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Abstract

Improper priors are not allowed for the computation of the Bayesian evidence Z = p(y)
(a.k.a., marginal likelihood), since in this case Z is not completely specified due to an
arbitrary constant involved in the computation. However, in this work, we remark that
they can be employed in a specific type of model selection problem: when we have several
(possibly infinite) models belonging to the same parametric family (i.e., for tuning parameters
of a parametric model). However, the quantities involved in this type of selection cannot
be considered as Bayesian evidences: we suggest to use the name “fake evidences” (or
“areas under the likelihood” in the case of uniform improper priors). We also show that,
in this model selection scenario, using a diffuse prior and increasing its scale parameter
asymptotically to infinity, we cannot recover the value of the area under the likelihood,
obtained with a uniform improper prior. We first discuss it from a general point of view.
Then we provide, as an applicative example, all the details for Bayesian regression models
with nonlinear bases, considering two cases: the use of a uniform improper prior and the use
of a Gaussian prior, respectively. A numerical experiment is also provided confirming and
checking all the previous statements.

Keywords: Bayesian evidence; marginal likelihood; improper prior; diffuse prior.

1 Introduction

Nowadays, Bayesian inference is a hot topic of research and, as a consequence, Bayesian methods
are considered more and more as benchmark techniques for inferring the parameters of a model
(and their uncertainties), and/or for model selection purposes. Although Bayesian inference has
historically been always used (e.g. [12, 22]), Bayesian analyses are now becoming more widespread:
we can find Bayesian studies in very different applied fields such as remote sensing [17, 15],
astronomy [1, 8], cosmology [2, 3], or optical spectroscopy [7, 25], to name a few.
In Bayesian inference, we can distinguish (at least) two levels: the inference over the parameters
(Level-1) and the model selection problem (Level 2). In order to perform Bayesian model selection
(Level-2), we need to compute the so-called Bayesian evidence, a.k.a., marginal likelihood of the



model, denoted in this work as Z. The choice of the prior densities over the parameters (in Level-
1) affects the value of the marginal likelihood.

Vague/diffuse priors and, more extremely, improper priors are generally employed (when possible)
in level-1 of inference for expressing a weak a-priori information (for this reason, they are also called
non-informative priors) [9, 20]. However, in model selection (level-2), the use of vague/diffuse
priors over the parameters (in level-1) can radically change the value of the evidence Z. Therefore,
in this sense, vague/diffuse priors are always informative in level-2. Moreover, the use of improper
priors is forbidden for computing the evidence Z since, in this case, the marginal likelihood Z is
not completely specified due to an arbitrary constant involved in the computation.

In this work, we firstly try to clarify and remark the issues described above in order to avoid
any sort of confusion in the literature [24, 13]. Moreover, we show that although improper priors
are not allowed for the computation of the evidence Z, they can be employed in a specific type of
model selection problem: when we have several (possibly infinite) models belonging to the same
parametric family (i.e., for tuning parameters of a parametric model). However, in this case,
we are not actually computing an evidence Z (that is not completely specified) [24]. For this
reason, we suggest to call the calculated quantity as “fake evidence” or, in the case of uniform
improper priors, as “the area under the likelihood”. Furthermore, in this scenario, if we apply a
vague/diffuse prior and leave the scale parameter to increase tending to infinity, it is not possible
to recover the results obtained by employing improper uniform prior (as typically happens in
level-1).
We show and discuss these points firstly with generic arguments, and then more specifically within
a Bayesian regression model. We provide theoretical details comparing the scenario with a uniform
improper prior with the case of a Gaussian prior, checking and confirming the general statements
previously discussed. Moreover, a specific example of generalized linear model is considered for
providing numerical checks and related simulations.

The rest of the work is structured as follows. The main background and notation, as well as
the different levels of inference and types of model selection are given in Section 2. A detailed
discussion about the safe use of vague and/or improper priors is given in Section 3. The key
observation of the work is described in Section 4. Section 5 provides a detailed description of a
regression problem with Bayesian generalized linear models considering a uniform improper prior
and a Gaussian prior. Section 6 provides related numerical results. Finally, several conclusions
are given in Section 7.

2 Elements in Bayesian inference

In many applications, the goal is to make inference about a variable of interest, θ = θ1:Dθ
=

[θ1, θ2, . . . , θDθ
] ∈ Θ ⊆ RDθ , where θd ∈ R for all d = 1, . . . , Dθ, given a set of observed

measurements y = [y1, . . . , yDy ] ∈ RDy . The observed vector y is linked with the vector of
parameters of interest θ by an observation model denoted as M, which induces a likelihood
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function denoted as `(y|θ,M) (that is a density with respect to y and a non-negative function
fixing y and varying θ).
In the Bayesian framework, a complete model M is formed by a likelihood function `(y|θ,M)
and a prior probability density function (pdf) g(θ|M) chosen by the practitioner. Then, all the
statistical information is summarized by the posterior pdf, i.e.,

π̄(θ|y,M) =
`(y|θ,M)g(θ|M)

p(y|M)
,

where

Z = p(y|M) =

∫
Θ

`(y|θ,M)g(θ|M)dθ, (1)

is called Bayesian evidence or marginal likelihood [22, 12, 14]. This quantity is important for
model selection purposes, as we show below. Usually Z = p(y|M) is unknown and difficult to
approximate, so that in many situations we are only able to evaluate the unnormalized target
function, π(θ|y,M) = `(y|θ,M)g(θ|M) ∝ π̄(θ|y,M), so that π̄(θ|y,M) = 1

Z
π(θ|y,M) and

Z =
∫

Θ
π(θ|y,M)dθ.

