On the diophantine equation $X^{6}+Y^{6}=W^{n}+Z^{n}, n=2,3,4$

Seiji Tomita

Abstract

In this paper, we proved that there are infinitely many integer solutions of $X^{6}+Y^{6}=W^{n}+Z^{n}, n=2,3,4$.

1. Introduction

The diophantine equation $x^{n}+y^{n}=z^{n}+w^{n}, n=2,3,4$ have been considered by many mathematicians. Euler[3] showed the parametric solution for $n=4$. Choudhry[4] considered the equation $x^{4}+h y^{4}=z^{4}+h w^{4}$. Izadi[5] and Nabardi showed that there are infinitely many integer solutions of $x^{4}+y^{4}=2\left(z^{4}+w^{4}\right)$. Janfada[6] and Nabardi considered the equation $x^{4}+y^{4}=h\left(z^{4}+w^{4}\right)$. Shabani-Solt[8], Yusefnejad, and Janfada considered the equation $x^{6}+k y^{3}=z^{6}+k w^{3}$ with $k<500$. Muthuvel $[7]$ and Venkatraman showed that there are infinitely many integer solutions of $X^{4}-Y^{4}=R^{2}-S^{2}$.
Izadi[1] and Baghalaghdam proved that $\sum_{i=1}^{n} a_{i} x_{i}^{6}+\sum_{i=1}^{m} b_{i} y_{i}^{3}=\sum_{i=1}^{n} a_{i} X_{i}^{6}+\sum_{i=1}^{m} b_{i} Y_{i}^{3}$ has infinitely many integer solutions. They[2] also proved that $a\left(X_{1}^{\prime 5}+X_{2}^{\prime 5}\right)+\sum_{i=0}^{n} a_{i} X_{i}^{5}=b\left(Y_{1}^{\prime 3}+Y_{2}^{\prime 3}\right)+\sum_{i=0}^{m} b_{i} Y_{i}^{3}$ has infinitely many integer solutions.
This author[10] proved that there are infinitely many integer solutions of $X^{6}-Y^{6}=W^{n}-Z^{n}, n=2,3,4$ last time.
The objective of this work is to prove that there are infinitely many integer solutions of $X^{6}+Y^{6}=W^{n}+Z^{n}, n=2,3,4$.

2. Solving the diophantine equation $X^{6}+Y^{6}=W^{2}+Z^{2}$

$$
\begin{equation*}
X^{6}+Y^{6}=W^{2}+Z^{2} \tag{2.1}
\end{equation*}
$$

We give three methods to prove that there are infinitely many integer solutions of $X^{6}+Y^{6}=W^{2}+Z^{2}$.

2.1. Method-1

Let $X=a$ and $Y=b$ where $a, b \in \mathbb{Z}$.
We use the factorization of

$$
X^{6}-Z^{2}=W^{2}-Y^{6} \Longrightarrow\left(a^{3}-Z\right)\left(a^{3}+Z\right)=\left(W-b^{3}\right)\left(W+b^{3}\right)
$$

Consider the simultaneous equations,

$$
\left\{\begin{array}{l}
a^{3}+Z=\left(b^{3}+W\right) t \\
a^{3}-Z=\frac{W-b^{3}}{t}
\end{array}\right.
$$

We have $(W, Z)=\left(\frac{2 a^{3} t-t^{2} b^{3}+b^{3}}{t^{2}+1}, \frac{a^{3} t^{2}-a^{3}+2 t b^{3}}{t^{2}+1}\right)$ where $t \in \mathbb{Z}$.
After canceling the denominators, we get

$$
(X, Y, Z, W)=\left(a\left(t^{2}+1\right), b\left(t^{2}+1\right),\left(a^{3} t^{2}-a^{3}+2 t b^{3}\right)\left(t^{2}+1\right)^{2},\left(2 a^{3} t-t^{2} b^{3}+b^{3}\right)\left(t^{2}+1\right)^{2}\right)
$$

