽)2 (2.19) 

 

 𝑂𝐷 = 𝑂𝐴√cos2 𝛼 − sin2 𝛽 (2.20) 

Based on the geometric analysis above, then the similar decomposition of the vectors for 

momentum and velocity can be completed as per the below: 

 𝑝𝑋 = 𝑝 sin𝛽,        𝑣𝑋 = 𝑣 sin𝛽 (2.21) 

 

 𝑝𝑦 = 𝑝 sin𝛼 ,       𝑣𝑦 = 𝑣 sin𝛼 (2.22) 

 

 𝑝𝑧 = 𝑝√cos2 𝛼 − sin2 𝛽,            𝑣𝑧 = 𝑣√cos2 𝛼 − sin2 𝛽 (2.23) 

Then, following the above, we can readily calculate for energy in each Cartesian direction as 

follows: 

 𝐸𝑥 =
1

2
𝑝𝑥𝑣𝑥 =

1

2
𝑝𝑣 sin2 𝛽 (2.24) 

 

 𝐸𝑦 =
1

2
𝑝𝑦𝑣𝑦 =

1

2
𝑝𝑣 sin2 𝛼 (2.25) 

 

 𝐸𝑧 =
1

2
𝑝𝑧𝑣𝑧 =

1

2
𝑝𝑣(cos2 𝛼 − sin2 𝛽) (2.26) 

And the total energy, 𝐸𝑡, can then be calculated as below: 

 𝐸𝑡 = 𝐸𝑥 + 𝐸𝑦 + 𝐸𝑧 (2.27) 

 

 𝐸𝑡 =
1

2
𝑝𝑣 sin2 𝛽 +

1

2
𝑝𝑣 sin2 𝛼 +

1

2
𝑝𝑣 cos2 𝛼 − 

1

2
𝑝𝑣 sin2 𝛽 (2.28) 

 

 𝐸𝑡 =
1

2
𝑝𝑣(sin2 𝛼 + cos2 𝛼) =

1

2
𝑝𝑣 (2.29) 

Thus, it is shown that the total energy of the system calculated as per the above by decomposition 

of the momentum and velocity vectors into the Cartesian coordinate system will still be exactly 

equivalent as to the total energy of the system when not decomposed. 
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The previous analyses above were for the cases where the momentum vector passes through the 

center of a Cartesian coordinate system. Next, we consider a case where a momentum vector does 

not pass through the center. In other words, we would like to study a momentum vector when it is 

based off of any given point in the Cartesian coordinate system. 

Now in [Fig. 5(c)], it is shown that momentum or velocity vector 𝐴𝐵
→  

 does not necessarily pass 

through the center 𝑂. As such, it is assumed that it can be at any location in space. Here, as is 

shown, the angle between momentum or velocity vector with the plane XZ is denoted as 𝛼, and 

with the plane YZ is denoted as 𝛽. As can be seen, the plane GEF (i.e., the plane that vector 𝐴𝐵
→  

 is 

placed in) is perpendicular to plane XZ as line EF is perpendicular to plane XZ. Therefore, angle 

∠EGF is the angle that vector 𝐴𝐵
→  

 makes with plane XZ that here we are denoting as 𝛼. Similarly, 

𝐴𝐵
→  

 vector is in the plane GEH and this plane is perpendicular to plane YZ as line GH is 

perpendicular to plane YZ. As a result, angle ∠GEH is the angle that vector 𝐴𝐵
→  

 makes with the 

YZ plane which, here, we denoted as 𝛽. In accordance with [Fig. 5(c)], the decompositions of the 

vector 𝐴𝐵
→  

 are conducted via vectors parallel to the coordinate axes. As can be seen, the 

decomposition of 𝐴𝐵
→  

  vector parallel to the X axis is 𝐴𝐷
→  

. The decomposition of the 𝐴𝐵
→  

 vector 

parallel to the Y axis is 𝐶𝐵
→  

. And the decomposition of 𝐴𝐵
→  

 vector parallel to the Z axis is 𝐷𝐶
→  

. For 

calculating these vectors, geometrical relationship as per the before discussions can be utilized. 

For calculation of vector 𝐴𝐷
→  

, we consider the orthogonal triangle △ADB and derive that, 

 𝐴𝐷 = 𝐴𝐵 sin𝛽 (2.30) 

Similarly, for the calculation of vector 𝐶𝐵
→  

, we consider the orthogonal triangle △ACB and derive 

that, 

 𝐶𝐵 = 𝐴𝐵 sin𝛼 (2.31) 

And, for the calculation of vector 𝐷𝐶
→  

, we consider the orthogonal triangle △ADC and derive that, 

 𝐷𝐶 = √𝐴𝐶2 − 𝐴𝐷2 = √(𝐴𝐵 cos 𝛼)2 − (𝐴𝐵 sin𝛽)2 (2.32) 

 

 𝐷𝐶 = 𝐴𝐵√cos2 𝛼 − sin2 𝛽 (2.33) 

Based on the geometric analysis above, then the similar decomposition of the vectors for 

momentum and velocity can be completed as per the below: 

 𝑝𝑋 = 𝑝 sin𝛽 ,             𝑣𝑋 = 𝑣 sin𝛽 (2.34) 

 

 𝑝𝑦 = 𝑝 sin𝛼 ,             𝑣𝑦 = 𝑣 sin𝛼 (2.35) 

 

 𝑝𝑧 = 𝑝√cos
2 𝛼 − sin2 𝛽,            𝑣𝑧 = 𝑣√cos

2 𝛼 − sin2 𝛽 (2.36) 
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Then, the same mathematical formulations as per the above for [Fig. 5(b)] can be utilized to 

confirm the same result in [Fig. 5(c)]. Doing so reveals that the total energy of the system 

calculated as per the above by decomposition into a 3-dimensional system will still be exactly 

equivalent as to the original energy of the system when not decomposed. 

To expand on the above discussions, it is essential to note any given kinetic energy can be 

attributed a direction. For the above cases, we found that when we consider decompositions of 

momentum and find the energy in those directions, the total calculated energy is exactly equivalent 

as to the original. In addition, it can be noted that these components can be added together as 

scalars and not as vectors. In other words, we can say for example that while energies in the 

direction of X, Y, or Z may be added together as scalars, they cannot be added together in the same 

manner as vectors.  

Next, the aim will be to study the summation of momentums in a system. In [Fig. 6(a)], considering 

two momentums 𝑝→1 and 𝑝→2, the classical representation of the summation of these two vectors is 

shown and denoted by vector 𝑝→. Based on classical physics, the addition of 𝑝→1𝑥 to 𝑝→2𝑥 results in 

the summation momentum vector 𝑝→, while the orthogonal components 𝑝→1𝑦 and 𝑝→2𝑦 are 

classically stated to “cancel” one another. However, this is, in fact, an incorrect assumption in 

classical physics. In deriving the classical summation vector 𝑝→, the exact velocity of 𝑝→ develops 

as an unknown and thus no energy calculation can be made utilizing it. Therefore, momentum 

vector 𝑝→ is not an accurate representation for the summation of vectors 𝑝→1 and 𝑝→2.  

 
Fig. 6. (a) The decomposition of momentum vectors 𝑝→

1
 and 𝑝→

2
 into their Cartesian coordinates, and their incorrect 

classical summation as 𝑝→, and (b) the similar decomposition of velocity vectors 𝑣→1  and 𝑣→2. 

The correct summation of the two momentum vectors must be a momentum vector or momentum 

vectors where their combined energies are equal to the total energy of the two initial momentums. 

