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ABSTRACT

In this paper, we formulate a continuous-time cobweb model expressed as a conformable
fractional derivative in Liouville-Caputo sense, and a continuous-time cobweb model
expressed as a beta-type conformable fractional derivative in Liouville-Caputo sense, and
obtain an analytical solution of this model and analyze the properties of the solution.

We also compare the results of the previous cobweb model solutions with several
examples.

Keywords: Fractional calculus, cobweb model, conformable derivative, fractional
conformable derivative.

1. Introduction

Many natural phenomena as well as economic phenomena are modeled accurately by
fractional differential equations [1-3]. The Cobweb model is a mathematical model that
characterizes the relationship between demand and supply, and is widely used in the
economic sector [4,5]. The fractional derivative describes the real phenomenon more
accurately than the integral derivative. Hence, mathematical modeling with fractional
differential equations has been widely performed in the last few decades [6,7 ].

The fractional derivatives used are the Riemann-Liouville fractional derivatives, Caputo
fractional derivatives, and Grinwald-Letnikov fractional derivatives. These derivatives are
called classical fractional derivatives. However, these fractional derivative definitions do
not reflect exactly the characteristics of the fractional derivative describing hysteresis due
to local characteristics [8,9 ]. For this reason, several conformable derivatives have been

proposed and used [10-12].
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In [13], an analytical solution of the cobweb model including the conformable derivative
proposed in [10] and its stability criterion are proposed, and compared with the solution of
the cobweb model including the integer derivative.

We formulate the cobweb model including the conformable fractional derivative in
Liouville-Caputo sense, and the cobweb model including the beta-conformable fractional
derivative in Liouville-Caputo sense, and find its analytical solution and analyze its
properties. We also compared the results obtained in [13].

The rest of the paper is organized as follows.

Section 2 gives preliminaries and in Section 3, we analyze the analytical solution and
stability of the cobweb model including fractional derivative in Liouville-Caputo sense and
the cobweb model including beta-type fractional derivative in Liouville-Caputo sense , and

in Section 4, we present the simulation results.

2. Background
1) Basic definitions

Definition 1. The Riemann-Liouville fractional derivative is defined as follows;

1 d" -
RDa — “ L yel (/. .
totfﬁ) F@_a)ﬁn%ﬁ x) f&)x (2.1)
Where n—1<a<nneN.
Definition2 [10] . Assume f :[a,%0)— R,a €(0,1). Then, The conformable derivative of

7(¢) is defined as follows;

aTtaf(t):limf(t+gt1_a)_f(t) (22)
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Where t>a, f(0)= lil’gl F().

The conformable integral of f(¢) is defined as follows;

alff(r):jﬂ’ﬁdx,wasl (2.3)

Also, the conformable fractional integral of f (t) for peC, Re(,b’) >0 is defined as

follows;

P17 (1) = r(lﬂ)L((t_“)a ;(x—a)aj - ( 10, o0

X — a)
When a €(0,1),Re(8)>0,n=[Re(B)]+1, f € Cg,o([a,b]) , the conformable fractional derivative

in Liouville-Caputo sense is defined as follows[ 11 ] :
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Where 1. = 1, ---, 1
n—time

Definition 3 [12]. Assume f': {—%,w] —>Rae (0,1). S — type conformable integral is
o

f(t + 8(1 + F(la)jla}f(t)

defined as follows;

2 D7 f(t)=1lim (2.6)
E—>0 8
The p - type conformable integral is defined as follows;
:]taf(t):'[ta %dx,0<a£1 (2.7)

o

The p- type conformable fractional integral of f:{— a

F(a)

,OOJ —>R,a e(O,l) ,

B eC,Re(B)>0 is defined as follows;
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When  ae(0,1)Re(8)=0,n=[Re(B)]+1, f € ngo([a,b]) ,  the beta-type conformable

fractional derivative in Liouville-Caputo sense is defined as follows :
n—p-1

T Ia—— (HF(aOf)ja_[HF(aa)Ja "uD! f(x)

(2.8)
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Lemma 1. When f e (), [a,b],ﬂ e C, we have



s e (AcaﬂDtaf(t)): f(t)—nz_l: I;Tzaf(a)(t_a)ak

par a’k!
Where 71 s defined by Eq. (2.4), ‘7%= 7%, T%,and ,T"
k—time
(2.2).