2.1 Levels in Bayesian inference

Generally speaking, in Bayesian inference we can distinguish between two types of problems or
levels of inference [16, Ch. 28], described below:

• Level-1: Estimation and prediction problems. In the first level, given the m-th model
Mm, we are interested in making inferences regarding parameter θm by focusing on its
posterior pdf π̄(θm|y,Mm) ∝ `(y|θm,Mm)g(θm|Mm). This is also denoted as “Level-1 of
inference” in the literature. Now we drop for simplicity the dependence on the m-th model
Mm and m, then π̄(θm|y,Mm) = π̄(θ|y).

• Level-2: Model selection problems. In the second type of problem, we focus on the
model posterior distribution

p(Mm|y) ∝ p(Mm)Zm = p(Mm)

∫
Θm

`(y|θm,Mm)g(θm|Mm)

for all m = 1, . . . ,M . This is also known as “Level-2 of inference”.

More levels of inference can be recognized in the so-called hierarchical Bayesian approaches.
However, conceptually these are the two main levels of inference since they are associated with
the two main inference scenarios: parameter estimation and model selection. We will see that the
prior choice has a different impact in each of the different levels. In this work, we focus mainly on
level-2.
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2.2 Type of model comparison

In the literature, we can distinguish different types of model selection, as we summarize below.
The type of model selection problem can affect the user’s choice of a suitable prior density.

• Type-1 — Basic model selection: In this scenario, we compare different likelihood
functions (i.e., observation models). The likelihood functions can represent completely
different models, living even in different parameter spaces. In this scenario, the parameters
θm of each model can have a completely different physical or statistical interpretation.

• Type-2 — Models in the same parametric families: tuning the parameters of a
parametric model can be considered a model selection problems where different models of
the same parametric families are compared. Indeed, in this case, we can apply the so-called
empirical Bayesian approach. Let consider now that the observation model depends on some
vectors of parameters η, i.e. `(y|θ,η). The marginal likelihood would depend on η,

Z = p(y|η) =

∫
Θ

`(y|θ,η)g(θ)dθ. (2)

The empirical Bayesian approach consists on tuning η by maximizing p(y|η) keeping fixed
y, i.e.,

η∗ = arg max p(y|η). (3)

In this approach, we could also include unknown parameters of the prior density over η, i.e.,
p(y|η`,ηp) =

∫
Θ
`(y|θ,η`)g(θ|ηp)dθ.

• Type-3 — Nested models: Nested models are models that belong to the same parametric
family but, unlike in the previous scenario, the complexity of the model can change, i.e.,
the number of parameters |Θm| = Dθm is also unknown and must be inferred as well,
jointly with the parameter θm. Namely, we have a sequence of likelihoods defined in an
increasing dimensional space, such as `(y|θ1,M1), `(y|θ1, θ2,M2), `(y|θ1, θ2, θ3,M3), etc.
Some examples of this framework are: variable selection, order selection (in polynomial
regression or ARMA models etc.), clustering (when the number of clusters are unknown)
and dimension reduction problems, to name a few [5].

3 Use of vague priors and/or improper priors in Level-2

For simplicity, hereafter, whenever we focus on a single although arbitrary model Mm, we skip
the dependence on Mm in the notation. For instance, we denote the posterior density as π̄(θ|y)
and the marginal likelihood as Z = p(y). Thus, we write

Z =

∫
Θ

π(θ|y)dθ =

∫
Θ

`(y|θ)g(θ)dθ. (4)

We can see clearly that Z is an average of likelihood values `(y|θ), weighted according to the prior
pdf g(θ).
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3.1 Diffuse/vague priors are informative for model selection

If the support Θ is unbounded and additional information is not available, one can employ a
so-called vague prior density, i.e., a density with probability mass spread in all the state space,
with a great scale parameter. This kind of prior has different names such as diffuse, flat, etc. Let
us consider now an illustrative example about the impact on the inference using a vague prior.

Illustrative example

Let us assume a likelihood function that is integrable in every subset of an unbounded Θ, that is,
for all A ⊆ Θ,

∫
A∈Θ

`(y|θ)dθ < ∞. In particular, when A = Θ, the integral corresponds to the
“area below” the likelihood function,

S =

∫
Θ

`(y|θ)dθ <∞. (5)

Hence, in this scenario, the normalized likelihood is a proper pdf on Θ. Then, we consider a
uniform and proper prior defined on the hyper-volume B, i.e.,

g(θ) =
1

|B|
1B(θ),

where |B| represents the volume of B. Hence, the posterior pdf is

π̄(θ|y) =
`(y|θ)1B(θ)∫
B
`(y|θ)dθ

, (6)

which is the normalized likelihood restricted to the set B. We discuss what happens in Level-1
and Level-2 as |B| → ∞.

• Level-1: as we increase the volume of B, more and more mass of the likelihood is considered.
As |B| → ∞, we have that π̄(θ|y) becomes closer and closer to

π̄∗(θ|y) =
`(y|θ)∫

Θ
`(y|θ)dθ

=
`(y|θ)

S
. (7)

Namely, in the limit where B = Θ, the prior g(θ) becomes equivalent to an improper uniform
prior on θ. The posterior π̄∗(θ|y) contains only the information provided by the likelihood
function, and is not affected or distorted by the prior. Hence, a vague/diffuse prior (or a
uniform improper prior, which is its maximal expression) can be employed for expressing
the absence of additional information in the choice of the prior (at Level-1 of inference).

• Level-2: we focus now on the marginal likelihood Z which, in this case, is given by

Z =

∫
B
`(y|θ)dθ

|B|
. (8)
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Let us consider increasing B until we cover all parameter space, i.e.,

|B| → ∞, but

∫
B

`(y|θ)dθ → S,

Hence,

lim
|B|→∞

Z = 0. (9)

We see that the marginal likelihood of a model with a increasingly-diffuse prior becomes null.
Hence, in model selection (Level-2), actually vague/diffuse priors are highly informative, in
the sense that, (if S is finite) an increasingly diffuse prior penalizes more and more the
considered model, so that their use has a clear impact to the results of the model selection.

