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Abstract

Gradient boosting is a widely used machine learning algorithm for tabular regres-
sion, classification and ranking. Although, most of the open source implementations
of gradient boosting such as XGBoost, LightGBM and others have used decision
trees as the sole base estimator for gradient boosting. This paper, for the first
time, takes an alternative path of not just relying on a static base estimator (usually
decision tree), and rather trains a list of models in parallel on the residual errors
of the previous layer and then selects the model with the least validation error as
the base estimator for a particular layer. This paper has achieved state-of-the-art
results when compared to other gradient boosting implementations on 50+ tabular
regression and classification datasets. Furthermore, ablation studies show that
MSBoost is particularly effective for small and noisy datasets. Thereby, it has a
significant social impact especially in tabular machine learning problems in the
domains where it is not feasible to obtain large high quality datasets.

1 Introduction

Gradient boosting [1, 2] has been a powerful boosting [3] based machine learning algorithm that has
achieved state-of-the-art accuracy in various real world tasks. Such as in particle physics, biochemistry,
finance, fraud detection, search engine recommendations, drug discovery and many others [4–16].
Its significance lies in its ability to handle diverse data types and complex feature engineering whilst
effectively managing high-dimensional, noisy datasets with heterogeneous features.

It builds a ’stronger’ predictive model by combining several weaker models through an iterative
greedy process that focuses on correcting the errors of previous models, which is based on sound
theoretical evidence as per [17]. Popular implementations of gradient boosting include XGBoost [18],
which enhances traditional methods by introducing regularization to prevent overfitting and tree
pruning to improve efficiency, and LightGBM [19], which differs by using a leaf-wise tree growth
strategy instead of level-wise growth, and implements Gradient-based One-Side Sampling (GOSS) to
speed up training on large datasets while maintaining accuracy. Furthermore, other variants include
CatBoost [20] which introduces a novel categorical encoding method to mitigate target leakage, and
using Artificial Neural Network, Principal Component Analysis and Random Projections for feature
extraction and combine this with gradient boosting as per AugBoost [21].

The main contribution of this paper, Model Selection based Gradient Boosting (MSBoost1), is to
explore, for the first time, the usage of model selection in order to find the base estimator with the
least validation error. Unlike the current methods which use a single base estimator, usually decision
tree [22–24], although previous research has been done in boosting other models [25]. Benchmarking
this method, MSBoost, on 50+ datasets indicate that this method outperforms previous methods such
as LightGBM and XGBoost, and based on the ablation studies performed it can be observed that
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MSBoost is particularly effective for small and noisy datasets. Thereby, MSBoost would particularly
effective for tabular regression and classification problems where it is not feasible or expensive to
obtain thousands of high quality samples.

2 Method

(a) Conventional Gradient
Boosting

(b) Model Selection based
Gradient Boosting (MS-
Boost)

Figure 1: Conventional Gradient Boosting methods usually use Decision Trees, also known as
CART(s), as the sole base estimator in order to minimize the residual errors over a number of
iterations. Whereas, MSBoost from a list of ML models dynamically would choose the one with the
least residual errors, in parallel, and use it as the base estimator for that layer.

Similar to gradient boosting, the goal of MSBoost is to approximate any arbitrary but particular
F : Rm → R with a series of additive and scaled Fi in order to minimize L(F(x), F (x)). For any
given tabular dataset D = {(xi, yi)}ni=1, and a differentiable loss function L(y, F (x)). Wherein xi

is an arbitrary but particular vector xi = (x1
i , x

2
i , . . . , x

m
i ) containing m features, and y ∈ Rn, which

has n samples is the target vector. First, MSBoost initializes the first estimator as a constant term
i.e F0(x) = argmink

∑n
i=1 L(yi, k), which turns out to be the arithmetic mean of the target values

vector y. Next, for each subsequent iteration i = 1, . . . , N it shall compute the pseudo residuals:

ri = −
[
∂L(y, Fi−1(x))

∂Fi−1(x)

]
(1)

and the base estimator for ith layer is based on a list of modelsM, such that:

hi(x) = arg min
∀M∈M

L(y,M(ri))(ri) (2)

Finally it would update the model for ith layer, i.e Fi(x) = Fi−1(x) + α · hi(x), and the final
prediction, ŷ = F (x) = F0(x) +

∑N
i=1 Fi(x).