2) cobweb model and its solution
(1) cobweb model with integer order derivative

The integer-order Cobweb model is defined as follows :
D(t)=a, +bplt+1)
S(t): a, +b2p(t) > p(to)z Py
D(t)=S(t)
Where a,,b,,a,,b, € R, b, #0.
The general solution of Eq. (2.6) is
b,
P)=(py=p.) 5| +P.
1

Where p, € R,andwecall p, = Cblz —4

the equilibrium point.
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Another type of model for the integer order Cobweb model (2.11) is
D(t) =a, +b, [p(l‘)-i— p'(t)]
S(t):a2+b2p(t) ’ p(to):l’o

D(t)=S(t)

Where a,,b,,a,,b, € R, b #0.The general solution of model (2.13) is

2t )-n)

ple)=(p, - pe)e["‘
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(2) cobweb model with conformable derivative [13].

TP,

Where p,eR, p,=

The cobweb model with conformable derivative is as follows;
D(t)=a, +b,[p(t)+, T (p)r)]
S(t)=a2+b2p(t) ) P(to):po

D(t)=5S(¢)

(2.10)

is defined by Eq.

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)



Where p, =(a, —a,)/(b,—b,), and Wi (f)is a conformable fractional derivative with

0<a<1_

The general solution for model (2. 15) is as follows;

bih oo
p()=(p, - p. )e[ s

Where a,,b,a,,b,,p, € R, b#0,b #b,.

* P (2.16)

If b,/b <1, the cost of model (2.15) with conformable derivative converges to the
equilibrium point.
Another type of model for Cobweb model (2.15) with conformable derivatives is as
follows;

D(t) =a, + blp(t)

S(t):%+b2[P(t)+cz07;a(P)(t)]’ P(to):Po (2.17)

D(t)=S(t)

The general solution to model (2.17) is as follows [5];

boby oo
p(t)Z(po—pe)e[“”bz il

+p, (2.18)
Where a,,b,,a,,b,,p, € R, b#0,b, #b,.
If b bb <0, the cost of the conformable fractional model (2.13) converges to the
acb,

equilibrium point p, .
3.Main result

1) cobweb model with conformable fractional derivative in Liouville-Caputo sense.
The cobweb model with the conformable fractional derivative in Liouville Caputo is as

follows;
D(t)=a, +b,[p(t)+ D (p)t)]

S(t)=a, +b,p(t) . plty)=p, (3.1)
D(t)=S(t)

where {#D? is the conformable fractional derivative operator in Liouville-Caputo.
Theorem 1. When aq,,b,,a,,b,,p, € R,b, #0,b, #b, , the solution of Eq. (3.1) is as

follows;
S )

_ b iy
P(f)—PoEﬂ,l( aﬁ(t ) j+ Z(;k+1 )™’ BT (k3 + B)

(3.2)



Where b #0 , b=(b—b,)/b, , a=(a,—a)/b , T() is a gamma function and

E,, (-) is a Mittag-Leffler function of two kinds.
Proof. Equation (3.1) can be written as follows;
LD (pe)+bplt)=a . plty)= py
By applying the inverse operator (2.4) on both sides of (3.3), we obtain
21 o)+ el 17 ple)) = 17a)
Considering the initial condition of Eq. (3.3) and Eq. (2.5), we obtain
p(0)=ple,)+ (L 17a)-(0 17 p(0))

Then consider the following :

_ a(t_to)aﬂ
pn+1(t)_ Do+ aﬁr(ﬂ +1)

For n =0, the above equation is

p(t)=p +a(t_—t°)aﬂ) —b(7 17 p, 2))

_b(f}ltap(f)) , n=012,-

" a’T(B+1
Where
tﬂltapoz Po J't{(t_to)a_(x_to)ajﬂl dx l-a
’ F(ﬁ) o a (x_to)
(x_to)ﬂ

Using the new variable u =

Q‘%y’
ﬂla :po(t_tﬂ)aﬁj.