Hence, we can highlight two conclusions.

Remark 1. In the Level-1 of inference, if S =
∫

Θ
`(y|θ)dθ is finite, we can use vague prior as

non-informative (or weakly-informative) choice, since the idea is to perform the minimum possible
perturbation to the likelihood function and, as a consequence, a minimum impact to the inference
of θ (and, generally, we can asymptotically recover some frequentist results).

Remark 2. In Level-2 inference, the choice of a diffuse/vague prior is actually very informative.
For instance, if S =

∫
Θ
`(y|θ)dθ is finite, diffuse priors tend to produce smaller values of the

marginal likelihood Z [6, 4].

Hence, if S < ∞, a good model can display a low value of Z only because we choose a prior
that is very spread out. Conversely, a worse model can display a bigger value of Z due to choosing
a concentrated prior [4, 16, 21, 14].

3.2 Improper priors: forbidden for computing the evidence Z

Let us consider again that the domain Θ is unbounded. An improper prior is such that∫
Θ

g(θ)dθ =∞. (10)

Note that in this case, the prior g(θ) = c · h(θ) (where
∫

Θ
h(θ)dθ = ∞) is not completely

specified, since h cannot be normalized, i.e., the normalization constant c does not exist, and as
a consequence, the constant c is arbitrary. Let us assume that, however,∫

Θ

`(y|θ)h(θ)dθ = Z`×h <∞ (11)

is finite. We call Z`×h as fake evidence. In this case, trying to computing the Bayesian evidence
Z, we obtian

Z =

∫
Θ

`(y|θ)g(θ)dθ,

= c

∫
Θ

`(y|θ)h(θ)dθ, (12)

= c Z`×h,
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i. e., the marginal likelihood Z is also not completely specified due to c > 0 is unknown/arbitrary.
Then, we can remark below:

Remark 3. Improper priors can not be used for computing marginal likelihood Z. Thus, generally,
improper priors are not allowed for model selection (Level-2 of inference). However, we will see
that there is an exception for Type-2 of model selection.

On the other hand, the use of an improper prior, i.e., is allowed for Level-1 inference when
Z`×h in Eq. (11) is finite. Indeed, in this case, the corresponding posterior is still proper,

π̄(θ|y) =
`(y|θ)g(θ)∫

Θ
`(y|θ)g(θ)dθ

,

= �c `(y|θ)h(θ)

�c
∫

Θ
`(y|θ)h(θ)dθ

,

=
`(y|θ)h(θ)

Z`×h
,

since Z`×h =
∫

Θ
`(y|θ)h(θ)dθ <∞ is finite.

Remark 4. Improper priors are allowed in Level-1 of inference if the fake evidence Z`×h is finite,
i.e., Z`×h <∞ (since the corresponding posteriors are still proper).

3.3 Uniform improper prior and the area under the likelihood

An extreme case of vague prior and the simplest example if improper prior is the uniform improper
prior, i.e., g(θ) ∝ h((θ)) = 1 for all θ in the unbounded support Θ. It is often employed for
expressing the absence of a-priori information in the Level-1 of inference when the area under
the likelihood (S) is finite, i.e.,

Z`×h = S(y) =

∫
Θ

`(y|θ)dθ <∞. (13)

Indeed, in this case the unnormalized posterior π(θ|y) = `(y|θ) can be normalized as

π̄(θ|y) =
1

S(y)
π(θ|y) =

1

S(y)
`(y|θ). (14)

Hence, we need S(y) <∞, in order to be able to use improper uniform prior in Level-1 of inference.
The quantity in Eq. (13) is a special case of fake evidence Z`×h when h(θ) = 1.

Remark 5. The quantity in Eq. (13), i.e., S(y), cannot be interpreted as an evidence Z = p(y),
since the values of the likelihood `(y|θ) are not weighted (by a prior density).

However, in this work, we show and remark that the area under the likelihood (S), or Z`×h,
can be still useful in Type-2 of model selection 2.2, as we explain in the next section.
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4 Key observation

Tuning the parameters (or hyper-parameters) in a family of models is a special scenario of model
selection, i.e., Type-2 described in Section 2.2. We will see that, in this specific case, we can use
improper priors since the fake evidences Z`×h are meaningful in some sense.

Comparing models which differ for the chosen parameters. For simplicity, let us consider
two models which differ only for the tuning of the parameters η of the likelihood function (induced
by the observation model). Let say that we have `(y|θ,η1) and `(y|θ,η2). Consider the use of
the same improper prior, g(θ) = c · h(θ) for both models, the Bayes factor is

BF12 =
Z1

Z2

=

∫
Θ
`(y|θ,η1)g(θ)dθ∫

Θ
`(y|θ,η2)g(θ)dθ

,

=
�c
∫

Θ
`(y|θ,η1)h(θ)dθ

�c
∫

Θ
`(y|θ,η2)h(θ)dθ

,

=
Z`1×h
Z`2×h

,

i.e., the ratio of marginal likelihoods Z1

Z2
is well-defined in this scenario, equal to the ratio fo fake

evidences
Z`1×h
Z`2×h

. More generally, considering M possible ηm, m = 1, ...,M , vector of parameters

(i.e., M possible models) and using the same the same improper prior, g(θ) = c · h(θ) for all the
models, we could apply a Bayesian model averaging [11] with the following normalized weights:

w̄m =
Zm∑M
i=1 Zi

= �cZ`m×h

�c
∑M

i=1 Z`i×h
, m = 1, ...,M,

that are again well-defined, since the arbitrary value c is cancelled out. In the simplest case of a
uniform improper prior, we have w̄m = Sm∑M

i=1 Si
, m = 1, ...,M . In other words, the improper prior

here can be employed since it is shared by all the models.

Remark 6. In the scenario of tuning some parameters η of the observation model, the use of
unique improper prior over θ (the same prior for all models) is allowed, and the fake evidence
Z`m×h can be employed for comparing models.