To calculate the energy of momentum (1), 𝑝→1, this vector is decomposed into 𝑝→1𝑥 and 𝑝→1𝑦 and 

its velocity components are depicted as per [Fig. 6(b)]. Similarly, for momentum (2), 𝑝→2, this 



14 
 

vector is decomposed into 𝑝→2𝑥 and 𝑝→2𝑦 and its velocity components are utilized for the calculation 

of its energy. The momentum combination of 𝑝→1 plus 𝑝→2 can thus correctly be represented by the 

addition of the linear components 𝑝→1𝑥, 𝑝
→
2𝑥, 𝑝→1𝑦 and 𝑝→2𝑦. These latter two momentums are 

additional vectors which are here together considered as a centrial momentum as each equal to one 

another but with the opposite directions.  From this decomposition, the momentum and energy of 

the system in [Fig. 6] can correctly be calculated and understood as follows: 

 𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑡 = 𝐸𝑝1𝑥 + 𝐸𝑝1𝑦 + 𝐸𝑝2𝑥 + 𝐸𝑝2𝑦 (2.37) 

 

 
𝐸𝑡 =

1

2
𝑝1 cos 𝛼 ∙ 𝑣1 cos 𝛼 +

1

2
𝑝1 sin 𝛼 ∙ 𝑣1 sin 𝛼 +

1

2
𝑝2 cos 𝛽 ∙ 𝑣2 cos 𝛽

+
1

2
𝑝2 sin 𝛽 ∙ 𝑣2 sin 𝛽 

(2.38) 

 

 𝐸𝑡 =
1

2
𝑝1𝑣1(cos

2 𝛼 + sin2 𝛼) +
1

2
𝑝2𝑣2(cos

2 𝛽 + sin2 𝛽) (2.39) 

 

 𝐸𝑡 =
1

2
𝑝1𝑣1 +

1

2
𝑝2𝑣2 (2.40) 

Therefore, as demonstrated, the combined energies of all components are equivalent to the total 

energy of the two momentums. 

2.1.1. Law of motion of momentum 

This law states that for an isolated system in the absence of an external force, and where there is 

no internal released or stored energy on the system, for any considered initial momentum, the sum 

of the magnitudes of all subsequent momentum(s) decomposed in the direction of the initial 

momentum will always remain constant and equal to the initial magnitude.  

When momentum is conveyed by a body without any action being applied to the body, the 

direction and the speed of momentum always remain constant. When the initial momentum is 

partially or totally transferred to or through another body or bodies and assuming that the other 

body or bodies was/were at rest, the magnitude and direction of summation vector of the final 

momentum vector(s) is always the same as that of the initial momentum, the total energy of the 

momentum(s) is conserved, and the speed of the subsequent momentum(s) varies and is dependent 

on, 

a) the speed and the direction of the initial momentum, and 

b) the directions of motions of all momentums after the collision, and  

c) the mass and rigidity of all bodies. 

In other words, the law states that the sum of the magnitude of the transferred momenta plus the 

magnitude of momentum which remains in the initial body, all with respect to the initial direction 

remains constant. As such, we can imagine any considered momentum as an entity that always 
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moves in space either being conveyed by a body(s) or transferred from one body(s) to other(s). 

This is such that the sum of its constituent vector(s) in the initial direction remains identical to the 

initial momentum’s vector, its energy is conserved, and where its constituent speed(s) may not 

always remain constant. 

Even though momentum is a property of moving body(s) and is dependent on the body(s), we can 

imagine any momentum as an energy entity. If this energy entity is not partially or totally stored, 

it can be considered as an independent entity that is always in motion or is being transferred from 

one or more bodies to another while its magnitude remains constant. 

As the magnitude and direction of the mathematically summation of momentum’s vector(s) at any 

point in time are always constant, then, 

 ∑ 𝑝→𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =∑ 𝑝→𝑓𝑖𝑛𝑎𝑙 =∑𝑚𝑣→  = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (2.41) 

Here, 𝑚 is the mass of body(s) that convey the momentum(s). The mass, 𝑚, and the speed of 

momentum, 𝑣, can be variable while momentum itself in its initial direction is always constant. 

2.1.2. Law of conservation of momentum with respect to any given direction 

For an isolated system in the absence of an external force, and where there is no internal released 

or stored energy on the system, the sum of the magnitudes of all momentum(s) decomposed in any 

considered direction remains constant. This is while the sum of the total magnitudes of all 

subsequent momentum(s) may or may not be conserved. Even though there are no internal released 

or stored energy on the system, momentum may be created or destroyed. 

Having revised the concept of motion in physics, returning to our previous discussions it is found 

that we need to introduce a new type of motion. This is denoted as “Centrial Motion.” The new 

ideas and concepts are introduced in this paper and are shown to be capable of being thorough in 

all systems, and being broadly and generally applied than the limited cases studied thus far in 

classical physics. 

2.2. Centrial Motion 

To begin studying centrial motion, it is helpful to discuss a simple scenario so that we can better 

determine its basic properties, and derive solutions and answers to which can later be broadly and 

easily be applied to complex cases. To this end, we begin by presenting a simple scenario as per 

[Fig. 7(a)]. Here, it is assumed that two bodies (1) and (2) are at rest and positioned together in 

contact side by side. To make matters simple, these two bodies are considered as two points for 

the purpose of our analysis. Now if there is a sudden explosion in-between them or say a sudden 

burst of energy that is solely transferred to both bodies as kinetic energy and none else, it can be 

concluded that the total gained kinetic energy of both bodies is equal to the energy of the system 

prior to the explosion. Such an occurrence is henceforth defined and denoted as an “energy blast.” 
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During the energy blast, the speeds of the bodies increased from zero to their final speeds (gained 

acceleration). Therefore, per Newton’s Second Law of Motion, there must have been forces acting 

on the bodies to achieve this. Following per Newton’s Third Law of Motion, it can also be 

concluded that the two forces acting on these two bodies are equal but in opposite directions. To 

then determine the initial energy of the system (i.e., energy of the energy blast), we need to find 

the total kinetic energy of both bodies based on their gained momentums and speeds of 

momentums. 

 
Fig. 7. (a) Two bodies (1) and (2) in an energy blast scenario and their corresponding force and momentum vectors, 

(b) three bodies (1), (2) and (3) in an energy blast scenario where 𝐹
→
2 and 𝐹

→
3 are classically considered together as a 

reaction force to 𝐹
→
1, (c) and the detailed simultaneously action and reaction by 𝐹″

→ 
2 and 𝐹″

→ 
3 in the three-body 

energy blast scenario.  

In [Fig. 7(a)], if the amount of gained linear momentums of body (1) and (2) are denoted as 𝑝1 and 

𝑝2 and the amount of their final speeds are denoted as 𝑣1 and 𝑣2 (i.e., the speeds of motion of 

momentums), then the total energy of the system is calculated as follow: 

 𝐸 = 𝐸1 + 𝐸2 =
1

2
(𝑝1𝑣1 + 𝑝2𝑣2) (2.42) 
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Next, we consider a scenario where rather than two bodies, there are three bodies in the system. In 

that case, for analysis of the energy of the whole system in the event of an energy blast, we initially 

determine the forces being applied to the bodies and the corresponding momentums. Based on 

classical physics, if we analyze the forces acting on the bodies as the energy blast is being applied 

to a three-body system, then we can denote and analyze the forces as 𝐹
→
1, 𝐹
→
2, and 𝐹

→
3 as shown in 

[Fig. 7(b)]. Thereupon, based on classical physics, we consider and denote 𝐹′
→ 

 as an opposite and 

equal reaction of the force to 𝐹
→
1, as per Newton’s Third Law of Motion. However, this brings 

about a conundrum as considering such a force disregards the fact that bodies (2) and (3) do not, 

in fact, move in the exact direction of 𝐹′
→ 

.  There must also be other forces acting upon these two 

bodies simultaneously in addition to 𝐹′
→ 

 to push them apart.  In other words, these two bodies are 

not only acted upon by 𝐹′
→ 

 but also, they are acted on by two other forces of 𝐹″
→ 
2 and 𝐹″

→ 
3 as shown 

in [Fig. 7(c)]. These two latter forces are equal and in opposite directions to one another and can 

be in any direction.  