wle Po F(ﬂ)aﬁ b
Substituting Eq. (3.7) into Eq. (3.5), we obtain

_ a(t — 1 )aﬁ . bpo(t — 1 )aﬁ
Pr=Po +aﬁl"(,8+1) a’T(p+1)

B _po(t_to)aﬂ
(1w du= a"T(B+1)

When n=1, Eq. (3.4) becomes

0=+ Sl 0)

M_,{ﬂ]a( L ale-1)” _bpo(t_to)aﬁﬂ

TP | P T (g 1) T (B )

P (B+1) aT(B+1)  a?T2p+1) a’T(B+1)

ot

Where

the above expression is obtained as follows :

a(t ) )aﬂ _ bpo(t ~ to)aﬂ ab(t - to)zaﬂ " b’p, (ﬁ[ataﬂ

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)



(Fre(e-1,)")= %O—ro)w} (3.10)

Substituting the above expression into Eq. (3.9), we obtain
(t)— n a(t 1 )a bpo(t —! ) ab(t — 1 )2043 bzpo(t 1 )Zaﬁ
PP r(g 1) a’T(B+1) a”T(2+1) a”T(2f+1)
bt—1,)" b py(t—t, V" | a”| 1 b(t—1,)"
=pol1— +—3 + —
a'T(+1) aT2p+1) | o’ | pr(B) 2a”pr(2p)

When the procedure shown above for n=2,3,---is repeated,

A I A
T e

S EUR ) ale-n) 5 1)
TPl (kg + 1) o k1) prkp+ p)
(3.12) (30)

Then, n — «, the above equation becomes
()b e-n) @ s (1) (e—g)

at
P(t)=l’okz:(; T (kB +1) o Z‘ k+a* pr(kp + B)
1Y)

_ b ) at-4)
BRI Sy 3

} (3.11)

0.
2) cobweb model with beta-type conformable fractional derivative in Liouville-
Caputo sense.
The cobweb model with beta-type conformable fractional derivative in Liouville Caputo

sense 1is

D)= a, +p(0)+ L D (p)o)
S(t) a2+bzp() , p(t0)=p0 (3.13)
D(t)=S(t)
Where Acfj “ is a beta-type conformable fractional derivative operator in Liouville-
Caputo sense.
Theorem 2. When a,,b,,a,,b,, p, € R,b, #0,b, #b,, the solution of Eq. (31) is



ple)=p OEﬂ,l(—ﬁ(H’_O]aﬂ} N a(H Ftoa Jaﬁ (=) b"(r+ an)}kaﬁ

= o' (k+1)pr(kp + B)

(3.14)

Where b, #0 , b=(b—b,)/b , a=(a,—a,)/b,, T()isagamma function, and E, ,(")

is a Mittag-Leffler function of two kinds.
Proof.

We can write (3.14) as follows.
Lo (pXe)+bplt)=a . plt,)= p,

By applying the inverse operator ““; I* on both sides of Eq. (3.15), we have

tOt

act la(ACﬁ : (p)(t))_i_b(ACi : (t))z (Aci taa)

Considering Lemma 1 and initial conditions, we have

p(0)=py + (<L 17 )b 12 p(0)

Where,
i, )"
al t+ F(a) ,
= ——b(ACOI“ ) =0,1,2,--
Poat)=py + T 1) ol p,(t)], n
For n=0,
aff
{1t
o B
: et
pl(t) Pyt aﬁr(ﬂ+1) . Po
Where,

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)



p[t+ ko ]aﬂ p(z+ o !
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4P o Dl@)) o v I(a)
t 1 = 1— d = .
o4y Po F(,B)aﬁ J-o( u) X aﬁr(ﬂ+1) (3.21)
Substituting Eq. (3.21) into Eq. (3.19), we have
af
tO
I(a)
t+——~"— a
pO + r(ﬂ)aﬂ . 7
, 1 Pol " Ha)
AC[ a — 1— ﬁ—ld — )
A7 po % [(1=u)"" du D) (3.22)
Substituting Eq. (3.22) into (3.19), we have
af off
4 t
a(t +— bpo(t +-—7
_ F(a)J I(a)
p(t)=p+ T+ 1) s Py (3.23)