Hence, the fake evidence Z`m×h can be employed in Type-2 of model selection.

Remark 7. In this sense, the statement “improper priors are not allowed for model selection”
is technically wrong [13]. A more correct statement is “improper priors are not allowed for
computation of the Bayesian evidence Z”, but they can be used in Type-2 of model selection
computing the fake evidence Z`m×h.

Let us consider now the case h(θ) = 1, i.e., Z`m×h = S with S <∞.

Remark 8. The value of the area under the likelihood S cannot be obtained starting with a diffuse
prior and then increase its scale parameter to infinity (as usually done in Level-1 of inference).
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Namely, let us consider S <∞. As the scale of the diffuse prior grows, Z → 0, hence Z 9 S (as
one could expect).

Therefore, we can obtain a pointwise estimator of η as

η∗ = arg maxZ`×h(y|η) = arg max

∫
Θ

`(y|θ,η)h(θ)dθ. (15)

With respect to η, if we are just interested in a pointwise estimator η∗, we are basically
employing a frequentist approach over η (but a Bayesian inference over θ). However, if
SZ =

∫
Z`×h(y|η)dη < ∞, we can consider a uniform improper prior over η and the marginal

posterior would be p(η|y) = 1
SZ
Z`×h(y|η).

Table 1 provides a summary of the main concepts. In the next section, we check and confirm the
previous statements in a Bayesian regression setting.

Table 1: Summary of the main concepts.

Prior densities Level-1 of inference Level-2 of inference

Diffuse/vague priors weakly informative. informative;
If S <∞, then Z → 0 as the prior
becomes more diffuse.

non-informative; They are not allowed for computing Z;
Improper priors If S <∞, they can be used. If S <∞, they can be used for Type-2

to make inference on θ. of model selection.

We asymptotically obtain the same results
From diffuse → using an improper uniform prior; If S <∞, then Z → 0,

to improper uniform Generally, we recover hence Z 9 S.
some frequentist results.

5 Example of application to Bayesian regression models

In this section, we consider a generalized linear model for regression, considering N data points
and M different non-linear bases, with M < N . We apply two types of priors to the vector of
coefficients θ: an improper uniform prior and a Gaussian prior. In both cases, we give a complete
Bayesian analysis and try to design a Level-2 of inference in order to infer a vector of parameters
of the bases α, the noise power σ2

e and the rest of nuisance parameters. Firstly, the goal of
this section is to show some applicative examples. Secondly, the goal is confirm some important
statements provided above, from a more practical point of view. Finally, this section gives the
theoretical support for the numerical example in Section 6.
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5.1 Problem statement

Let us consider the dataset {xn, yn}Nn=1, where xn = [xn,1, . . . , xn,dX ] ∈ X ⊆ RdX represents the
inputs, yn ∈ R, denotes the outputs. The vector of outputs is then y = [y1, . . . , yN ]> ∈ RN . We
consider the following observation probabilistic model which link the vectors x and y,

y = f(x) + e, e ∼ N (e|0, σ2
e).

We assume that the underlying function can have the following parametric form,

f(x) =
M∑
m=1

φm(x,α)θm = φ(x,α)>θ, M < N, (16)

where φm(x,α) : X × Ω → R is the m-th nonlinear function where α ∈ Ω ⊆ Rdθ represents a
vector of parameters, that the user have to tune [5]. Defining the vectors

φ(x,α) = [φ1(x,α), φ2(x,α), . . . , φM(x,α)]>, (17)

θ = [θ1, θ2, . . . , θM ]>, (18)

then we can rewrite the model above as

y =
M∑
m=1

φm(x,α)θm + e = φ(x,α)>︸ ︷︷ ︸
1×M

θ︸︷︷︸
M×1

+e. (19)

Hereafter, for simplicity, we will remove the dependence of α, so that φm(x) = φm(x,α) and
φ(x) = φ(x,α). For instance, we will write simply f(x) = φ(x)>θ.

Vectorial form. The model above can be written in a vectorial form as

y︸︷︷︸
N×1

= f︸︷︷︸
N×1

+ e︸︷︷︸
N×1

(20)

= Φ︸︷︷︸
N×M

θ︸︷︷︸
M×1

+ e︸︷︷︸
N×1

, (21)

where we have denoted f = Φθ, e ∼ N (0, σ2
eIN) and we have defined N × M design matrix

Φ = [φ(x1), . . . .,φ(xN)]> (that is rectangular, in general), i.e.,

Φ︸︷︷︸
N×M

=


φ1(x1) φ2(x1) . . . φM(x1)
φ1(x2) φ2(x2) . . . φM(x2)

...
φ1(xN) φ2(xN) . . . φM(xN)

 . (22)
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5.2 Likelihood function

The observation model above induce a likelihood function with respect to (w.r.t.) the coefficients
θ, that is

`(y|θ) =
(
2πσ2

e

)−N
2 exp

(
−(y −Φθ)>(y −Φθ)

2σ2
e

)
=
(
2πσ2

e

)−N
2 exp

(
−||y −Φθ||2

2σ2
e

)
= N (y|Φθ, σ2

eIN), (23)

where IN is theN×N identity matrix. Clearly, a more complete notation would be p(y|θ,Φ,α, σe).
However, we first focus on the coefficients θ and consider, in this first stage, Φ and the nonlinear
bases are chosen in advance. The parameters α and σe must be tuned and decided by the user.
The complete vector of hyper-parameters, denoted as λ, is formed by α and σe, i.e., we have
λ = [α, σe] [5, 23].

5.3 Uniform improper prior over θ

In this section, we assume a uniform improper prior density over the weights θ, i.e., g(θ) ∝ 1 for
all θ.