For further analysis, it shall be noted that 𝐹′
→ 

 is acting on bodies (2) and (3) simultaneously. Here, 

at this point, since the accelerations of the two bodies in direction of 𝐹′
→ 

 are the same, then, the 

forces acting on each body, denoted as 𝐹′
→ 
2 and 𝐹′

→ 
3, are proportional to their masses and the total 

of these two forces are equivalent to 𝐹′
→ 

. Again, it must be noted that, in addition to 𝐹′
→ 

, these two 

forces, 𝐹″
→ 
2 and  𝐹″

→ 
3, are also simultaneously acting on the two bodies (2) and (3) to push them 

apart. 

Based on this analysis, we note that this breakdown and view of the forces is in-line with reality 

and what actually takes place. This view of the forces is also well-suited with the Third Law of 

Motion, assuring us to conduct all studies and analyses correctly. In contrast, only considering the 

three forces as shown in [Fig. 7(b)] as per classical physics to study these cases would not be the 

correct view of the reality and it is not compatible with the Third Law of Motion.     

Thus, the correct view of the analyze would be as per [Fig. 7(c)], whereby we denote and draw the 

vectors as shown. In this Figure, we may consider 𝐹
→
2 the vector combination of 𝐹′

→ 
2 and 𝐹″

→ 
2, as 

the total force acting upon body (2) as per the classical physics view. Similarly, we may consider 

𝐹
→
3, the vector combination of 𝐹′

→ 
3 and  𝐹″

→ 
3, as the total force acting upon body (3). With the force 

vectors analyzed as such, it is clear then how Newton’s Third Law of Motion is satisfied. While 

𝐹″
→ 
2 and  𝐹″

→ 
3 obey Newton’s Third Law of Motion and cancel each other out, 𝐹′

→ 
2 and 𝐹′

→ 
3 

accumulate as equal and opposite to 𝐹
→
1, appropriately highlighting force cancellation. 

By applying a Cartesian coordinate system to the center of the energy blast as show per [Fig. 7(c)], 

we can decompose 𝐹
→
2 into the two components of 𝐹

→
2𝑥 and 𝐹

→
2𝑦. Similarly, we can decompose 
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𝐹
→
3 into the two components of 𝐹

→
3𝑥 and 𝐹

→
3𝑦. Again, we can analyze the system in this Cartesian 

coordinate system and derive the same force cancellation results as discussed prior.  

[Fig. 7(b)] and [Fig. 7(c)] show that our analysis is derived based on reference to body (1)’s 

primary axis of movement but it can be shown that the same argument and analysis can be made 

for bodies (2) and (3) if their axes of movements is considered as the primary axis instead.  

To extend our analyses in the cases of more than three bodies, it can be accomplished via one of 

two methods. The first method is to consider one body and solve for the rest of the bodies modelled 

as a 3-body system. This modelling technique is repeated for the new group of bodies until there 

are the final 3-bodies. The second method is to group the bodies into three groups and solve for 

each group individually. Subsequently, the results can be aggregated and solved for using the same 

techniques as was presented for the 3-body system.  

Next, our focus will be to analyze momentums and their corresponding velocities as per the energy 

blast scenario presented above. As such, we can now consider [Fig. 8] where the bodies are in 

motion as shown. It is important to note that with reference to the force decomposition in [Fig. 

7(b)] where the net force of 𝐹
→
2 and 𝐹

→
3 are represented by 𝐹′

→ 
, it is incorrect to consider the 

illustrated 𝑝′
→ 

 opposite to 𝑝→1 as the true total manifestation of the momentums of bodies (2) and 

(3) ([Fig. 8(a)]). Doing so would violate the conservation of energy principles as explained earlier. 

In other words, the total energy of bodies (2) and (3) cannot be correctly represented and calculated 

via 𝑝′
→ 

. Even if velocity was decomposed from known values of  𝑣→2 and 𝑣→3 onto the 𝑝′
→ 

  axis, it 

would still result in an incorrect value for the total energy as the orthogonal values would be 

missing. 

The correct methodology to solve the system is to assign a coordinate system as per [Fig. 8(b)] 

and [Fig. 8(c)].  Then, in doing so, the velocities and the momentums of bodies (2) and (3) would 

correspond to our force analysis in [Figure 7(c)]. First, we will focus on the velocities [Fig. 8(b)]. 

The equal velocities in the direction of 𝐹′
→ 

, are: 𝑣′
→ 
2 and 𝑣′

→ 
3. As such, bodies (2) and (3) gain 

velocities simultaneously by a force reaction to 𝐹
→
1. The velocities 𝑣′

→ 
2 and 𝑣′

→ 
3 are found to be 

equal because as it was noted on discussions of force analyses in [Figure 7(c)], these two bodies 

are such that 𝐹′
→ 

 is distributed to the bodies in such a way that they react together and are 

proportional to their masses, resulting in their equal velocities. In addition, two additional velocity 

vectors 𝑣″
→ 
2 and 𝑣″

→ 
3 are simultaneously created at an assumed angle (∠θ) with respect to the X 

axis by forces 𝐹″
→ 
2 and 𝐹″

→ 
3. The velocity vectors 𝑣″

→ 
2 and 𝑣″

→ 
3 vary in their magnitudes and are 

inversely proportional to the masses of the two bodies. It can geometrically be observed that 𝑣→2 

is the combination of velocity vectors of 𝑣′
→ 
2 and 𝑣″

→ 
2. Velocity vector 𝑣″

→ 
2 is further decomposable 

into a 𝑣″
→ 
2𝑥 component and 𝑣→2𝑦. Then, the addition of 𝑣′

→ 
2 and 𝑣″

→ 
2𝑥 results in the value for 𝑣→2𝑥 
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as per [Fig. 8(b)]. This can also geometrically be verified as the line segment OB being equal to 

DE. Similarly, the same arguments can be made for 𝑣→3 and its components.  

 

Fig. 8. (a) Classically incorrect view of 𝑝′
→ 

 as the total manifestation of the momentums of bodies (2) and (3), (b) 

correct method to solve the velocities by assigning a coordinate system and detailing the components, and (c) the 

correct method to solve the momentums by applying vector decomposition. 

For momentum analyses of this case, we can move on to [Fig. 8(c)] and note that momentums 𝑝′
→ 
2 

and 𝑝′
→ 
3 are created upon an energy blast in opposite to 𝑝→1 by forces 𝐹′

→ 
2 and 𝐹′

→ 
3 acting on the 

bodies proportional to their masses. As a result, 𝑝′
→ 
2 and 𝑝′

→ 
3 are also respectively proportional to 

the masses of bodies (2) and (3). Furthermore, two additional momentum vectors 𝑝″
→ 
2 and 𝑝″

→ 
3 are 

simultaneously created at an assumed angle (∠θ) with respect to the X axis by forces 𝐹″
→ 
2 and 𝐹″

→ 
3. 
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At the moment of the energy blast, and as these two equal forces act on these bodies 

simultaneously, they gain identical magnitudes of momentums as per [Fig. 8(c)]. Now the two 

momentum vectors 𝑝″
→ 
2 and 𝑝″

→ 
3 are in fact components of a centrial momentum. It can 

geometrically be shown that 𝑝→2 is the combination of momentum vectors 𝑝′
→ 
2 and 𝑝″

→ 
2. Momentum 

vector 𝑝″
→ 
2 is further decomposable into a 𝑝″

→ 
2𝑥 component and 𝑝→2𝑦. Then, the addition of 𝑝′

→ 
2 and 

𝑝″
→ 
2𝑥 results in the value for 𝑝→2𝑥 as shown in [Fig. 8(c)]. This can geometrically be seen as line 

segment OG being equal to HI. Now with 𝑝→2𝑥, 𝑣→2𝑥, 𝑝→2𝑦, 𝑣→2𝑦 known, it can be shown that the 

total energy of body (2) as per the previous methods used will be the same as if done by 𝑝→2 alone. 

