
A Software Reliability Growth Model Considering

Imperfect Debugging and Disagreement between

Operation Environments

Ji Won Pak1*, Kwang Chol Kim2, Kwang Song Han3

*Faculty of Mathematics, Kim Il Sung University, Taesong District, Pyongyang,

DPR Korea

†The corresponding author. Email address: gc.Kim@star-co.net.kp

SUMMARY

Many software reliability growth models are proposed to be used in practice.
However, most software reliability growth models suffer in the realistic software
testing environment due to the unrealistic assumptions, such as perfect debugging,
constant fault detection rate and regular changes.
In fact, considering more reasonable assumptions in the reliability modeling may

further improve the fitting and predictive power of software reliability growth
models. It is affected by many factors, such as tester’s skill, test plans, testing tools
and runtime environment. Thus, software debugging is an imperfect process. And
software testing for getting fault data set is done under the assumption that user’s
operation environment is the same as the testing one. However, in practice, it is
exactly the same. This paper deals with a software reliability growth model which
considers imperfect debugging and disagreement between operation environments.
The better performance of proposed model is illustrated with fault data sets from
software development project.

KEYWORDS : software reliability growth model; imperfect debugging;
disagreement between operation environment

1. Introduction

Software reliability is defined as the probability of failure-free software
operation for a specified period of time in a specified environment [1]. Reliability
is one of the most important quality attributes of software and a primary concern
for both software developers and software users. We can quantitatively measure
and assess the software reliability by using a mathematical model. The Software
Reliability Growth Model (SRGM) is a tool that can be used to evaluate the
software reliability quantitatively and track the growth of reliability [5].
In the last four decades, with the increasing demand to high quality software,

many SRGMs have been published [3,6,8-19]. An important class in SRGMs is the
Non-homogeneous Poisson Process (NHPP) model, which has been widely used in
analyzing the reliability of software products in practice [10]. These models
consider the debugging process as a counting process characterized by its mean
value function. Software reliability can be estimated after the mean value function
is determined. Every model has been built upon various assumptions.
According to the assumption for debugging, SRGMs can be divided into two

categories. Models in first category considered perfect debugging, i.e., the fault
detected is immediately removed and no new errors are introduced. As increasing
of size and complexity of software product, these models supper in the realistic
software testing environment due to the ideal assumptions [4,21].
The others in second category are not only considered imperfect debugging, i.e.,

faults are not always fully repaired, and can be introduced during the fault remove
process, but also several factors, such as fault detection rate and learning
phenomenon of the software developers [24].
Meanwhile, according to change of fault detection rate, SRGMs can be divided

into three categories.
First category includes models having a constant fault detection rate. For

example, the models published by Jelinski and Modranda, Goel and Okumoto [13]
supposed that the fault detection rate is constant and no new fault is introduced.
Second category includes models based on regular changes of fault detection

rate. The delayed S-shaped (DSS) model published by Yamada et al. [9] and the
inflection S-shaped model published by Ohba [3] assumed that fault detection rate
is increasing smoothly over time.

Many models, such as Wang Model, Kapur Models, Pham Models considered
testing effort, fault removal effect, learning phenomenon and so on. Pham and
Zhang [17] assumed that the fault detection rate is non-decreasing and the fault
content function is an exponential function and supposed an imperfect debugging
model. Pham et al. [18] proposed a general imperfect debugging model, which
assumed that the fault content function is a linear function and the fault detection
rate is non-decreasing. Zhang et al. [24] proposed a software reliability growth
model considered fault removal efficiency, which assumes that fault introduction
rate to be constant and the fault detection rate function is non-decreasing with an
inflection S-shaped. Kapur et al. [8,11] proposed two SRGMs, which assume that
fault content function is proportional to the number of fault detections and fault
detection rate is non-decreasing and fault removal rate is constant.
We can say that these models all consider regular changes of fault detection rate.
Third category includes some models considering irregular changes of fault

detection rate. Yamada supposed that fault detection process is a stochastic one and
proposed software reliability growth models by applying stochastic differential
equations [6,12].
Yamada agreed that if the size of software is very large, the number of faults

detected during testing phase becomes large, in such a case, a model in a stochastic
process with a continuous state space is useful.
As seen above, more accurate software reliability growth models are publi

shed to estimate the optimal software release time and the cost, due to no c
ommon model in all software development.
Many researchers, in fact, agree that software debugging is very complicated

and uncertain and it is affected by many factors, such as the testing tool, operation
profile, skill of tester and runtime environment [10]. The model built upon better
reasonable assumptions can improve the fitting and predictive power in practice.