5.3.1 Posterior of the coefficients θ

Therefore, the posterior pdf of the coefficient θ is

π̄(θ|y) =
`(y|θ)g(θ)

p(y)
∝ `(y|θ)g(θ),

∝ `(y|θ),

∝
(
2πσ2

e

)−N
2 exp

(
−||y −Φθ||2

2σ2
e

)
, (24)

i.e., proportional to the likelihood function `(y|θ) (we have use g(θ) ∝ 1). After some algebra and
rearrangements (in order to express the formula as a Gaussian density with respect to θ instead
of y), we can express π̄(θ|y) as a Gaussian distribution with mean vector µθ|y and covariance
matrix Σθ|y [24], i.e.,

π̄(θ|y) = N (θ|µθ|y,Σθ|y), (25)

with
µθ|y = θ̂ = (Φ>Φ︸ ︷︷ ︸

M×M

)−1Φ>y, (26)

and

Σθ|y =

(
1

σ2
e

Φ>Φ

)−1

= σ2
e

(
Φ>Φ

)−1
. (27)
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Remark 9. Note that, using a uniform improper prior, the posterior density π̄(θ|y) over the
coefficient vector resembles the “frequentist” sampling distribution described in Appendix A, being
both Gaussian with the same mean and covariance matrix, although they have a complete statistical
different meaning (see App. A). Moreover, θ̂ coincides with the maximum likelihood estimator,

i.e., θ̂ = θ̂ML (see App. A).

5.3.2 Posteriors of the function f(x) and vector f

Let us recall that the assumed model is f(x) = φ(x)>θ and θ ∼ p(θ|y) = N (θ|µθ|y,Σθ|y), after
seeing the data. Hence, given a fixed x, the hidden function f(x) is a random variable with a
Gaussian posterior density,

p(f(x)|y) = N (f(x)|µf |y(x), σ2
f |y(x)), (28)

with mean at x,

µf |y(x) = f̂(x) = φ(x)>θ̂

= φ(x)>(Φ>Φ)−1Φ>y, (29)

and variance
σ2
f |y(x) = σ2

eφ(x)>
(
Φ>Φ

)−1
φ(x), (30)

where we have considered the previous results regarding the posterior over the coefficients
θ. We remark that the regression function is the mean solution, i.e., f̂(x) = µf |y(x) =
φ(x)>(Φ>Φ)−1Φ>y [24].

Posterior of the vector f. In the smoothing, considering only estimations at the input
features, i.e., f = Φθ. Since θ ∼ p(θ|y) = N (θ|µθ|y,Σθ|y), after seeing the data, the posterior of
the vector of f is

p(f |y) = N (f |µf |y,Σf |y), (31)

with the mean vector

µf |y︸︷︷︸
N×1

= f̂ = Φθ̂ = Φ(Φ>Φ)−1Φ>y, (32)

and with the covariance matrix

Σf |y︸︷︷︸
N×N

= σ2
eΦ
(
Φ>Φ

)−1
Φ>. (33)

5.3.3 Area under the likelihood (S)

As we have remarked in the previous sections, sice we are using improper priors, we can just
compute the area under the likelihood (S), instead of a well-defined marginal likelihood. The S
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can be useful in certain scenarios, for instance, performing an empirical Bayes approach. Indeed,
the marginal likelihood Z = p(y) is defined as the integral p(y) =

∫
RN `(y|θ)g(θ)dθ. However,

since we are employing an improper prior g(θ) ∝ 1, the marginal likelihood is not perfectly
determined (a multiplicative factor is undetermined). As a consequence, we can just compute S,
i.e.,

S(y) =

∫
RN
`(y|θ)dθ,

where we miss the probability interpretation. Again, a more complete notation would be
S(y|Φ,α, σe) = S(y|Φ,λ). Here, we focus on the choice of the hyper-parameters λ = [α, σe]
that we should be tuned. Then, we write

S(y) = S(y|λ) =

∫
RN
`(y|θ,λ)dθ.

It is possible to show that [24]

S(y|λ) = S(y|α, σe) =
(2πσ2

e)
−(N−M

2 )√
det [Φ>Φ]

exp

[
−

(
y>y − f̂>f̂

2σ2
e

)]
, (34)

=
(2πσ2

e)
−(N−M

2 )√
det [Φ>Φ]

exp

[
−

(
y>y − y>Φ

(
Φ>Φ

)−1
Φ>y

2σ2
e

)]
, (35)

where we have used the equality f̂ = Φ
(
Φ>Φ

)−1
Φ>y. Note that det

[
Φ>Φ

]
> 0 since the matrix

Φ>Φ is symmetric, positive definite. Moreover, S(y|λ) above just depends only on λ ( we have
integrated out θ). Above, we have used the identity,

f̂>f̂ = y>Φ
(
Φ>Φ

)−1
Φ>y. (36)

Indeed, replacing the expression (32), i.e., f̂ = Φ(Φ>Φ)−1Φ>y, in the first side of the equation
above, we have

f̂>f̂ =
(
Φ
(
Φ>Φ

)−1
Φ>y

)>
Φ
(
Φ>Φ

)−1
Φ>y,

= (y>Φ
(
Φ>Φ

)−1
Φ>)Φ

(
Φ>Φ

)−1
Φ>y,

= y>Φ������(
Φ>Φ

)−1
���
Φ>Φ

(
Φ>Φ

)−1
Φ>y,

= y>Φ
(
Φ>Φ

)−1
Φ>y, (37)

Moreover, note also that

f̂>y = y>Φ
(
Φ>Φ

)−1
Φ>y = f̂>f̂ , (38)

Hence, we can write to an important equality:

||y − f̂ ||2 = y>y + f̂>f̂ − 2f̂>y,

= y>y + f̂>f̂ − 2f̂>f̂ ,

= y>y − f̂>f̂ , (39)
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where we have used f̂>y = f̂>f̂ in Eq. (38). Note that from (39), we have always y>y− f̂>f̂ ≥ 0.
Namely, the power of the outputs y>y is always greater or equal than the power of the smoothing
solution f̂>f̂ , i.e., y>y ≥ f̂>f̂ . This is clearly due to the denoising effect [24].