This is because if 𝑝→2 is decomposed into the Cartesian X and Y axis, the results will be identical 

as was demonstrated earlier. Similarly, the same arguments can be made for 𝑝→3 and its 

components. The analysis made above confirms that we can correctly determine the total energy 

of the system by either a) the magnitudes and the speeds of momentums 𝑝→1, 𝑝
→
2, and 𝑝→3 or b) 

their corresponding components as was just done so prior. 

Although we showed from a geometric viewpoint that our analyses thus far are correct, we would 

like to additionally confirm our results by calculating the total energy of the energy blast based on 

their component momentums and their corresponding velocities. As is shown in [Fig. 8(c)] the 

realistic momentums of this scenario are 𝑝→1, 𝑝
′→ 
2, 𝑝

″→ 
2, 𝑝

′→ 
3, 𝑝

″→ 
3, and their correspondent velocities 

are 𝑣→1, 𝑣
′→ 
2, 𝑣

″→ 
2, 𝑣

′→ 
3, 𝑣

″→ 
3, as per [Fig. 8(b)]. Therefore, the total energy of the system can be 

calculated as follows: 

 𝐸𝑡 =
1

2
(𝑝1𝑣1 + 𝑝

′
2𝑣
′
2 + 𝑝

″
2𝑣
″
2 + 𝑝

′
3𝑣
′
3 + 𝑝

″
3𝑣
″
3) (2.43) 

As we concluded, the energy of any momentum is always equal to the total energy of its 

decomposed momentums in any Cartesian system. Now, then, the energy of 𝑝″
→ 
2 is: 

 
1

2
𝑝″2𝑣

″
2 =

1

2
(𝑝″2𝑥𝑣

″
2𝑥 + 𝑝2𝑦𝑣2𝑦) (2.44) 

 

 𝑝″2𝑣
″
2 = 𝑝

″
2𝑥𝑣

″
2𝑥 + 𝑝2𝑦𝑣2𝑦 (2.45) 

And for 𝑝″3 , 

 𝑝″3𝑣
″
3 = 𝑝

″
3𝑥𝑣

″
3𝑥 + 𝑝3𝑦𝑣3𝑦 (2.46) 

Therefore, the total energy of the system is equal to, 

 
𝐸𝑡 =

1

2
(𝑝1𝑣1 + 𝑝

′
2𝑣
′
2 + 𝑝

″
2𝑥𝑣

″
2𝑥 + 𝑝2𝑦𝑣2𝑦 + 𝑝

′
3𝑣
′
3

+ 𝑝″3𝑥𝑣
″
3𝑥 + 𝑝3𝑦𝑣3𝑦) 

(2.47) 
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Now, based on the above discussions, it is noted that 𝑝″2𝑥 = 𝑝
″
3𝑥 and 𝑣′2 = 𝑣

′
3. As such, it can 

be deduced that, 

 𝑝″2𝑥𝑣
′
2 = 𝑝

″
3𝑥𝑣

′
3 (2.48) 

 

 𝑝″2𝑥𝑣
′
2 − 𝑝

″
3𝑥𝑣

′
3 = 0 (2.49) 

If we denote the masses of bodies (2) and (3), as 𝑚2 and 𝑚3 and noting that 𝑝″2𝑥 = 𝑝
″
3𝑥  

 then,  

 𝑚2𝑣
″
2𝑥 = 𝑚3𝑣

″
3𝑥
⇒ 𝑣″2𝑥 =

𝑚3
𝑚2
𝑣″3𝑥 (2.50) 

And also, 

 𝑝′2 = 𝑚2𝑣
′
2   𝑎𝑛𝑑   𝑝

′
3 = 𝑚3𝑣

′
3 (2.51) 

And as 𝑣′2 = 𝑣
′
3 then, 

 𝑝′2 =
𝑚2
𝑚3
𝑝′3 (2.52) 

Then, it can be derived that, 

 𝑝′2𝑣
″
2𝑥 = 𝑝

′
3𝑣
″
3𝑥 (2.53) 

 

 𝑝′2𝑣
″
2𝑥 − 𝑝

′
3𝑣
″
3𝑥 = 0 (2.54) 

Now, we add left-hand side of equations (2.49) and (2.54), (as both are zero-valued), to the right-

hand side of the of energy equation (2.47) that we obtained earlier. Therefore, we have,  

 

𝐸𝑡 =
1

2
(𝑝1𝑣1 + 𝑝

′
2𝑣
′
2 + 𝑝

′
2𝑣
″
2𝑥 + 𝑝

″
2𝑥𝑣

′
2

+ 𝑝″2𝑥𝑣
″
2𝑥 + 𝑝2𝑦𝑣2𝑦 + 𝑝

′
3𝑣
′
3 − 𝑝

′
3𝑣
″
3𝑥 − 𝑝

″
3𝑥𝑣

′
3

+ 𝑝″3𝑥𝑣
″
3𝑥 + 𝑝3𝑦𝑣3𝑦) 

(2.55) 

 

 
𝐸𝑡 =

1

2
(𝑝1𝑣1 + (𝑝

′
2 + 𝑝

″
2𝑥
)(𝑣′2 + 𝑣

″
2𝑥) + 𝑝2𝑦𝑣2𝑦

+ (𝑝′3 − 𝑝
″
3𝑥
)(𝑣′3 − 𝑣

″
3𝑥) + 𝑝3𝑦𝑣3𝑦) 

(2.56) 

Now referring to the [Fig. 8(b)] and [Fig. 8(c)], 

 𝐸𝑡 =
1

2
(𝑝1𝑣1 + (𝑝2𝑥)(𝑣2𝑥) + 𝑝2𝑦𝑣2𝑦 + (𝑝3𝑥)(𝑣3𝑥) + 𝑝3𝑦𝑣3𝑦) (2.57) 

 

 𝐸𝑡 =
1

2
(𝑝1𝑣1 + 𝑝2𝑥𝑣2𝑥 + 𝑝2𝑦𝑣2𝑦 + 𝑝3𝑥𝑣3𝑥 + 𝑝3𝑦𝑣3𝑦) (2.58) 

 

 𝐸𝑡 =
1

2
(𝑝1𝑣1 + 𝑝2𝑣2 + 𝑝3𝑣3) (2.59) 
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And this result is what was expected as we obtained the exact same value for the total energy of 

the system as we would have if it were not decomposed. Ultimately, decomposing the momentum 

and velocity vectors of the bodies resulted in the same total energy.  

In addition, in abiding by the conservation of energy principal, for the purposes of analysis of 

momentums and velocities, their vectors may be decomposed into their components onto any 

chosen coordinated system and will always yield the same results regardless of the coordinate 

system chosen. 

As per the analyses above, it has now been shown how we need various approaches to solving the 

different variable quantities and aspects of motion. Based on these approaches and the in-depth 

analyses of forces, momenta, and energies completed, we can now begin to define and formulate 

the basic properties of centrial motion.  

