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ABSTRACT

In this paper, we formulate a continuous-time cobweb model expressed as a conformable
fractional derivative in Liouville-Caputo sense, and a continuous-time cobweb model
expressed as a beta-type conformable fractional derivative in Liouville-Caputo sense, and
obtain an analytical solution of this model and analyze the properties of the solution.
We also compare the results of the previous cobweb model solutions with several
examples.
Keywords: Fractional calculus, cobweb model, conformable derivative, fractional
conformable derivative.

1. Introduction

Many natural phenomena as well as economic phenomena are modeled accurately by
fractional differential equations [1-3]. The Cobweb model is a mathematical model that
characterizes the relationship between demand and supply, and is widely used in the
economic sector [4,5]. The fractional derivative describes the real phenomenon more
accurately than the integral derivative. Hence, mathematical modeling with fractional
differential equations has been widely performed in the last few decades [6,7 ].
The fractional derivatives used are the Riemann-Liouville fractional derivatives, Caputo

fractional derivatives, and Grinwald-Letnikov fractional derivatives. These derivatives are
called classical fractional derivatives. However, these fractional derivative definitions do
not reflect exactly the characteristics of the fractional derivative describing hysteresis due
to local characteristics [8,9 ]. For this reason, several conformable derivatives have been
proposed and used [10-12].
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In [13], an analytical solution of the cobweb model including the conformable derivative
proposed in [10] and its stability criterion are proposed, and compared with the solution of
the cobweb model including the integer derivative.
We formulate the cobweb model including the conformable fractional derivative in

Liouville-Caputo sense, and the cobweb model including the beta-conformable fractional
derivative in Liouville-Caputo sense, and find its analytical solution and analyze its
properties. We also compared the results obtained in [13].
The rest of the paper is organized as follows.
Section 2 gives preliminaries and in Section 3, we analyze the analytical solution and

stability of the cobweb model including fractional derivative in Liouville-Caputo sense and
the cobweb model including beta-type fractional derivative in Liouville-Caputo sense , and
in Section 4, we present the simulation results.

2. Background
1) Basic definitions
Definition 1. The Riemann-Liouville fractional derivative is defined as follows;
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Where Nnnn  ,1  .

Definition2 [10] . Assume    1,0,,:  Raf . Then, The conformable derivative of
 tf is defined as follows;
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The conformable integral of  tf is defined as follows;
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Also, the conformable fractional integral of  tf for   0Re,   C is defined as
follows;
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When          baCfn n ,,1Re,0Re,1,0 0,  , the conformable fractional derivative

in Liouville-Caputo sense is defined as follows[ 11 ] :
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Definition 3 [12]. Assume    1,0,,: 










 


Raf .  type conformable integral is

defined as follows;
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The  type conformable integral is defined as follows;
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The  type conformable fractional integral of    1,0,,: 
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When          baCfn n ,,1Re,0Re,1,0 0,  , the beta-type conformable

fractional derivative in Liouville-Caputo sense is defined as follows :
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Lemma 1. When   CbaCf n
a   ,,, , we have
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Where 
ta I is defined by Eq. (2.4),  

timek

tatat
k
a TTT



  , and 
taT is defined by Eq.

(2.2).

2) cobweb model and its solution
(1) cobweb model with integer order derivative
The integer-order Cobweb model is defined as follows :
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Where Rbaba 2211 ,,, , 01 b .
The general solution of Eq. (2.6) is
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Where Rp 0 , and we call
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 the equilibrium point.

Another type of model for the integer order Cobweb model (2.11) is
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Where Rbaba 2211 ,,, , 01 b . The general solution of model (2.13) is
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(2) cobweb model with conformable derivative [13].
The cobweb model with conformable derivative is as follows;
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Where    2112 / bbaape  , and  fTtt


0
is a conformable fractional derivative with

10   .

The general solution for model (2.15) is as follows;
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Where Rpbaba 02211 ,,,, , 21,0 bbb  .