Then, the S can be rewritten in terms of the smoothing error ||y − f̂ ||2, i.e.,

S(y|λ) =
(2πσ2

e)
−(N−M

2 )√
det [Φ>Φ]

exp

[
−

(
||y − f̂ ||2

2σ2
e

)]
. (40)

The negative log-S is

C(λ) = − logS(y|λ) = ||y−f̂ ||2
2σ2
e

+ N−M
2

log(2πσ2
e) + 1

2
log det

[
Φ>Φ

]
. (41)

We can try to minimize the cost function C(λ) in (40) with respect to λ = [α, σe]. Alternatively,
we can try to simplify the equation above. One possibility is shown below.

Estimator of the noise variance. If we keep fixed α (and hence also the matrix Φ), it is
possible to show that the conditional maximum value w.r.t. σe (conditioned to α) is [18]

σ̂2
e =

1

N −M
||y − f̂ ||2, (42)

=
1

N −M
||y −Φ

(
Φ>Φ

)−1
Φ>y||2.

Clearly, another possible (biased but consistent) estimator would be σ̂2
e = 1

N
||y− f̂ ||2. If we replace

Eq. (42) into (41), we obtain

logS(y|α) = −N −M
2

− N −M
2

log

(
2π

1

N −M
||y − f̂ ||2

)
− 1

2
log det

[
Φ>Φ

]
+ const. (43)

Considering the value M < N fixed and chosen by the user, we can write a cost function as

C(α) = − logS(y|α) =
N −M

2
log
(
||y − f̂ ||2

)
︸ ︷︷ ︸

fitting term

+
1

2
log det

[
Φ>Φ

]︸ ︷︷ ︸
penalty term

+const, (44)

which is just function of α. We desire to minimize the cost function C(α) = − logS(y|α), in
term of α. We can clearly identify two parts:

• A fitting term, N−M
2

log
(
||y − f̂ ||2

)
, which decreases to−∞ at y = f̂ (maximum overfitting).

Bigger errors ||y− f̂ ||2 correspond to more positive values of this term. Recall that f̂ depends

on Φ, in fact, f̂ = Φ(Φ>Φ)−1Φ>y.
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• A model complexity penalization, 1
2

log det
[
Φ>Φ

]
, that penalizes the overfitting. It fosters

smaller values of det
[
Φ>Φ

]
(this usually happens when Φ>Φ tends to be a full matrix),

and penalizes greater values of det
[
Φ>Φ

]
(this usually happens when Φ>Φ becomes more

similar to a diagonal matrix). Note that the matrix Φ>Φ is always symmetric, and positive
semi-definite [24].

Minimizing Eq. (44) can be employed to tune the vector of parameters α [24, 13, 14]. Note also
that

exp (−C(α)) =
1√

det [Φ>Φ]

[
||y − f̂ ||2

]−(N−M
2 )

,

=
1√

det [Φ>Φ]

[
||y − f̂ ||

]−(N−M)

, (45)

that resembles the form of a t-student density.

Remark 10. Both expressions in Eqs. (41)-(44) seems to be adequate for tuning the parameters
of the model (Type-2 of model selection). We will test them numerically in Section 6.

Remark 11. The expressions (44)-(45) can be also obtained assuming an improper Jeffreys prior,
h(θ) = 1/σe, and integrating out σe from (40) [24, Chapter 2]. This also confirms again that the
use of improper priors is allowed in Type-2 of model selection.

5.4 Gaussian prior over θ

In the previous section, we assume a improper uniform prior over θ. Now, let us consider a
Gaussian prior density over θ; more specifically, we assume

p(θ) = N (θ|0, Σθ︸︷︷︸
M×M

),

as a prior, where Σθ is a M ×M covariance matrix decided and/or tuned by the user. This prior
is related to the so called Tikhonov’s regularization in least squares problems. We recall that the
likelihood function does not change and it is again given in Eq. (23), i.e., p(y|θ) = N (y|Φθ, σ2

eIN).

5.4.1 Posterior of θ

It is possible to show that the posterior density of θ is distributed again as Gaussian density
[5, 24],

p(θ|y) = N (θ|µθ|y,Σθ|y), (46)

where the mean vector is

θ̂ = µθ|y =
1

σ2
e

(
1

σ2
e

Φ>Φ + Σ−1
θ

)−1

Φ>y,

=
(
Φ>Φ + σ2

eΣ
−1
θ

)−1
Φ>y,

= ΣθΦ
> (ΦΣθΦ

> + σ2
eIN
)−1

y, (47)
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and the covariance matrix is

Σθ|y =

(
1

σ2
e

Φ>Φ + Σ−1
θ

)−1

,

= σ2
e

(
Φ>Φ + σ2

eΣ
−1
θ

)−1
,

= Σθ −ΣθΦ
> (ΦΣθΦ

> + σ2
eIN
)−1

ΦΣθ, (48)

where in the last expression we have used the matrix identity in [5].

5.4.2 Posterior of f(x)

Recall that the assumed model is f(x) = φ(x)>θ and we consider θ ∼ p(θ|y) = N (θ|µθ|y,Σθ|y),
after seeing the data. For a fixed x, the hidden function f(x) is again a random variable with a
Gaussian posterior density,

p(f(x)|y) = N (f(x)|µf |y(x), σ2
f |y(x)), (49)

with mean at x,

µf |y(x) = f̂(x) = φ(x)>θ̂

= φ(x)>(Φ>Φ + σ2
eΣ
−1
θ )−1Φ>y,

= φ(x)>ΣθΦ
> (ΦΣθΦ

> + σ2
eIN
)−1

y, (50)

and variance

σ2
f |y(x) = φ(x)>Σθ|yφ(x),

= φ(x)>
(

1

σ2
e

Φ>Φ + Σ−1
θ

)−1

φ(x), (51)

= φ(x)>Σθφ(x)− φ(x)>ΣθΦ
> (ΦΣθΦ

> + σ2
eIN
)−1

ΦΣθφ(x).

where we have considered θ is distributed as its posterior, p(θ|y) = N (θ|µθ|y,Σθ|y) and the matrix

identities given in [5, 24]. The regression function is the mean solution, i.e., f̂(x) = µf |y(x) [19].