2.2.1. Centrial Motion Definition 

Centrial motion is only defined for cases with two or greater number of bodies. Centrial motion is 

a motion when the following conditions are met or satisfied: 

1. The axis of the linear momentum vector of each body and/or the axis of the vector of 

summation of linear momentum vectors of each group of bodies under consideration 

must pass through a point of reference (central point). 

2. The summation of considered linear momentums vectors of all bodies and/or the 

summation of considered linear momentums vectors of group(s) of bodies must be equal 

to zero. 

Centrial motion is defined either “outward” or “inward.” If the directions of the vectors of 

momentums such as described for the conditions of the centrial motion are outward when 

referenced with respect to the central point, then centrial motion is considered “outward.” In 

contrast, when the directions of the vectors are inward, then centrial motion is considered 

“inward.” 

From the above definition and considering the linear momentum vectors in a stationary Cartesian 

coordinate system, it can be concluded that the sum of all the linear momentums vectors of bodies 

in a system that is in centrial motion will be equal to zero.  

 ∑ 𝑝→ = 0 (2.60) 

If we consider the components of the linear momentum vectors in a Cartesian coordinate system 

in directions of X, Y and Z axes, then,  

  ∑ 𝑝→𝑋 = 0,  ∑ 𝑝→𝑌 = 0,  ∑ 𝑝→𝑍 = 0 (2.61) 

However, not every system in which ∑ 𝑝→ = 0  can be considered a system in centrial motion. In 

other words, ∑ 𝑝→ = 0  is a resultant of a system in centrial motion. This is a necessary but not a 
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sufficient condition for a system to be in centrial motion. To be in centrial motion, in addition to 

∑ 𝑝→ = 0, the system must be verified to satisfy the conditions of centrial motion as defined earlier. 

For the illustration of what is meant by centrial motion, [Fig. 9] and [Fig. 10] are presented below.   

 
Fig. 9. Centrial motion analysis with the axes of considered linear momentum vectors satisfying the condition of 

passing through a central point. 

It can be seen that [Fig. 9] illustrates centrial motion in a 2D plane, while [Fig. 10] shows centrial 

motion in 3D space. 

Now in [Fig. 9], we can firstly note that the axes of linear momentum vectors and the axes of 

summations of groups of linear momentum vectors all pass through the central point (𝑂). Clearly 

𝑝→1, 𝑝
→
2, 𝑝
→
5 and 𝑝→6, all pass through 𝑂. 𝑝→3 and 𝑝→4 are considered together as 𝑝→(3+4) in a vector 

summation, while 𝑝→7 and 𝑝→8 are taken as 𝑝→(7+8) and both of these summations are seen as passing 

through (𝑂). This satisfies the first condition for Centrial Motion. It can also be shown that [Fig. 

9] satisfies the second condition for Centrial Motion as the summation of considered linear 

momentums vectors of all bodies and/or the summation of considered linear momentums vectors 

of group(s) of bodies is also equal to zero. As per the below; 

 𝑝→1 + 𝑝
→
2 = 0,             𝑝

→
(3+4) + 𝑝

→
5 = 0,             𝑝

→
6 + 𝑝

→
(7+8) = 0 (2.62) 

Then, ∑ 𝑝→ = 0 
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As a side note, alternatively 𝑝→6 along with 𝑝→7 and 𝑝→8 may be viewed as passing through 𝑂 and 

with their linear momentums summating to zero, meeting the condition for centrial motion. 

Therefore, this motion can be described as a centrial motion. The directions of all momentum 

vectors with respect to the central point are outward. Therefore, this is an outward centrial motion. 

Similarly, in [Fig. 10], we consider a Cartesian coordinate system. Here, it is assumed that all axes 

of momentum vectors under consideration pass through the coordinate origin.  Each momentum 

vector can be a momentum vector of a body or summation of momentum vectors of a set of bodies 

under consideration. Here they are denoted as 𝑝→1, 𝑝
→
2…and 𝑝→𝑛 and all momentum vectors are 

outward.  

 
Fig. 10. Momentum vectors in a centrial motion in 3D space. 

[Fig. 10] shows the components of the linear momentum vectors on the X, Y and Z axes. In this 

scenario, if the following conditions are met, then the motion of this system is a centrial motion, 

and the center of the centrial motion is located at the coordinate origin 𝑂: 

 ∑ 𝑝→𝑥 = 0   ⇒       𝑝
→
1𝑥 + 𝑝

→
2𝑥 +⋯…+ 𝑝

→
𝑛𝑥 = 0 (2.63) 

 

 ∑ 𝑝→𝑦 = 0   ⇒       𝑝
→
1𝑦 + 𝑝

→
2𝑦 +⋯…+ 𝑝

→
𝑛𝑦 = 0 (2.64) 

 

 ∑ 𝑝→𝑧 = 0   ⇒       𝑝
→
1𝑧 + 𝑝

→
2𝑧 +⋯…+ 𝑝

→
𝑛𝑧 = 0 

 
(2.65) 

 

 ∑ 𝑝→ = 0 (2.66) 
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2.2.2. Centrial Momentum Definition 

Centrial Momentum is defined for a centrial motion, and it has three defining components: a 

magnitude, a central point, and directionally inward or outward. 

The magnitude of Centrial Momentum is hereby denoted by “𝑄.”  𝑄, the magnitude of a centrial 

momentum, is the total magnitude of all momentum vectors of bodies and/or group(s) of bodies 

that are referenced with respect to a central point with the condition described for centrial motion. 

If the directions of the vectors of momentums such as described for the conditions of the centrial 

motion are outward when referenced with respect to the central point, then 𝑄’s directionality is 

considered outward. In contrast, when the directions of the vectors are inward, then 𝑄’s 

directionality is considered inward. 

For the case shown in [Fig. 9], the magnitude of centrial momentum is derived as follows, 

 𝑄 = 𝑝1 + 𝑝2 + 𝑝(3+4) + 𝑝5 + 𝑝6 + 𝑝(7+8) (2.67) 

 

 𝑄 = 2𝑝1 + 2𝑝5 + 2𝑝6 = 2(𝑝1 + 𝑝5 + 𝑝6) (2.68) 

And the magnitude of centrial momentum of the case for [Fig. 10] will be: 

 𝑄 =∑𝑝 =𝑝1 + 𝑝2 +⋯+ 𝑝𝑛 (2.69) 

2.2.3. Centrial Motions types 

2.2.3.1. Concentric Centrial Motion 

Concentric Centrial Motion is where the start or end of the motions of all considered bodies or the 

start or end of the motion of their considered effective momentums is a center point (reference 

point). As such, all momentum vectors are either outward or inward.  

2.2.3.2. Concentric Bodies Centrial Motion 

Concentric Bodies Centrial Motion is the case where, simply, the start or end of the motion of all 

considered bodies is a centre point (reference point). 

2.2.3.3. Uniform Centrial Motion 

Uniform centrial motion is defined in threefold. Firstly, as a motion where the magnitude of the 

linear momentum vectors of all bodies or sets of bodies considered for the condition of centrial 

motion as described above, are equal to each other. Secondly, that those vectors are equally 

distributed about the center of reference (i.e., at equal angles from one another). And finally, that 

the direction of all momentum vectors when referenced with respect to the central point are either 

inward or outward. [Fig. 11] shows an example of a case of uniform centrial motion. 
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Fig. 11. An example scenario demonstrating a case of Uniform Centrial Motion, where the bodies are distributed 

uniformly from one another with angle 𝛼, equal momentums 𝑝, and where all vectors are directionally outwards.  