When # =1, it becomes

pz(t):po +
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=Pt B Do+ 3 B
a’T(p+1) a’T(+1) a’T(B+1) (3.24)
tO aff tO aff to 20
T a’r(B+1) a’T(B+1) aT(2p+1)
b™p, ACP ja ly “
aﬂrwﬂ)[ f° f(”r<a)j ]
Where,
af 2ap
4ACP ya by _ F(ﬁ"‘l) Ly
{ ’“ f(’*rmj ] aﬂr(2ﬁ+1)[f+r<a)] (3:22)

Substituting Eq. (3.25) into Eq. (3.24), we have
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When the procedure shown above for »=2,3,--- is repeated, the obtained is as follows;

5 b(t " FE‘;)Y + bz(t v Fz‘)a)]w )
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When #» - «, the above equation becomes

p)=p,Y - 1>kbk( F?;)]kaﬂ + a[t +Zj§a)]aﬂ g( 1::;(;(;; ?a/)jkaﬂ

pOEﬂ’l(_;_ﬁ(Hrz(;)jaﬂ} (t 5(“)] Z(O‘;)kb+(ltﬂr F(l(‘;)}ﬂ ) 0

4. simulation example

Consider the following model for a, =0.8,b, =-0.4,a, =—1,b, =0.2.

D(t)=0.8-0.4[p(t)+ D,(p)\t)]
S(t)=-1+0.2p(t) , p(0.5)=2 (4.1)

D(t)=S(r)

Where, D, is one of the three operators , T,

« Cﬁ' a AC
t D fy

e



When D, = T7,D, = Cﬂ D} and D, = Acﬂ D/, the solution of Eq. (4.1) is respectively as

follow;

)= G St (4.2)

g (L3 (1) 9(t—05“ﬁ - (1) 1.5 (- 0.5)
P(f)‘zEﬂ"( o 73) J zolm W)

aff kap
1 3 ( 05)Y 9(” O(SJ 1 Sk(HFO(.S)j
p(t): E A B t+—— + Z kﬁ a (44)
" 2a = ¥ (k+1)pr(kB+ B)
Figs. 1~3 compare the analytical solutions of the Cobweb model with the conformable

derivative (CD), the conformable fractional derivative (CFD) in Liouville-Caputo sense,
and the beta-type conformable fractional derivative (Beta-type CFD) in Liouville-Caputo

sense.

—CD («=0.8)
——CFD in the L-C sense (a=0.8)
Beta-type CFD in the L-C sense

(2=0.8,p=0.9)

8s 1 15 2 i 25 3 35 4

Fig. 1. Analytical solution of Cobweb model with « =0.8,5=0.9.

2.5

——CD (x=0.4)
——CFD in the L-C sense (¢=0.4)
Beta-type CFD in the L-C sense («=0.4,$=0.9) |

8s 1 15 2 25 3 35 4
Fig. 2. Analytical solution of Cobweb model with «=0.4,5=0.9
As can be seen in Figs. 1 and 2, when « decreases, the analytical solution of the
Cobweb model with the conformable fractional derivative in Liouville-Caputo sense is

closer to the equilibrium point, and the analytical solution of the Cobweb model with the



beta-type conformable fractional derivative in Liouville-Caputo sense is slower. The effect
of fractional order is shown in Fig. 3.

26— . : : -

——CD (a=0.8)
——CFD in the L-C sense (¢=0.8)
Beta-type CFD in the L-C sense (¢=0.8,$=0.5)

8s E 15 ] t 25 3 35 4

Fig. 3. Analytical solution of Cobweb model with o =0.8,5=0.5.

5.Conclusions

We consider the case where the well-known supply-demand model ‘cobweb’ is used for
the conformable fractional derivative in Liouville-Caputo sense, and the case where the
beta-type conformable fractional derivative in Liouville-Caputo sense, is used.

Compared with the analytical solution of the Cobweb model with the conformable
derivative, the analytical solution of the Cobweb model with the conformable fractional
derivative in Liouville-Caputo sense and the analytical solution of the Cobweb model with
the beta-type conformable fractional derivative in Liouville-Caputo sense are slowly
approaching the equilibrium point.
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