2.2. Method-2

Let $X=a, Y=b, W=p t+a^{3}, Z=t+b^{3}$ where $a, b, p, t \in \mathbb{Z}$.
We obtain

$$
\left(1+p^{2}\right) t+\left(2 a^{3} p+2 b^{3}\right)=0
$$

Hence, put $t=-\frac{2\left(a^{3} p+b^{3}\right)}{1+p^{2}}$,
then we acquire a parametric solution as follows.

$$
(X, Y, Z, W)=\left(a\left(1+p^{2}\right), b\left(1+p^{2}\right),\left(1+p^{2}\right)^{2}\left(-2 a^{3} p-b^{3}+b^{3} p^{2}\right),\left(1+p^{2}\right)^{2}\left(a^{3} p^{2}+2 p b^{3}-a^{3}\right)\right)
$$

2.3. Method-3

Let $X=a t, Y=b t, W=c t, z=\frac{Z}{t}$ where $a, b, c, t \in \mathbb{Z}$.
We get

$$
\begin{equation*}
\left(a^{6}+b^{6}\right) t^{4}=c^{2}+z^{2}=0 \tag{2.2}
\end{equation*}
$$

Hence, we have

$$
z^{2}=\left(a^{6}+b^{6}\right) t^{4}-c^{2}
$$

Take $(a, b, c)=(2,1,1)$, we get

$$
Q: z^{2}=65 t^{4}-1
$$

The quartic equation is birationally equivalent to an elliptic curve E,

$$
E: N^{2}=M^{3}+260 M
$$

We know E has rank 2 and generators are $P(M, N)=(10,60)$ and $(64,-528)$ using software $\mathbf{S A G E}[9]$.
The point $P(M, N)$ is of infinite order, and the multiples $m P, m=2,3, \cdots$ give infinitely many points on E.
For instance, we obtain two quartic points corresponding to $P(M, N)$,

$$
Q(t, z)=\left(-\frac{5}{14}, \frac{47}{196}\right),\left(\frac{1153}{3071}, \frac{5092328}{9431041}\right)
$$

We give two solutions of equation (2.1) using the two points $Q(t, z)$.

$$
\begin{gathered}
(X, Y, Z, W)=(10,5,235,980) \\
(X, Y, Z, W)=(2306,1153,5871454184,10873990273)
\end{gathered}
$$

3. \quad Solving the diophantine equation $X^{6}+Y^{6}=W^{3}+Z^{3}$

$$
\begin{equation*}
X^{6}+Y^{6}=W^{3}+Z^{3} \tag{3.1}
\end{equation*}
$$

We give two methods to prove that there are infinitely many integer solutions of $X^{6}+Y^{6}=W^{3}+Z^{3}$.

3.1. Method-1

Let $X=a, Y=b, Z=p t+a^{2}, W=t+b^{2}$ with $a, b, p, t \in \mathbb{Z}$
We obtain

$$
\left(\left(p^{3}+1\right) t^{2}+\left(3 a^{2} p^{2}+3 b^{2}\right) t+\left(3 a^{4} p+3 b^{4}\right)=0 .\right.
$$

Hence, take $p=-\frac{b^{4}}{a^{4}}$ and $t=-\frac{3 b^{2} a^{6}}{a^{6}-b^{6}}$,
then we acquire a parametric solution as follows.

$$
\begin{aligned}
& X=a\left(a^{6}-b^{6}\right), \\
& Y=b\left(a^{6}-b^{6}\right), \\
& Z=-\left(a^{6}-b^{6}\right) b^{2}\left(2 a^{6}+b^{6}\right), \\
& W=\left(a^{6}-b^{6}\right) a^{2}\left(2 b^{6}+a^{6}\right) .
\end{aligned}
$$

3.2. Method-2

First, we obtain a parametric solution of equation (3.2).