Here the linear momentum vectors are equally distributed with angle (𝛼) and,  

 𝑝1 = 𝑝2 = 𝑝3 = 𝑝4 = 𝑝(5+6) = 𝑝7 = 𝑝8 = 𝑝(9+10+11) = 𝑝 (2.70) 

The magnitude of centrial momentum of this set is derived from the general formula, 

 𝑄 =∑𝑝𝑖

𝑛

𝑖=1

= 𝑛𝑝 (2.71) 

For [Fig. 11], 

 𝑄 = 8𝑝 (2.72) 

[Fig. 11] illustrates a uniform centrial motion in a 2D plane. However, a similar system can be 

extrapolated to a 3D space and studied in a similar manner. 

2.2.3.4. Symmetrical Centrial Motion: 

Symmetrical centrial motion is a motion where there are a number of bodies with equal and 

uniform mass that are equidistant from one another, with each body having the same distance to 

the central point of reference, and having the same speeds with respect to that central point. In 

addition, the directions of all their motions are either inward or outward per [Fig. 12] and [Fig. 

13]. By this definition, symmetrical centrial motion is always a concentric and uniform centrial 

motion. 
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Fig. 12. A model typifying symmetrical centrial motion. It can be noted that each body is equidistant from each 

other and has the same speed with respect to the central point of reference. 

[Fig. 12] shows symmetrical centrial motion in a 2D plane. However, this Figure can also be 

extrapolated and utilized for the case of bodies in symmetrical centrial motion in 3D space as 

shown in [Fig. 13].  

 
Fig. 13. Number of bodies with their axes of motion passing through a central point of reference, and momentum 

vector axes satisfying the conditions for a symmetrical centrial motion in 3D space.  

Here in the case of symmetrical centrial motion, if we represent the number of bodies as 𝑛, and 

each body’s mass as 𝑚, and the total masses of all bodies as 𝑀, and each body’s velocity as 𝑣→, 

and that all bodies are moving outward or inward, it can be derived that ∑ 𝑝→ = 0. All the 

conditions for centrial motion as described earlier are met and therefore the system can be 
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described to be in symmetrical centrial motion. The magnitude of centrial momentum of the system 

will thus be,  

 𝑄 =∑𝑝𝑖

𝑛

𝑖=1

= 𝑛𝑚𝑣 = 𝑀𝑣 (2.73) 

2.2.4. Comparison between Outward and Inward Centrial Momentums  

For the purpose of comparison of the two types of Centrial Momentums, [Fig. 14] is considered 

and studied.  

 
Fig. 14. A model depicting motion of four bodies, with two bodies (1) and (2) in outward centrial motion and the 

other two (3) and (4) in inward centrial motion. The latter two bodies begin with inward centrial motion at time 

𝑇 = 𝑡1 and transfer their momentums at time 𝑇 = 𝑡2 to end in an outward centrial motion at time 𝑇 = 𝑡3.  

It is assumed that four bodies (1), (2), (3), and (4), whose masses are equal, have the same speed, 

and also that they are all perfectly elastic (rigid) and in motion in the directions shown. At the time 

𝑇 = 𝑡1 the speed of bodies (1) and (2) with respect to point 𝑂 are equal to each other with opposite 

directions and are denoted by 𝑣 in [Fig. 14(a)]. Concurrently, the speed of bodies (3) and (4) with 

respect to point 𝑂′ are also equal to each other with opposite directions and are also denoted by 𝑣. 

According to the definitions presented thus far, it can be said that bodies (1) and (2), they have a 

centrial motion with reference to central point 𝑂, and similarly for bodies (3) and (4) having 

centrial motion relative to point 𝑂′. The magnitude of the centrial momentums for both sets is 

equal to, 

 𝑄(1,2) = 𝑄(3,4) = 2𝑚𝑣 (2.74) 

The only difference between these two motions at the time 𝑇 = 𝑡1 is that the centrial momentum 

of the set of bodies (1) and (2) is outward while the centrial momentum of (3) and (4) is inward. 
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At the time 𝑇 = 𝑡2, as shown in [Fig. 14(b)], bodies (3) and (4) collide and at the moment of 

collision the momentums of the two bodies are transferred. Following this at time 𝑇 = 𝑡3, as shown 

in [Fig. 14(c)], bodies (3) and (4) are moving apart from the center of collision. The above scenario 

thus demonstrates that after collision, an inward centrial momentum is converted into an outward 

one. From the model depicted and analyzed in [Fig. 14], it can be concluded that an outward 

centrial momentum would always remain outward. Eventually, an inward centrial momentum will 

always convert to an outward one. 

2.2.5. Study of centrial motion and centrial momentum for the case where two bodies are 

moving along an axis 

We assume that two bodies with masses 𝑚1 and 𝑚2 are moving along an axis such that their 

velocities with respect to a point 𝑂 are denoted as 𝑣→1𝑜 and 𝑣→2𝑜 respectively [Fig. 15].  

 
Fig. 15. Centrial motion of two bodies can be derived with respect to a Point 𝑂′, were the 

 bodies are moving in reference to Point 𝑂, and where the local reference system at 𝑂 is in motion with respect to 

the one at 𝑂′ with velocity 𝑣→𝑂′. 

For this case to be in centrial motion with the point of reference of 𝑂, it must satisfy that ∑ 𝑝→𝑜 = 0. 

However, if this condition is not met with reference to point 𝑂, then we can always find a point in 

which this condition is fulfilled (i.e., that the sum of momentum vectors of all bodies is equal to 

zero with respect to that point of reference.) Point 𝑂 can then be referenced with respect to such a 

new point of reference. In fact, if we consider any set of bodies is moving along an axis the same 

as that of its initial motion and with respect to a new coordinate system with velocity 𝑣→𝑂′ as per 

[Fig. 15], then its center of centrial motion can be found. It does not matter if we consider the 

motion of the set of bodies with respect to the new coordinate center 𝑂′, or whether we consider 

the motion of the new coordinate center with respect to point 𝑂. Here we assume that the new 

coordinate system is fixed and we consider the motion of the set of bodies with respect to the new 

coordinate center, 𝑂′. Therefore, the motions of bodies with respect to this new coordinate center 

are henceforth considered. As such, per [Fig. 15] the velocities of the bodies are considered with 

respect to point 𝑂′. In order for any point like point 𝑂′ to be the center of the centrial motion, in 
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addition to the condition that the axes of all momentum’s vectors must pass through that point, one 

other condition must also be met, ∑ 𝑝→𝑂′ = 0  

If the velocity of point 𝑂 with respect to 𝑂′ is denoted as 𝑣→𝑂′, then, 

 ∑ 𝑝→𝑂′ = 𝑚1(𝑣
→
1𝑜 + 𝑣

→
𝑂′) + 𝑚2(𝑣

→
2𝑜 + 𝑣

→
𝑂′) = 0 (2.75) 

 

 𝑚1 𝑣
→
1𝑜 +𝑚2 𝑣

→
2𝑜 + (𝑚1 +𝑚2) 𝑣

→
𝑂′ = 0 (2.76) 

 

 𝑣→𝑂′ = −
𝑚1 𝑣
→
1𝑜 +𝑚2 𝑣

→
2𝑜

𝑚1 +𝑚2
                                             (2.77) 

Now, the magnitude of the centrial momentum can be calculated. 𝑄 is equal to the total magnitude 

of linear momentums of bodies with respect to the new reference point, i.e., 𝑂′. Thus, 

 𝑄 = 𝑚1| 𝑣
→
1𝑜 + 𝑣

→
𝑂′| + 𝑚2| 𝑣

→
2𝑜 + 𝑣

→
𝑂′| (2.78) 

 