Posterior of the vector f . In the smoothing case, we have f = Φθ. Moreover, recall that
the posterior of θ is p(θ|y) = N (θ|µθ|y,Σθ|y), hence we obtain that

p(f |y) = N (f |µf |y,Σf |y), (52)

where the mean vector is

f̂ = µf |y = Φθ̂,

= Φ
(
Φ>Φ + σ2

eΣ
−1
θ

)−1
Φ>y,

= ΦΣθΦ
> (ΦΣθΦ

> + σ2
eIN
)−1

y, (53)
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and the covariance matrix is

Σf |y = ΦΣθ|yΦ
>,

= Φ

(
1

σ2
e

Φ>Φ + Σ−1
θ

)−1

Φ>,

=
[(

ΦΣθΦ
>)−1

+
(
σ2
eIN
)−1
]−1

,

= ΦΣθΦ
> −ΦΣθΦ

> (σ2
eIN + ΦΣθΦ

>)−1
ΦΣθΦ

>, (54)

where in the last expression we have used the matrix identity in [5].

5.4.3 Marginal likelihood

Since we have used a proper prior density g(θ), we can compute the integral
∫

Θ
`(y|θ)g(θ)dθ

without any arbitrary constant, and it can be interpreted as a marginal likelihood Z = p(y). Due
to the assumed observation model, y = f + e, we can observe that the vector y is the sum of two
independent Gaussian vectors, f and e, where

p(f) = N (f |0,ΦΣθΦ
>) and p(e) = N (e|0, σ2

eIN). (55)

The first density p(f) is induced by the prior over θ, the second density p(e) is given by assumption.
Thus, y is also distributed as a Gaussian density with mean the sums of the means, and covariance
matrix the sum of the two covariance matrices, i.e.,

Z = p(y) = p(y|α, σe,Σθ) = N (y|0,ΦΣθΦ
> + σ2

eIN), (56)

where we recall that a complete notation would be p(y) = p(y|Φ,α, σe,Σθ), but considering fixed
the bases (hence Φ), we study the marginal likelihood as function of the hyper-parameters α, σe
and Σθ. Therefore, the minus log-marginal likelihood − logZ is

− log p(y|α, σe,Σθ) =

=
1

2
y>(ΦΣθΦ

> + σ2
eIN)−1y +

1

2
log det

[
ΦΣθΦ

> + σ2
eIN
]

+
N

2
log 2π,

and finally

− log p(y|α, σe,Σθ) =
1

2
y>(ΦΣθΦ

> + σ2
eIN)−1y︸ ︷︷ ︸

fitting term

+
1

2
log det

[
ΦΣθΦ

> + σ2
eIN
]︸ ︷︷ ︸

penalty term

+const., (57)

The factor y>(ΦΣθΦ
>+σ2

eIN)−1y is a fitting term. The second term is a penalization of the model
complexity, as we have already discussed above. Generally, one can try to maximize p(y|α, σe,Σθ),
or minimize − log p(y|α, σe,Σθ), in order to learn α, σe and Σθ [14, 13, 23]. In this case, the
covariance matrix Σθ is a parameter of the prior density over θ.
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5.4.4 Trying to come back to the case of the improper uniform prior

For simplicity, we assume that the covariance matrix of the prior of θ is diagonal, i.e., Σθ = σ2
pIN

so that, replacing in Eq. (57),

− logZ = − log p(y|α, σe,Σθ) =

=
1

2
y>

1

σ2
p

(
ΦΦ> +

σ2
e

σ2
p

IN

)−1

y +
1

2
log det

[
σ2
pΦΦ> + σ2

eIN
]

+ const.,

First, we focus on the first term. Applying the following Woodbury matrix identity [10],(
A + CBC>

)−1
= A−1 −A−1C

(
B−1 + C>A−1C

)−1
C>A−1,

to the first term, i.e., (
aIN + ΦΦ>

)−1
,

where a = σ2
e

σ2
p
, A = aIN , B = IN and C = Φ, then we obtain

1

2σ2
p

y>
(
aIN + ΦΦ>

)−1
y =

=
1

2σ2
p

y>
(
a−1IN − a−1Φ

(
IN + a−1Φ>Φ

)−1
Φ>a−1

)
y

=
1

2σ2
p

y>
(
a−1IN − a−1Φ

(
aIN + Φ>Φ

)−1
Φ>
)

y

=
1

2σ2
p

a−1
(
y>y − y>Φ

(
aIN + Φ>Φ

)−1
Φ>y

)
Replacing a = σ2

e

σ2
p
, we have

1

2σ2
p

y>
(
aIN + ΦΦ>

)−1
y =

1

2σ2
e

(
y>y − y>Φ

(
σ2
e

σ2
p

IN + Φ>Φ

)−1

Φ>y

)
. (58)

Finally, for σ2
p →∞, we get

lim
σ2
p→∞

1

2σ2
e

y>
(
σ2
e

σ2
p

IN + ΦΦ>
)−1

y =
1

2σ2
e

(
y>y − y>Φ

(
0 · IN + Φ>Φ

)−1
Φ>y

)
,

=
1

2σ2
e

(
y>y − y>Φ

(
Φ>Φ

)−1
Φ>y

)
=

1

2σ2
e

(
y>y − f̂>f̂

)
,

=
1

2σ2
e

||y − f̂ ||2, (59)
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where we have employed that f̂ = Φ(Φ>Φ)−1Φ>y as in Eq. (53) when σ2
p →∞, becoming equal

to Eq. (32), and we have used the expression in (36)-(37). Moreover, in the last equality, we have
used Eq. (39). Hence, as σ2

p →∞, we are able to recover the first term in Eq. (41).