2.1 Rationale for Model Selection in Gradient Boosting

Since model selection searches for argminM∈M L(y,M(ri)) for each iteration i, ⇒
L(y,M(ri)) ≤ L(y, S(ri)),∀S which are static machine learning models say Decision Tree. And
over a large number of iterations N , ri,M (model selection, a dynamic method) < ri,S (for any
static base estimator). This is technically a "≤" inequality, but based on the inductive proposition
that over a large number of iterations, N , a static method would have higher E(ri) than dynamically
selecting base estimators in each iteration, the "<" inequality should hold true. Wherein the base case
is E(ri,M) < E(ri,S), which is empirically true as per [26, 27] and theoretically justified by theNo
Free Lunch Theorem [28, 29]. Furthermore, analysing the effect of specific base estimators stacked
over N iteration on the residual plots shall be an interesting obsevation, for example a non-linear
model like [30] may have a more linear residual plot when compared to that of a linear model, so a
non linear base estimator in ith iteration may lead to a linear model in i+ 1th iteration. But this has
been left for a avenue for future research.

Also, as empirically demonstrated by [26, 27], there is no one-size-fits-all baseline model which does
well on all types of datasets, which empirically justifies as to why boosting multiple estimators might
be effective; and, increase the diversity of the base learners, which potentially help to improve the
generalization performance (i.e less variance) [31].
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2.2 Model Selection Methods2

Naïve Method The naïve way for model selection is to train all the available base estima-
tors on ri in parallel. This way would ensure that the model with the least residual errors
is truly being selected for each layer and precisely conforms to the theoretical rationale stated
in Section 2.1. But this would have the largest time complexity, i.e O(Number of Iterations ×
Base model with the highest time complexity i.e the limiting factor).

Random Sampling Sampling a subset of models fromM, shall reduce the overall training time,
but this may not be find the model with least possible validation residual errors.

Frequency & Probability Based Sampling Assuming that only a subset of models fromM would
be used for most of the time due to the characteristics of the dataset being used. For the first I
iterations, this shall be a track of the frequency of the top N models, and for the rest of the iterations
only train the top N models initially found. Here I and N are hyper-parameters. A more vigorous
method for this would be to use Bayesian model selection [32–34] and train the models with the top
N probabilities of being used.

3 Experiments & Discussion

Comparison with baselines MSBoost (random sampling half of the models fromM for training
in each iteration) was compared3 with XGBoost and LightGBM. The source code of the experiments
are available, and can be reproduced (https://github.com/Agnij-Moitra/MSBoost). Unfortu-
nately due to constrained computational resources the benchmarking was done on 1K samples on
OpenML [35, 36] datasets with 0.01 lasso threshold to screen for irrelevant features which would
have increased the computational costs. Table 1 compares the mean squared error with 5 fold cross
validation (CV), and Table 2 compares the log loss with 5 Fold CV; please check Appendix B.1 for
entire results. Paired single tailed t-test reveal that MSBoost yields a statistically significant im-
provement over LightGBM and XGBoost in metrics, with p-value << 0.001 (excluding outliers like
wave_energy), and p < 0.02 for standard deviation thus improving the bias-variance trade-off [37].
It should be noted even without regularization, and GOSS and EFB of XGBoost and LightGBM
respectively, MSBoost has a statistically significant improvement. Thereby, this may have even better
improvement over previous methods if those techniques are incorporated in MSBoost.

Table 1: Comparison (regression) with base-
lines based on mean squared error (MSE)

MSBoost LightGBM XGBoost

wave_energy 0.0 ± 0.0 1.9e+9 ± 2.9e+8 3.0e+9 ± 4.5e+8
Friedman 2 150 ± 31 385 ± 57 501 ± 58
Sparse Uncorr. 1.0 ± 0.15 1.5 ± 0.11 1.7 ± 0.22
kin8nm 2.1e-2 ± 1e-4 3.1e-2 ± 1.5e-3 3.6e-2 ± 1.3e-3
sarcos 32 ± 8 46 ± 15 48 ± 10
Moneyball 431 ± 24 588 ± 42 635 ± 39
yprop_4_1 7e-4 ± 1e-4 9e-4 ± 1e-4 1.1e-3 ± 1e-4
fps_benchmark 2354 ± 110 2917 ± 104 3758 ± 395
Zurich Transport 10 ± 0.7 12 ± 0.9 15 ± 1.4
Diabetes 3017 ± 333 3590 ± 433 3991 ± 651