 𝑄 = 𝑚1 | 𝑣
→
1𝑜 −

𝑚1 𝑣
→
1𝑜 +𝑚2 𝑣

→
2𝑜

𝑚1 +𝑚2
| + 𝑚2 | 𝑣

→
2𝑜 −

𝑚1 𝑣
→
1𝑜 +𝑚2 𝑣

→
2𝑜

𝑚1 +𝑚2
| (2.79) 

 

 

𝑄 = 𝑚1 |
𝑚1 𝑣
→
1𝑜 +𝑚2 𝑣

→
1𝑜 −𝑚1 𝑣

→
1𝑜 −𝑚2 𝑣

→
2𝑜

𝑚1 +𝑚2
|

+ 𝑚2 |
𝑚1 𝑣
→
2𝑜 +𝑚2 𝑣

→
2𝑜 −𝑚1 𝑣

→
1𝑜 −𝑚2 𝑣

→
2𝑜

𝑚1 +𝑚2
| 

(2.80) 

 

 𝑄 =
𝑚1

𝑚1 +𝑚2
|𝑚2(𝑣

→
1𝑜 − 𝑣

→
2𝑜)| +

𝑚2
𝑚1 +𝑚2

|𝑚1(𝑣
→
2𝑜 − 𝑣

→
1𝑜)| (2.81) 

since, | 𝑣→1𝑜 − 𝑣
→
2𝑜| = |𝑣

→
2𝑜 − 𝑣

→
1𝑜|, then, 

 

 𝑄 =
2𝑚1𝑚2
𝑚1 +𝑚2

| 𝑣→1𝑜 − 𝑣
→
2𝑜|                                                       (2.82) 

If two bodies have the same speed and are moving in the same direction, then | 𝑣→1𝑜 − 𝑣
→
2𝑜| = 0, 

and therefore 𝑄 = 0. In other words, there is no centrial motion for this special condition. 

Eq. (2.82) shows that the magnitude of the centrial momentum of two bodies that are moving along 

a straight axis can be calculated without the need to find the center of the centrial motion. This 

implies that simply using the bodies’ velocities with respect to the reference point is sufficient. 

In Eq. (2.79) If 𝑚1 𝑣
→
1𝑜 +𝑚2 𝑣

→
2𝑜 = 0 then,  

 𝑄 = 𝑚1| 𝑣
→
1𝑜 − 0| + 𝑚2| 𝑣

→
2𝑜 − 0| = 𝑚1𝑣1𝑜 +𝑚2𝑣2𝑜 (2.83) 

 

 𝑄 = 2𝑚1𝑣1𝑜 = 2𝑚2𝑣2𝑜 (2.84) 
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2.2.6. Study of the speed of the motion of momentum in centrial motion 

A case of centrial motion is studied here where only two perfectly elastic (rigid) bodies (1) and (2) 

are considered [Fig. 16]. The Figure illustrates the motions of the bodies before and after a head-

on collision. 

 
Fig. 16. Analyses of before and after a collision scenario with initial momentums 𝑚1𝑣1𝑖

→    
  and 𝑚2𝑣2𝑖

→    
, where the final 

momentums remain constant and are traveling in the same direction with the only difference being which of the two 

bodies is transferring each of the momentums.  

The study here is intended to analyze the speed of motion of momentum (speed of momentum) in 

a centrial motion case before and after the collision. The momentums of bodies (1) and (2) before 

the collision is 𝑚1𝑣1𝑖
→    

 and 𝑚2𝑣2𝑖
→    

, respectively. According to the definition of the speed of 

momentum, the speed of momentum of body (1) before the collision is equal to (𝑣1𝑖) and its 

direction is to the right. And the speed of momentum of body (2) is equal to (𝑣2𝑖) and its direction 

is to the left. If this motion is a centrial motion, then, (∑𝑚𝑣→  = 0). Therefore, 

 𝑚1𝑣1𝑖
→    +𝑚2𝑣2𝑖

→    = 0            ⇒             𝑣→2𝑖 = −
𝑚1
𝑚2

𝑣→1𝑖 (2.85) 

And after collision, 

 𝑚1𝑣1𝑓
→     +𝑚2𝑣2𝑓

→     = 0           ⇒             𝑣→2𝑓 = −
𝑚1
𝑚2

𝑣→1𝑓 
 

(2.86) 

 

 
𝑣2𝑖
𝑣2𝑓

=
𝑣1𝑖
𝑣1𝑓

 (2.87) 

  

From the conservation of energy, the initial kinetic energy is equal to the final, and therefore, 
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𝐸𝑘𝑖 = 𝐸𝑘𝑓 ⇒   

1

2
𝑚1𝑣1𝑖

2 +
1

2
𝑚2𝑣2𝑖

2 =
1

2
𝑚1𝑣1𝑓

2 +
1

2
𝑚2𝑣2𝑓

2  (2.88) 

   

 

 𝑚1𝑣1𝑖
2 +𝑚2 (−

𝑚1
𝑚2
𝑣1𝑖)

2

= 𝑚1𝑣1𝑓
2 +𝑚2 (−

𝑚1
𝑚2
𝑣1𝑓)

2

 (2.89) 

 

 𝑚1𝑣1𝑖
2 +

𝑚1
2

𝑚2
𝑣1𝑖
2 = 𝑚1𝑣1𝑓

2 +
𝑚1
2

𝑚2
𝑣1𝑓
2  (2.90) 

 

 (𝑚1 +
𝑚1
2

𝑚2
) 𝑣1𝑖

2 = (𝑚1 +
𝑚1
2

𝑚2
) 𝑣1𝑓

2 ⇒ |𝑣1𝑓| = |𝑣1𝑖| ⇒ (2.91) 

 

As the vector direction of 𝑣→1𝑓 and 𝑣→1𝑖 are opposite to one another, 

 𝑣→1𝑓 = − 𝑣
→
1𝑖                                                                    (2.92) 

 

 
𝑣2𝑖
𝑣2𝑓

=
𝑣1𝑖
𝑣1𝑓

⇒
𝑣2𝑖
𝑣2𝑓

= −1 ⇒ 𝑣2𝑓 = −𝑣2𝑖 ⇒     (2.93) 

 

 𝑣→2𝑓 = − 𝑣
→
2𝑖                                                                      (2.94) 

This scenario can be viewed with a focus on momentum transfer. Analyzing it as so, it can be seen 

that the initial momentum of body (1) moves to the right prior to the collision. After the collision, 

it continues to move in the same direction and the only difference is that this momentum is 

embodied by body (2). The vice versa can be stated for the initial momentum of body (2). From a 

momentum perspective, it can be concluded that momentum as an entity itself always moves in 

the same initial direction.  

From the equations derived earlier and with reference to [Fig. 16], it is thus determined that: 

 𝑚2𝑣2𝑓
→     ≡ 𝑚1𝑣1𝑖

→    
 (2.95) 

This equivalency is signifying that the initial momentum of body (1) which had the speed of 𝑣1𝑖 

before the collision, is in motion with the same magnitude after the collision but with the speed of 

𝑣2𝑓 via body (2).  

Similarly, 

 𝑚1𝑣1𝑓
→     ≡ 𝑚2𝑣2𝑖

→    
 (2.96) 

The equivalency above is signifying that the initial momentum of body (2) which had the speed of 

𝑣2𝑖 before the collision, is in motion after the collision with the same magnitude but with the speed 

of 𝑣1𝑓 via body (1). 
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In other words, it can be concluded here in a centrial motion that after the collision, the directions 

of motions of the bodies have been reversed, while the amounts and directions of each of the initial 

momentums (𝑚1𝑣1𝑖 and 𝑚2𝑣2𝑖) have not changed. Only the speeds of the motions of momentums 

have changed after collision.  