Now, most of models have a common assumption that software testing
environment is the same as user’s operation environment. But, software product is
used in different environment after they are released and there is a disagreement
between operation environments. So we incorporate disagreement between
operation environments and imperfect debugging into modeling and propose a new
model.
The organization of study is as follow. In Section 2, the basic assumptions for

new model are introduced and proposed a software reliability growth model. In
Section 3, the performance of new model is compared with several models by
using public fault data sets, which are from real software development process. The
conclusion is given in Section 4.

2. Software Reliability Growth Modeling

Notations
 tm mean value function that presents the expected number of detected

faults by time t.
 ta Total fault content function, i.e., the sum of expected number of initial

faults and introduced faults till time t.
 tb Fault detection rate function.

Assumptions for the proposed model
In general, fault detection and removal are complicated. Reasonable assumption

is needed in building a good software reliability growth model.
Proposed model in this paper has some assumptions as follows.
1. The occurrence of fault follows NHPP.
2. Software failure is at any times as a result of faults remaining in the software.
3. The number of faults remaining in the software gradually decreases as the

testing procedure goes on.
4. Learning phenomenon is considered in fault detection process.
5. Whenever a fault is detected, it is removed immediately and new fault can be

introduced into software. The number of fault introduced is directly
proportional to ones of fault detected at any time.

6. The disagreement between operation environments is random.

New model development
We can have the following differential equation directly from assumption 1, 2.

][tmtatb
dt
tdm

 (1)

From the assumption 5, we can denote changing of fault introduction as follow.

dt
tdm

dt
tda (2)

where is the fault introduction rate.
Thus

 tmata (3)
where a is the expected number of initial faults in software.

The disagreement between operation environments is expressed by using a random
variable as follow[20].

where is a random variable that presents the disagreement between operation

environments.
][tmtatb
dt
tdm

 (4)

Under the initial condition 00 m , we can get a general solution of equation 4

as follow.

][
0

t tBtB debaetm

 (5)

where
t

dbtB
0

 .

Substituting equation 3 into equation 5:

][
1 0

t tBtB debeatm

 (6)

From assumption 6, we can assume that follows the gamma distribution.

 0;0,,
1

xexxg
x

(7)

where t is a gamma function and xg is a probability density function.

From equation 5and 6, tm is as follow.

0 0 0
dxxgdexbedxxgtmtm

t xBtxB
x

 (8)

Now, mean value function tm that presents the number of detected faults by

time t is the same as the expectation of tm as a random variable .

0 0 0
dxxgdexbedxxgtmtmtm

t xBtxB
x

 (9)

From assumption 3 and 4, we can assume that fault detection rate is
non-decrease due to learning phenomenon of tester and decreasing of number of
faults contented in software. It is expressed as follow.

 ctdebttb (10)

Substituting equation 10 into equation9

 k

i

dii

dii
tbc

atmtm

0

1

1!

1
1

(11)

3. Illustrative Examples

In this section, we examine the good-of-fit and predictive power of the proposed
model and compare it with existing models.
The procedure is as follow [18]:
First, fit each model to the data; estimate the model parameters and obtain the

mean value functions. Most of the data points are used to fit the models and
estimate the parameters.
Second, Compare models with each other within a data set, using some criteria,

the remaining points from data are used to illustrate the short-term predictive power
of the model.