Table 2: Comparison (classification) with
baselines based on log loss

MSBoost LightGBM XGBoost

phoneme 0.34 ± 0.03 0.43 ± 0.07 0.43 ± 0.06
guillermo 0.56 ± 0.04 0.69 ± 0.10 0.77 ± 0.11
MagicTelescope 0.40 ± 0.04 0.48 ± 0.05 0.50 ± 0.05
heloc 0.58 ± 0.01 0.67 ± 0.08 0.78 ± 0.09
Bioresponse 0.50 ± 0.02 0.57 ± 0.08 0.59 ± 0.07
electricity 0.54 ± 0.06 0.61 ± 0.08 0.65 ± 0.09
Australian 0.50 ± 0.03 0.54 ± 0.06 0.64 ± 0.08
house_16H 0.38 ± 0.03 0.40 ± 0.07 0.42 ± 0.06
pol 0.17 ± 0.04 0.18 ± 0.05 0.15 ± 0.04
california 0.37 ± 0.03 0.39 ± 0.05 0.40 ± 0.06

Impact of dataset dependent factors Figure 2 highlights how MSBoost and the baseline models
perform when noise, number of samples and others are progressively increased on Scikit-Learn’s [38]
make classification dataset [39]. This is a cherry-picked example, but similar trend was found on
all other Scikit-Learn’s synthetic datasets, their plots can be found in Appendix B.2. Using paired
single tail t-test that MSBoost has a p-value < 0.01 when compared to XGBoost and LightGBM for
robustness against noise and for impact of number of samples when compared to the baseline models.

2The model selection was done on a validation dataset, subsampled from the training data.
3For now it wasn’t compared to CatBoost, since in order to have a fair comparison, since MSBoost’s

implementation doesn’t have targeted feature encoding for now.
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Figure 2: Impact of dataset dependent various factors on log loss for Make Classification Dataset [39]

Figure 3: Impact of
changing number of
models trained, for
model selection meth-
ods (Scikit-Learn’s
Make Classification
dataset)

Table 3: Comparison on small noisy real world datasets with
significant social impact (†MSE & ‡Log Loss)

UCI ID [40] MSBoost LightGBM XGBoost

AIDS Clinical Trials† 890 8.1e-2 ± 6.5e-3 +7.1% ± +33.8% +13.5% ± -1.5%
Student Performance† 320 6.3 ± 0.81 +5.4% ± +15.3% +25.9% ± +42.2%
Energy Efficiency† 242 1.7 ± 0.18 +2.2% ± +16.9% +34.3% ± +19.1%
Diabetes† [38] 3017 ± 333 +18.9% ± +30.0% +32.9% ± +95.4%
Liver Disorders† 60 9.6 ± 1.19 +4.7% ± +2.6% +23.1% ± -0.3%
Heart Failure Clinical Records† 519 0.12 ± 0.03 +3.4% ± +35.95% +17.9% ± +37.1%
Thyroid Cancer Recurrence‡ 915 1.2 ± 0.88 +30.6% ± -13.1% +22.9% ± +4.1%
Rice (Cammeo and Osmancik)‡ 545 2.79 ± 0.10 +7.7% ± +130.3% +6.1% ± +31.0%
Blood Transfusion Service‡ 176 8.3 ± 0.48 +10.4% ± +0.3% +13.9% ± +148.0%
Acute Inflammations‡ 184 0.0 ± 0.0 0.3 ± 0.6 0.75 ± 1.2
SPECTF Heart‡ 96 6.4 ± 1.24 +4.2% ± +93.0% +2.1% ± +34.9%
Glioma Grading Clinical & ...‡ 759 4.8 ± 0.75 +33.9% ± +20.5% +34.8% ± -26.7%

Impact of model selection methods The effect of number of base models trained on the model
selection methods is demonstrated in Figure 3, this is a cherry-picked example the rest can be found
in Appendix B.3. There is no statistically significant difference in choosing the bayes method over
the frequency based method (p = 0.28), but the bayes method turns out to be better than random
sampling (p = 0.06).

Social Impact As mentioned above, there is statistically significant evidence that using model
selection along with gradient boosting, MSBoost, may improve bias-variance trade-off. Particularly
on small and noisy datasets, where usually other machine learning algorithms tend to overfit [41, 42].
Table 3 demonstrates a few possible tabular regression and classification problems with significant
social impact, where MSBoost turns out to be better than other methods in terms of MSE/log loss
and standard deviation (5 Fold CV).

Limitations (i) Since it trains multiple models for each iteration, MSBoost, has a enormously high
time complexity. Where the limiting factor is SVM’s RBF kernel, which is quadratic. So the worst
case time complexity of MSBoost is approximately O(n2), whereas LightGBM and others have a
time complexity of O(n log n) (ii) Due to system resource constrains (AMD Ryzen 5 3550H & 8 GB
RAM, Ubuntu 22.04.4 LTS), and the enormous time complexity the test most of the benchmarking
couldn’t be done for more than 1K samples, although this was compensated by benchmarking on 50+
datasets with 5 fold CV.