$$
\begin{equation*}
U^{3}+V^{3}=Z^{3}+W^{3} \tag{3.2}
\end{equation*}
$$

Let $U=p t+a, V=q t+b, W=p t+c, Z=q t+d$ with $a, b, c, d, p, q, t \in \mathbb{Z}$ where $a^{3}+b^{3}=c^{3}+d^{3}$.

$$
\left(3 a p^{2}+3 b q^{2}-3 d q^{2}-3 c p^{2}\right) t^{2}+\left(3 a^{2} p+3 b^{2} q-3 d^{2} q-3 c^{2} p\right) t=0 .
$$

Take

$$
t=-\frac{a^{2} p+b^{2} q-d^{2} q-c^{2} p}{a p^{2}+b q^{2}-d q^{2}-c p^{2}},
$$

then we acquire a parametric solution as follows.

$$
\begin{aligned}
& U=\left(c^{2}-a c\right) p^{2}+\left(d^{2}-b^{2}\right) q p+(b a-d a) q^{2}, \\
& V=(b a-b c) p^{2}+\left(c^{2}-a^{2}\right) q p+\left(-b d+d^{2}\right) q^{2}, \\
& Z=(d a-d c) p^{2}+\left(c^{2}-a^{2}\right) q p+\left(-b^{2}+b d\right) q^{2}, \\
& W=\left(-a^{2}+a c\right) p^{2}+\left(d^{2}-b^{2}\right) q p+(b c-d c) q^{2} .
\end{aligned}
$$

Hence, we consider the simultaneous equations (3), (4),

$$
\begin{align*}
u^{2} & =\left(c^{2}-a c\right) p^{2}+\left(d^{2}-b^{2}\right) q p+(b a-d a) q^{2}, \tag{3.3}\\
v^{2} & =(b a-b c) p^{2}+\left(c^{2}-a^{2}\right) q p+\left(-b d+d^{2}\right) q^{2} . \tag{3.4}
\end{align*}
$$

Put $(a, b, c, d)=(2,16,9,15)$ then we obtain,

$$
\begin{align*}
u^{2} & =-63 p^{2}+31 q p-2 q^{2} \tag{3.5}\\
v^{2} & =112 p^{2}-77 q p+15 q^{2} . \tag{3.6}
\end{align*}
$$

Take $x=\frac{p}{q}$ and parametrization of equation (3.5) with $(x, u)=\left(\frac{2}{9}, \frac{4}{3}\right)$. Substitute $x=\frac{2 k^{2}+153-24 k}{9\left(k^{2}+63\right)}$ into equation (3.6), then we have

$$
v^{2}=\frac{277 k^{4}+92799 k^{2}+764316+5880 k^{3}+225288 k}{81\left(k^{2}+63\right)^{2}} .
$$

Put $s=9 v\left(k^{2}+63\right)$, hence we consider the quartic equation

$$
Q: s^{2}=277 k^{4}+5880 k^{3}+92799 k^{2}+225288 k+764316 .
$$

The quartic equation is birationally equivalent to an elliptic curve.

$$
E: N^{2}=M^{3}-M^{2}-364688 M+11999856 .
$$

We know E has rank 2 and generators are $P(M, N)=(-415,-9576)$ and $\left(\frac{2957}{4}, \frac{96615}{8}\right)$ using software SAGE[9].
The point $P(M, N)$ is of infinite order, and the multiples $m P, m=2,3, \cdots$ give infinitely many points on E.
Thus, we can obtain the quartic points corresponding to $P(M, N)$,

$$
Q(k, s)=\left(-\frac{15}{2},-\frac{6561}{4}\right),\left(-\frac{5865}{134}, \frac{472421889}{17956}\right) .
$$

We give two solutions of equation (1) using $Q(k, s)$.

$$
(X, Y, Z, W)=(6,81,5982,4089)
$$

$$
(X, Y, Z, W)=(5190414,5832369,40880961934782,-21110638986951) .
$$

4. Solving the diophantine equation $X^{6}+Y^{6}=W^{4}+Z^{4}$

$$
\begin{equation*}
X^{6}+Y^{6}=Z^{4}+W^{4} \tag{4.1}
\end{equation*}
$$

We prove that there are infinitely many integer solutions of $X^{6}+Y^{6}=W^{4}+Z^{4}$. Let $X=a t, Y=b t, W=c t, z=\frac{Z}{t}$ where $a, b, c, t \in \mathbb{Z}$.