Criteria for model comparison
Two common criteria are used for model comparison. Below is a brief

description of the criteria.
The mean square of error (MSE) measures the deviation between the predicted

values with the actual observation and is defined as follow [15,28].

kn

tmy
MSE

n

i
ii

1

2

(12)

where n and k are the number of observations and number of parameters in the
model.
When the sample size of fault data set is small, we give the other form of MSE

as follow[19]:

kn

tmy
MSE

n

i
ii

1

2

(13)

The Akaike information criterion(AIC) calculates the ability of a model to
maximize the likelihood function that is directly related to the degrees of freedom
during fitting; increasing the number of parameters usually gives a better fit [2,23].
This criterion can be defined as follows:

AIC = -2log(likelihood function at its maximum value)+2k; (14)

Where k denotes the number of parameters in the model.
The AIC criterion uses the degrees of freedom by assigning a larger penalty to a

model with more parameters. For AIC and MSE, the smaller the value, the better
the model performance [10,15].
Data set
To validate the performance of the proposed model in an actual test, we use two

public fault data sets from real software development process.
The first data set (DS1) was obtained from an small operating system, during

148 days, 112 faults were detected and removed.
TableⅠ. DS1[14].

Test Pe
riod(da

y)

Detecte
d faults

Test Pe
riod(da

y)

Detecte
d faults

Test Pe
riod(da

y)

Detecte
d faults

Test Pe
riod(da

y)

Detecte
d faults

1 0 38 27 75 68 112 85
2 1 39 27 76 68 113 86
3 1 40 29 77 69 114 87
4 1 41 29 78 69 115 90

5 1 42 32 79 70 116 91
6 1 43 34 80 73 117 92
7 1 44 35 81 73 118 92
8 1 45 37 82 73 119 95
9 1 46 37 83 73 120 95
10 1 47 37 84 74 121 98
11 2 48 38 85 74 122 99
12 2 49 40 86 75 123 99
13 2 50 43 87 76 124 99
14 2 51 43 88 76 125 99
15 2 52 43 89 76 126 100
16 2 53 44 90 76 127 103
17 3 54 44 91 76 128 103
18 5 55 44 92 77 129 103
19 6 56 44 93 77 130 104
20 9 57 45 94 78 131 104
21 12 58 51 95 79 132 104
22 14 59 52 96 79 133 104
23 14 60 53 97 79 134 105
24 14 61 54 98 79 135 105
25 14 62 55 99 79 136 105
26 14 63 57 100 80 137 106
27 14 64 58 101 81 138 106
28 14 65 59 102 81 139 106
29 16 66 59 103 81 140 106
30 18 67 61 104 81 141 106
31 20 68 61 105 83 142 108
32 21 69 61 106 83 143 109
33 21 70 62 107 84 144 110
34 24 71 65 108 84 145 110
35 25 72 66 109 85 146 110
36 26 73 66 110 85 147 111
37 26 74 68 111 85 148 112

TableⅡ. DS2[25].

Test Pe
riod(we
ek)

Detecte
d faults

Test Pe
riod(we
ek)

Detecte
d faults

Test Pe
riod(we
ek)

Detecte
d faults

Test Pe
riod(we
ek)

Detecte
d faults

1 12 6 97 11 116 16 141
2 23 7 109 12 123 17 144
3 43 8 111 13 126
4 64 9 112 14 128
5 84 10 114 15 132

The second data set (DS2) was obtained from middle-size software project
during 17 weeks, 144 faults were detected and removed.
Experimental results and comparison
We divide data sets into 50%, 75% subsets to compare the performance of

models. We use 50%, 75% of data sets to estimate the model parameters and the
remaining 50%, 25% of the data sets to compare the model predictive power. We
select 11 different SGRMs as the comparison models.
DS1: As shown in TableⅢ , our model has the best fitting and predictive power
among all models when 50% of the fault data from DS1 are applied. Its MSEpredict,
AIC are 19.3, 190.5 respectively. When 75% of the fault data from DS1 are
applied, our model has the smallest MSEpredict, AIC values among all models.
TableⅢ. Comparison of fitting and predictive power of SRGM using DS1.