4 Conclusion

This paper introduces a novel gradient boosting method, MSBoost, which uses model selection to
find base estimators for each iteration of gradient boosting. Empirical results show that there is a
statistically significant evidence that this method outperforms other popular gradient boosting methods
(LightGBM & XGBoost), both in terms of errors and standard deviation of the error. Furthermore,
ablation studies reveal that MSBoost outperforms other methods on (synthetic & real) small and
noisy datasets, a domain where machine learning algorithms usually struggle. Future work, shall
incorporate techiques like targeted feature encoding, GOSS, EFB and other from the current Gradient
Boosting methods.

4



Acknowledgments and Disclosure of Funding

In no particular order, Dr. Arpan Mukherjee (Research Scientist, University at Buffalo) and Rudransh
Agnihotri (Founder and CEO of FuturixAI and Quantum Works) are gratefully acknowledged for
their suggestions and reviewing this research. Deepika Pareek (Head of Department, Computer
Science at Birla Vidya Niketan) is thanked with gratitude for her guidance and encouragement for
an initial starting point of this research, which was presented at Regeneron International Science
and Engineering Fair (2023). Also parts of the math notation and the table style was adapted from
CatBoost [20]. This is a bootstrapped research, and didn’t receive any external funding. The author
has no competing financial interests.

References
1. Friedman, J. H. Greedy function approximation: a gradient boosting machine. Annals of Statis-

tics, 1189–1232 (2001).
2. Friedman, J. H. Stochastic gradient boosting. Computational Statistics & Data Analysis 38,

367–378 (2002).
3. Schapire, R. E. The strength of weak learnability. Machine Learning 5, 197–227 (1990).
4. Chen, T. & He, T. Higgs boson discovery with boosted trees in NIPS 2014 workshop on

high-energy physics and machine learning (2015), 69–80.
5. Wu, Z. et al. MoleculeNet: a benchmark for molecular machine learning. Chemical science 9,

513–530 (2018).
6. Nobre, J. & Neves, R. F. Combining principal component analysis, discrete wavelet transform

and XGBoost to trade in the financial markets. Expert Systems with Applications 125, 181–194
(2019).

7. Hajek, P., Abedin, M. Z. & Sivarajah, U. Fraud detection in mobile payment systems using an
XGBoost-based framework. Information Systems Frontiers 25, 1985–2003 (2023).

8. Burges, C. J. From ranknet to lambdarank to lambdamart: An overview. Learning 11, 81 (2010).
9. Li, P., Wu, Q. & Burges, C. McRank: Learning to Rank Using Multiple Classifica-

tion and Gradient Boosting in Advances in Neural Information Processing Systems
(eds Platt, J., Koller, D., Singer, Y. & Roweis, S.) 20 (Curran Associates, Inc., 2007).
https : / / proceedings . neurips . cc / paper _ files / paper / 2007 / file /
b86e8d03fe992d1b0e19656875ee557c-Paper.pdf.

10. Gulin, A., Kuralenok, I. & Pavlov, D. Winning The Transfer Learning Track of Yahoo!’s
Learning To Rank Challenge with YetiRank in Proceedings of the Learning to Rank Challenge
(eds Chapelle, O., Chang, Y. & Liu, T.-Y.) 14 (PMLR, Haifa, Israel, July 2011), 63–76. https:
//proceedings.mlr.press/v14/gulin11a.html.

11. Sikander, R., Ghulam, A. & Ali, F. XGB-DrugPred: computational prediction of druggable
proteins using eXtreme gradient boosting and optimized features set. Scientific reports 12, 5505
(2022).

12. Sun, X., Liu, M. & Sima, Z. A novel cryptocurrency price trend forecasting model based on
LightGBM. Finance Research Letters 32, 101084. ISSN: 1544-6123. https://doi.org/10.
1016/j.frl.2018.12.032 (2020).

13. Natekin, A. & Knoll, A. Gradient boosting machines, a tutorial. Frontiers in neurorobotics 7,
21 (2013).

14. Roe, B. P. et al. Boosted decision trees as an alternative to artificial neural networks for particle
identification. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 543, 577–584 (2005).

15. Wu, Q., Burges, C. J., Svore, K. M. & Gao, J. Adapting boosting for information retrieval
measures. Information Retrieval 13, 254–270 (2010).

16. Zhang, Y. & Haghani, A. A gradient boosting method to improve travel time prediction.
Transportation Research Part C: Emerging Technologies 58, 308–324 (2015).

17. Kearns, M. & Valiant, L. Cryptographic limitations on learning boolean formulae and finite
automata. Journal of the ACM (JACM) 41, 67–95 (1994).