Let consider now the second term as σ2
p →∞. We obtain

lim
σ2
p→∞

1

2
log det

[
σ2
pΦΦ> + σ2

eIN
]

=∞,

so that, for the complete expression in (57), we have − logZ →∞ and hence Z → 0.

Remark 12. Namely, as discussed in Section 3.1, making the Gaussian prior more diffuse
penalizes more the corresponding model and its marginal likelihood decreases to 0 (since S < ∞
always in this model).

Remark 13. Moreover, we are not able to recover completely the improper prior case. We are
just able to recover the fitting term of the − logS in Eq. (41) as asymptotic case of − logZ in
Eq. (57), as shown in Eq. (59). This confirms the fact that improper priors are not allowed for
computing the evidence Z, and that the the area under the likelihood S cannot be considered an
asymptotical special case of a marginal likelihood.

6 Numerical example

Let us consider to observe the data points {xi, yi}Ni=1 generated by the following model,

yi = θ1 exp (|xi − α1|) + θ2 exp (|xi − α2|) + ei, with α1 < α2, (60)

where ei ∼ N (e|0, σ2
e). We set σ2

e = 0.5, θtrue = [θ1 = 2, θ2 = −5]> and αtrue = [α1 = −4, α2 =
6]>. We consider a vector y = [y1, ..., yN ]> of N = 200, generated by the model above considering
θtrue, αtrue and equispaced values of xi, from −10 to 10.

The goal is to make inference regarding θ and α. We consider a Bayesian approach for inferring
θ considering an improper uniform prior. For tuning α, we consider the maximization of the area
under the likelihood S(y|α) given in Section 5.3.3. We use Eq. (26) as estimator of θ, Moreover,
considering known the noise power σ2

e = 0.5, we numerically maximize S(y|α) in Eq. (40), or
equivalently minimize (41) (or Eq. (44)). We compute the mean square error (MSE) in estimation
for both θ and α. We repeat the procedure in 2000 different independent runs.

The MSEs averaged over 2000 independent runs are 0.0271 and 0.0317 with respect to θ and
α, respectively. An example of data realization and the corresponding curve fitting is given in
Figure 1(a). An example of log area under the likelihood logS(y|α) for a given realization is
shown in Figure 1(b). The histograms of the estimated values of each component of the vector of
α (in different realizations) are given in Figure 2.
Therefore, by this numerical example, we can confirm that the maximization of the area under
the likelihood logS(y|α) can be employed for tuning parameters of the observation model.
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Figure 1: (a) One realization of the data vector y and a corresponding fitted curve according
to the observation model. (b) Example of the log area under the likelihood logS(y|α) in one
realization of the data vector y. We can see that the maxima are localized around approximately
[−4, 5] and [5,−4] (just [−4, 5] is admissible since α1 < α2).
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Figure 2: Histograms of each component of estimated vector α = [α1, α2]> (maximizing S(y|α))
over 2000 independent realizations. We can observe that bias is virtually zero and the variance in
bigger for α1 with respect to α2. This is reasonable looking the realization of data in Figure 1(a)
where the (negative) pick at x = 5 seems much more clear/evident, than the first pick at x = −4.

7 Conclusions

In this work, we have remarked some relevant points regarding the use of diffuse priors and
improper priors in level-1 and level-2 of Bayesian inference. We have stressed their impact into
the inference and their possible use. We have shown that although improper priors are not allowed
for the computation of the evidence Z, they can be employed for model selection when we have
several models belonging to the same parametric family (i.e., for tuning parameters of a parametric
model). In this scenario, i.e., when improper priors can be used, we suggest to call the computed
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quantity as “fake evidence” or, in the case of uniform improper priors, as “the area under the
likelihood”. Another interesting aspect is that the area under the likelihood cannot be obtained
as special asymptotic case of marginal likelihood, applying a diffuse prior and increase its scale
parameter to infinity.
We have discussed all these aspects firstly in a general way, and then more specifically within a
Bayesian regression model, considering a uniform improper prior and a Gaussian prior. Moreover,
a specific numerical example involving generalized linear model has been also provided, performing
numerical checks and related simulations.
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A Maximum likelihood estimator

The maximum of the likelihood function is reached at

θ̂ML = (Φ>Φ︸ ︷︷ ︸
M×M

)−1Φ>y. (61)

Moreover, the covariance matrix of the estimator above is

Σθ̂ = σ2
e(Φ

>Φ)−1, (62)

and we can also write
θ̂ML ∼ N (θ̂|θtrue,Σθ̂), (63)

where θtrue above represents the true vector generating the observations y following the model
in Eq.(21), and it is also the mean of the Gaussian density above. This density is the sampling

distribution of the estimator θ̂ML.

Note that the sampling distribution of the estimator, N (θ̂ML|θtrue,Σθ̂), is philosophically
completely different from a posterior distribution over the vector θ, given in Section 5.3.1. Indeed,
the sampling distribution is a probability density that describes the probabilities with which the
possible values for the estimator θ̂ML = θ̂ML(y) occur, when different realizations of the data y are

given. Namely, for a different realization y′ we have a different estimator θ̂ML(y
′). If we have

another realization y′′, we have a different estimator θ̂ML(y
′′). These vectors, θ̂ML(y

′) and θ̂ML(y
′′),

are samples distributed according to the sampling distribution of the estimator. On the other
hand, in a Bayesian framework, the data y are considered fixed and given (conceptually just one
realization of data is considered). The posterior distribution over θ expresses all the statistical
knowledge about θ after observing the data (and considering the prior information and/or beliefs)
[5, 23].
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