Model 50% 75%

MSEpredict AIC MSEpredict AIC
G-O[13] 215.98 202.84 19.77 275.17
DSS[9] 275.3 190.81 120.7 259.8
ISS[3] 215.26 204.82 255.74 260.85

P-N-Z[18] 319.1 192.83 132.96 260.87
P-Z[17] 177.61 196.49 173.09 262

Zhang-Teng Pham[24] 133.57 198.67 221.35 265.68
Kapur-1[8] 8617.31 206.82 325.43 279.17
Kapur-2[11] 378.42 194.05 150.35 261.72

Yamada SDE[12] 169.7 204.9 20.47 277.2
Yamada DSS SDE[6] 282.17 192.8 124.55 261.8

Yamada ISS SDE[6] 277.5 206.9 21.06 279.2
Proposed Model 19.3 190.5 16.8 259.8

(a)

(b)
FigureⅠ. Actual and estimated number of fault detected in the time interval. (a) and (b)

illustrate the case for 50% and 75% of DS1.

DS2: Similarly, As shown in Table Ⅳ , our model has the best fitting and
predictive power among all models when 50% of the fault data from DS1 are

applied. Its MSEpredict, AIC are 20.7, 47.5 respectively. When 75% of the fault
data from DS1 are applied, our model has the smallest MSEpredict, AIC values
among all models.
TableⅣ. Comparison of fitting and predictive power of SRGM using DS2.

Model 50% 75%

MSEpredict AIC MSEpredict AIC
G-O[13] 32.83 72.6 34.98 91.5
DSS[9] 152.76 56.6 100.77 79.7
ISS[3] 297.58 48.7 113.1 82.6

P-N-Z[18] 297.96 50.7 113.38 84.6
P-Z[17] 306.48 52.7 113.05 86.6

Zhang-Teng Pham[24] 152.03 64.9 149.45 121.9
Kapur-1[8] 32.86 76.6 34.17 95.5
Kapur-2[11] 32.84 78.6 94.27 82

Yamada SDE[12] 31.92 74.5 35.5 93.1
Yamada DSS SDE[6] 145.75 58.9 103.77 81.8
Yamada ISS SDE[6] 288.63 50.2 112.3 84.8
Proposed Model 20.7 47.5 27.3 77.4

(a)

(b)
FigureⅡ. Actual and estimated number of fault detected in the time interval. (a) a

nd (b) illustrate the case for 50% and 75% of DS2.

As seen above experiments, we can see that proposed model has a better
performance that other models.

4. Conclusion

In this paper, disagreement between testing environment and user’s operation one
and imperfect debugging are incorporate into software reliability growth modeling.
We are faced with disagreement between testing environment and realistic

operation one in software testing due to using software by different users after they
are released. And software debugging is an imperfect process, too. These problems
are studied here. The proposed model considers that the introduced fault is directly
proportional to number of detected fault at any time. The gamma distribution is
used in our model to present the disagreement between operation environments.
The fitting and predictive power of proposed model has been done on two public
fault data sets with several models. The results show better fitting and predictive
power than some other ones.

References

1. Musa J D, Iannino A, Okumoto K. Software Reliability Measurement Pre
diction Application McGraw-Hill New York 1989: 32-241.

2. Akaike H, A New Look at Statistical Model Identification. IEEE Transacti
ons on Automatic Control 1974;AC-19(6):716-723.

3. Ohba M. Inflection S-shaped Software Reliability Growth Models. In: Osa
ki S, Hatoyama Y, eds. Proc. of the Stochastic Models in Reliability The
ory. Berlin: Springer-Verlag 1984; 144-162.

4. Ohba M, Chou X M. Does Imperfect Debugging Affect Software
Reliability Growth? 11th International Conference on Software Engineerin
g 1989: 237−244.

5. William W. Everett. Software Reliability Measurement. IEEE Journal on S
elected Areas in Communications 1990; 8(2):247-252.

6. Yamada S, Nishigaki A, Kimura M. A Stochastic Differential Equation M
odel for Software Reliability Assessment and its Goodness-of-Fit. Internat
ional Journal of Reliability and Application 2003; 4(1):1-11.

7. Jinyong Wang, Zhibo Wu, Yanjun Shu, Zhan Zhang. An Imperfect Softwa
re Debugging Model Considering Log-logistic Distribution Fault Content
Function. Journal of Systems and Software 2015; 100:167-181.

8. Kapur P K, Gupta D, Gupta A, Jha P C. Effect of Introduction of Faults
and Imperfect Debugging on Release Time. Ratio Mathematica 2008; 18:
62-90.