Now per the results and conclusions of the above discussions, the head-on collisions of perfectly 

elastic bodies typically studied in classical physics books, is studied and solved here using centrial 

motion concepts and equations.  

 
Fig. 17. Case study of a head-on collision of perfectly elastic bodies (1) and (2) using centrial motion concepts 

presented in this paper.  

For the purposes of the study, [Fig. 17] illustrates two bodies (1) and (2) with masses 𝑚1 and 𝑚2 

with initial velocities 𝑣→1𝑖 and 𝑣→2𝑖 with respect to 𝑂. The final velocities of bodies after collision 

are to be determined. To study such motions, a coordinate origin 𝑂′ based on which the conditions 

of centrial motion are satisfied is considered. Then with reference to Eq. (2.77), the velocity of the 

set of bodies with respect to the new coordinate center, 𝑂′, is: 

 

 𝑣→𝑂′ = −
𝑚1 𝑣
→
1𝑖 +𝑚2 𝑣

→
2𝑖

𝑚1 +𝑚2
 (2.97) 

The velocity of body (1) with respect to the new origin before collision is, 

 𝑣→1𝑖𝑂′ = 𝑣→1𝑖 + 𝑣
→
𝑂′ (2.98) 

and the velocity of body (1) with respect to the new origin after collision is, 

 𝑣→1𝑓𝑂′ = 𝑣→1𝑓 + 𝑣
→
𝑂′ (2.99) 

Now, as a result of considering 𝑂′ as a new coordinate origin that fulfils the requirements for a 

case of centrial motion, then it can be stated that, 

 𝑣→1𝑓𝑂′ = − 𝑣
→
1𝑖𝑂′ (2.100) 

 

 𝑣→1𝑓 + 𝑣
→
𝑂′ = − 𝑣

→
1𝑖 − 𝑣

→
𝑂′             ⇒             𝑣

→
1𝑓 = − 𝑣

→
1𝑖 − 2 𝑣

→
𝑂′ (2.101) 

 

 𝑣→1𝑓 = − 𝑣
→
1𝑖 +

2𝑚1 𝑣
→
1𝑖 + 2𝑚2 𝑣

→
2𝑖

𝑚1 +𝑚2
 (2.102) 
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𝑣→1𝑓 =
−𝑚1 𝑣

→
1𝑖 − 𝑚2 𝑣

→
1𝑖 + 2𝑚1 𝑣

→
1𝑖 + 2𝑚2 𝑣

→
2𝑖

𝑚1 +𝑚2

=
(𝑚1 −𝑚2) 𝑣

→
1𝑖 + 2𝑚2 𝑣

→
2𝑖

𝑚1 +𝑚2
 

(2.103) 

 

 𝑣→1𝑓 =
𝑚1 −𝑚2
𝑚1 +𝑚2

𝑣→1𝑖 +
2𝑚2

𝑚1 +𝑚2
𝑣→2𝑖                                   (2.104) 

To find the final velocity of body (2): 

 𝑣→2𝑓𝑂′ = − 𝑣
→
2𝑖𝑂′ (2.105) 

 

 𝑣→2𝑓 + 𝑣
→
𝑂′ = − 𝑣

→
2𝑖 − 𝑣

→
𝑂′             ⇒             𝑣

→
2𝑓 = − 𝑣

→
2𝑖 − 2 𝑣

→
𝑂′ (2.106) 

 

 𝑣→2𝑓 = − 𝑣
→
2𝑖 +

2𝑚1 𝑣
→
1𝑖 + 2𝑚2 𝑣

→
2𝑖

𝑚1 +𝑚2
 (2.107) 

 

 

𝑣→2𝑓 =
−𝑚1 𝑣

→
2𝑖 −𝑚2 𝑣

→
2𝑖 + 2𝑚1 𝑣

→
1𝑖 + 2𝑚2 𝑣

→
2𝑖

𝑚1 +𝑚2

=
2𝑚1 𝑣

→
1𝑖 + (𝑚2 −𝑚1) 𝑣

→
2𝑖

𝑚1 +𝑚2
 

(2.108) 

 

 𝑣→2𝑓 =
2𝑚1

𝑚1 +𝑚2
𝑣→1𝑖 +

𝑚2 −𝑚1
𝑚1 +𝑚2

𝑣→2𝑖                                    (2.109) 

Eq. (2.104) and Eq. (2.109) are equations that have been previously arduously obtained by classical 

physics. Here they have been simply obtained using centrial motion concepts in a much more 

efficient manner. 

2.3. Law of conservation of centrial momentum 

For an isolated system in the absence of an external force, and where there is no internal released 

or stored energy on the system, centrial momentum is always conserved.  

For any centrial momentum, we can define a magnitude and an energy value where both are 

conserved. 

𝑄 = 𝐶 = 𝐶𝑜𝑛𝑠𝑒𝑟𝑣𝑒𝑑 

𝐸 = 𝐶 = 𝐶𝑜𝑛𝑠𝑒𝑟𝑣𝑒𝑑 

As such, we can view any centrial momentum as possessing a certain amount of energy. In 

addition, centrial momentum can be viewed as having its own center of reference and advancing 

concentrically outwards or inwards. 
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It is noted where centrial momentum is always conserved, linear momentum may or may not be 

conserved. 

3. Conclusion  

In this paper, along with the revisions of the concepts and definitions for the laws of motion, certain 

motions were identified and presented as being in “centrial motion.” It was demonstrated that there 

is a need to derive and develop new concepts and equations for “centrial motion” and “centrial 

momentum.” 

With the analyses conducted, it is concluded that the magnitude of any linear momentum under 

consideration remains conserved along its initial direction, but only under certain pre-conditions. 

It was thus shown that linear momentum may not always be conserved. This is in contrast to 

energy, which always remains conserved and constant in an isolated system. While total linear 

momentum taken along its initial direction remains conserved, the speed of the momentum can 

vary from body to body that convey or transfer this momentum. As such, while linear momentum 

may have varying speeds, its energy is always constant. This concept is true for all momentum 

types (e.g., linear, angular, and centrial momentum). It was also shown that momentum as an 

independent entity can be viewed as a distinct concept or entity from mass.  

Furthermore, as momentum always has an intrinsic speed, we can imagine any considered 

momentum as an entity that always moves in space. Even though momentum is a property of 

moving objects and is dependent on the objects, it be can imagined as an energy entity that is 

always in motion or is being transferred from one or more bodies to others while its energy 

magnitude remains constant. 

It was also shown that while linear momentum may not always be conserved, centrial momentum 

does always remain conserved. 

There are numerous types of motions and phenomena that can be analyzed and interpreted using 

these laws of centrial motion. For instance, in the universe, there are phenomena where the motions 

of constituents originate from a center and spread in a spherical form throughout space. As such, 

the concepts and ideas presented in this paper can be applied to cosmological and astrological 

phenomena and aid in the resolution of many questions. Explosions of small or massive objects in 

the universe can also be studied and analyzed using concepts of centrial motion and centrial 

momentum. As it has previously been mentioned in my last article [4], M particles are located 

throughout the universe. As described in that paper, the impacts and interactions of nuclear 

particles of atoms and molecules of any object cause the M particles to vibrate around that object. 

These vibrations cause the other M particles in space to gain vibrations and consequently 

momentums in a spherical manner. The centrial motion concepts derived here in this current paper 

can then be used for analyzing such phenomena. Another application is the effect of spherical 

vibrations around massive objects causing variations in the densities of M particles. This aids in 
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the study of the corresponding deflection of the angle of the light in the vicinity of such massive 

objects. 

As a final point of note, it is worth acknowledging the relevance of the concepts of centrial motion 

and centrial momentum introduced in this paper to the engineering sciences as there are significant 

cases where these concepts are applicable.  
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