If 1/ 12 bb , the cost of model (2.15) with conformable derivative converges to the

equilibrium point.
Another type of model for Cobweb model (2.15) with conformable derivatives is as
follows;
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The general solution to model (2.17) is as follows [5];
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Where Rpbaba 02211 ,,,, , 21,0 bbb  .
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2
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, the cost of the conformable fractional model (2.13) converges to the

equilibrium point ep .

3.Main result
1) cobweb model with conformable fractional derivative in Liouville-Caputo sense.
The cobweb model with the conformable fractional derivative in Liouville Caputo is as
follows;
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where 
t

C D0 is the conformable fractional derivative operator in Liouville-Caputo.

Theorem 1. When 21102211 ,0,,,,, bbbRpbaba  , the solution of Eq. (3.1) is as

follows;
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Where     1121211 /  ,  /  ,  0 baaabbbbb  ,   is a gamma function and

  ,E is a Mittag-Leffler function of two kinds.

Proof. Equation (3.1) can be written as follows;
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0
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By applying the inverse operator (2.4) on both sides of (3.3), we obtain
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Considering the initial condition of Eq. (3.3) and Eq. (2.5), we obtain
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For 0n , the above equation is
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Using the new variable  
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Substituting Eq. (3.7) into Eq. (3.5), we obtain
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When 1n , Eq. (3.4) becomes
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Where
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Substituting the above expression into Eq. (3.9), we obtain
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When the procedure shown above for ,3,2n is repeated,
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Then, n , the above equation becomes
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□.
2) cobweb model with beta-type conformable fractional derivative in Liouville-
Caputo sense.
The cobweb model with beta-type conformable fractional derivative in Liouville Caputo
sense is
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Where 
tt

AC D0 is a beta-type conformable fractional derivative operator in Liouville-
Caputo sense.
Theorem 2. When 21102211 ,0,,,,, bbbRpbaba  , the solution of Eq. (31) is
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Where     1121211 /  ,  /  ,  0 baaabbbbb  ,   is a gamma function, and   ,E

is a Mittag-Leffler function of two kinds.
Proof.

We can write (3.14) as follows.
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By applying the inverse operator 
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Considering Lemma 1 and initial conditions, we have
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Where,
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Introducing a new variable  
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Substituting Eq. (3.21) into Eq. (3.19), we have
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Substituting Eq. (3.22) into (3.19), we have
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When 1n , it becomes
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Where,
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Substituting Eq. (3.25) into Eq. (3.24), we have
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When the procedure shown above for ,3,2n is repeated, the obtained is as follows;
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When n , the above equation becomes
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□

4. simulation example

Consider the following model for 2.0,1,4.0,8.0 2211  baba .
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Figs. 1~3 compare the analytical solutions of the Cobweb model with the conformable
derivative (CD), the conformable fractional derivative (CFD) in Liouville-Caputo sense,
and the beta-type conformable fractional derivative (Beta-type CFD) in Liouville-Caputo
sense.

Fig. 1. Analytical solution of Cobweb model with 9.0,8.0   .

Fig. 2. Analytical solution of Cobweb model with 9.0,4.0  

As can be seen in Figs. 1 and 2, when  decreases, the analytical solution of the
Cobweb model with the conformable fractional derivative in Liouville-Caputo sense is
closer to the equilibrium point, and the analytical solution of the Cobweb model with the



beta-type conformable fractional derivative in Liouville-Caputo sense is slower. The effect
of fractional order is shown in Fig. 3.

Fig. 3. Analytical solution of Cobweb model with 5.0,8.0   .
5.Conclusions
We consider the case where the well-known supply-demand model ‘cobweb’ is used for

the conformable fractional derivative in Liouville-Caputo sense, and the case where the
beta-type conformable fractional derivative in Liouville-Caputo sense, is used.
Compared with the analytical solution of the Cobweb model with the conformable

derivative, the analytical solution of the Cobweb model with the conformable fractional
derivative in Liouville-Caputo sense and the analytical solution of the Cobweb model with
the beta-type conformable fractional derivative in Liouville-Caputo sense are slowly
approaching the equilibrium point.
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