9. Yamada S, Ohba M, Osaki S. S-shaped Reliability Growth Modeling for
Software Error Detection. IEEE Transactions on Reliability 1983; 32:475-
484.

10. Jinyong Wang, Zhibo Wu, Yanjun Shu, Zhan Zhang. A General Imperfec
t Software Debugging Model Considering the Nonlinear Process of Fault
Introduction[C]. In Proceedings of the 14th International Conference on
Quality Software 2014:222-227.

11. Kapure P K, Pham H, Anand S, Yadav K. A Unified Approach for Dev
eloping Software Reliability Growth Models in the Presence of Imperfect
Debugging and Error Generation. IEEE Transactions on Reliability 2011;
60(1):331-340.

12. Shigeru Yamada, Mitsuhiro Kimura. Software Reliability Measurement an
d Assessment with Stochastic Differential Equations. IEICE Trans. Funda
mentals 1994; E77-A(1):109-116.

13. Goel AL, Okumoto K. Time-Dependent Error-Detection Rate Model for
Software Reliability and other Performance Measures. IEEE Trans. On Rel
iability 1979; 28:206-2011.

14. Musa J D. Software Reliability Data. Cyber Security and Information Sy
stems Information Analysis Center, January 1980.

15. Kapur PK, Sameer Anand, Shigeru Yamada, Venkata SS. Stochastic Diffe
rential Equation-Based Flexible Software Reliability Growth Model. Mathe
matical Problems in Engineering 2009; [doi:10.1155/2009/581383].

16. Qiuying Li, Haifeng Li, Minyan Lu. Incorporating S-shaped Testing-effor
t Functions into NHPP Software Reliability Model with Imperfect debug
ging. Journal of Systems Engineering and Electronics 2015; 26(1):190-2
07.

17. H. Pham, L. Nordamann, X. Zhang. A general imperfect software debug
ging model with S-shpaed fault detection rate. IEEE Trans. On Engineeri
ng 1997; 14(3):269-282.

18. Pham H, Zhang X. A General Imperfect-Software-Debugging Model with
S-Shaped Fault-Detection Rate. IEEE Transactions on Reliability 1999; 48
(2):169-175.

19. Jinyong Wang. An imperfect software reliability model considering irregu
lar fluctuation of fault introduction rate. Quality Engineering 2017; 29(3):
377-394.

20. Hoang Pham. A generalized gault-detection software reliability model sub
ject to random operating environments. Journal of Computer Science 201
6; 3:145-150.

21. Tao Li, Kaigui Wu. A NHPP Software Reliability Growth Model Consid
ering Learning Process and Number of Residual Faults. Journal of Conve
rgence Information Technology 2012; 7(13):127-134.

22. Norman F.Schneidewind. Software Reliability Model with optimal selectio
n of failure data. IEEE Transactions on Software Engineering 1993; 19(1
1):1095-1104.

23. Joseph E. Cavanaugh, Robert H. Shumway. An Akaike information criter

ion for model selection in the presence of incomplete data. Journal of St
atistical Planning and Inference 67(1998):45-65.

24. Zhang X M, Teng X L, Pham H. Considering Fault Removal
Efficiency in Software Reliability Assessment. IEEE Trans. on S
ystems Man and Cybernetics Part A-Systems and Humans2
003;33(1):114−120.

25. Xie M, Hu Q P, Wu Y P, Ng S H. A Study of the Modeling and Anal
ysis of Software Fault-detection and Fault-correction Processes. Quality a
nd Reliability Engineering International 2007; 23(4):459-470.

26. Xiaolin Teng, Pham Hoang. A New Methodology for Predicting Softwar
e Reliability in the Random Field Environments. IEEE Transactions on R
eliability 2007; 55(3):458-468.

27. Kai Yuan Cai, Ping Cao, Zhao Dong, Ke Liu. Mathematical Modeling o
f Software Reliability Testing with Imperfect Debugging. Computers and
Mathematics with Applications 2010; 59:3245-3285.

28. Kapur P K, Garg R B, Kumar S. Contributions to hard ware and softw
are reliability. World Scientific Singapore 1999.

	SUMMARY
	1.Introduction
	2.Software Reliability Growth Modeling
	3.Illustrative Examples
	4.Conclusion
	References