We get

$$
\begin{equation*}
\left(a^{6}+b^{6}\right) t^{2}=c^{4}+z^{4} . \tag{4.2}
\end{equation*}
$$

Put $v=\left(a^{6}+b^{6}\right) t$ and $(a, b, c)=(4,1,1)$, we have

$$
Q: v^{2}=4097 z^{4}+4097 .
$$

The quartic equation is birationally equivalent to an elliptic curve E .

$$
E: N^{2}=M^{3}-67141636 M .
$$

We know E has rank 2 and generators are $P(M, N)=(-256,-131040)$ and $\left(\frac{21167269313}{614656}, \frac{2991175443874143}{481890304}\right)$ using software SAGE[9].

The point $P(M, N)$ is of infinite order, and the multiples $m P, m=2,3, \cdots$ give infinitely many points on E.
Thus, we can obtain the quartic points corresponding to $P(M, N)$,

$$
Q(z, v)=\left(-\frac{134021096}{50356223},-\frac{1161086615964209153}{2535749194825729}\right),\left(-\frac{188034968}{108091793}, \frac{2383498299788538913}{11683835713954849}\right) .
$$

We give two solutions of equation (1) using Q.

$$
(X, Y, Z, W)=(5606823091076,1401705772769,11919242440871550296,10215742406696520751) .
$$

```
(X,Y,Z,W)=(1133596891348996, 283399222837249,37981474450196340604904, 14270914463219203350527).
```


5. Concluding Remarks

We proved that there are infinitely many integer solutions of $x^{6}+y^{6}=z^{n}+w^{n}, n=2,3,4$.
However, finding the primitive solutions of $x^{6}+y^{6}=z^{n}+w^{n}, n=2,3,4$ remains an open problem.

References

[1] M. Baghlaghdam, F. Izadi, A note on the high power diophantine equations, Proc. Math. Sci. 129(14) (2019).
[2] M. Baghlaghdam, F. Izadi, On the diophantine equation in the form that a sum of cubes equals a sum of quantics, Math. J. Okaama Univ. 61 (2019) 75-84.
[3] Dickson, L. E. History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Dover, 2005.
[4] A. Choudhry, On the Diophantine equation $A^{4}+h B^{4}=C^{4}+h D^{4}$, Indian J. Pure Appl. Math., 26(11), (1995) $1057-1061$.
[5] F. Izadi, K. Nabardi, Diophantine equation $X^{4}+Y^{4}=2\left(U^{4}+V^{4}\right)$, Math. Slovaca., 66(3), (2016) 557-560.
[6] A. S. Janfada, N. Nabardi, On Diophantine equation $x^{4}+y^{4}=n\left(u^{4}+v^{4}\right)$, Math. Slovaca., 69(6), (2019) 1245-1248.
[7] S.Muthuvel, R.Venkatraman, Quartic diophantine equation $X^{4}-Y^{4}=R^{2}-S^{2}$, https://arxiv.org/pdf/2303.13366.pdf
[8] H. Shabani-Solt, N. Yousefnejad, and A. S. Janfada, On theDiophantine equation $x^{6}+k y^{3}=z^{6}+k w^{3}$, Iran. J. Math. Sci.Inform., Vol. 15, No. 1 (2020)
[9] Sage software, Version 4.3.5, http://sagemath.org .
[10] S. Tomita, On the diophantine equation $X^{6}-Y^{6}=W^{n}-Z^{n}, n=2,3,4$, https://arxiv.org/pdf/2403.10528.