18. Chen, T. & Guestrin, C. Xgboost: A scalable tree boosting system in Proceedings of the 22nd
acm sigkdd international conference on knowledge discovery and data mining (2016), 785–794.

5

https://proceedings.neurips.cc/paper_files/paper/2007/file/b86e8d03fe992d1b0e19656875ee557c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/b86e8d03fe992d1b0e19656875ee557c-Paper.pdf
https://proceedings.mlr.press/v14/gulin11a.html
https://proceedings.mlr.press/v14/gulin11a.html
https://doi.org/10.1016/j.frl.2018.12.032
https://doi.org/10.1016/j.frl.2018.12.032


19. Ke, G. et al. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems 30 (2017).

20. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V. & Gulin, A. CatBoost: unbiased
boosting with categorical features. Advances in neural information processing systems 31
(2018).

21. Tannor, P. & Rokach, L. AugBoost: Gradient Boosting Enhanced with Step-Wise Feature
Augmentation in Twenty-Eighth International Joint Conference on Artificial Intelligence (July
2019), 3555–3561. https://doi.org/10.24963/ijcai.2019/493.

22. Li, B., Friedman, J., Olshen, R. & Stone, C. Classification and regression trees (CART).
Biometrics 40, 358–361 (1984).

23. Friedman, J., Hastie, T. & Tibshirani, R. Additive logistic regression: a statistical view of
boosting (with discussion and a rejoinder by the authors). The annals of statistics 28, 337–407
(2000).

24. Rokach, L. & Maimon, O. Top-down induction of decision trees classifiers-a survey. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 35, 476–487
(2005).
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A Pseudo-Code

Algorithm 1 MSBoost Algorithm Pseudocode

Require: Tabular dataset D = {(xi, yi)}ni=1, differentiable loss function L(y, F (x)), modelsM,
number of iterations N , learning rate α

1: Initialize F0(x) = argmink
∑n

i=1 L(yi, k)
2: for i = 1 to N do
3: ri = −

[
∂L(y,Fi−1(x))

∂Fi−1(x)

]
// Compute pseudo residuals

4: hi(x) = argmin∀M∈M L(y,M(ri))(ri) // Choose base estimator for ith
layer i.e Model Selection

5: Fi(x) = Fi−1(x) + α · hi(x) // Update model for ith layer
6: end for
7: return ŷ = F0(x) +

∑N
i=1 Fi(x)

Algorithm 2 Update Posterior Probabilities for Models

Require: New observed error values E, Prior probabilities for all models P (For the first iteration it
is assumed that all models have an equal prior probability.), Indices of trained models T , Dirichlet
prior parameters α, Penalty factor β = 0.7

1: PT ← [Pi | i ∈ T]
2: S ∼ Dir(α)1000

3: W← [] // Initialize weights
4: for s ∈ S do
5: w ← exp (−

∑n
i=1 log(si) · Ei) // Get probabilities

6: W←W ∪ {w}
7: end for
8: W← W∑

W

9: P′
T ← PT · (W · S)

10: P′ ← P // Initialize updated posterior probabilities
11: for i ∈ T do
12: P ′

i ← P′
T[i] // Update posterior probabilities for trained models

13: end for
14: U← {i | i /∈ T}
15: for i ∈ U do
16: P ′

i ← P ′
i · β // Penalize untrained models

17: end for
18: return P′ ← P′∑

P′

B Results

B.1 Benchmarking Results

Table 4: Comparison (regression) with baselines based on mean squared error (MSE)
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MSBoost LightGBM XGBoost

wave_energy 0.0 ± 0.0 1.979e+9 ± 2.967e+8 3.007e+9 ± 4.515e+8
SGEMM_GPU_kernel_performance 0.0006 ± 0.0001 0.0021 ± 0.0005 0.0005 ± 0.0001
Friedman 2 150.5209 ± 31.6582 385.8898 ± 57.2398 501.6854 ± 58.3089
Sparse Uncorrelated 1.0338 ± 0.1538 1.5732 ± 0.1136 1.7742 ± 0.2214
kin8nm 0.0217 ± 0.0016 0.0318 ± 0.0015 0.0364 ± 0.0013
sarcos 32 ± 8 46 ± 15 48 ± 10
Moneyball 431.9247 ± 24.2184 588.8988 ± 42.4500 635.3445 ± 39.3275
Parkinsons Telemonitoring 13.5233 ± 2.1851 18.2569 ± 3.4753 13.1871 ± 1.8204
yprop_4_1 0.0007 ± 0.0001 0.0009 ± 0.0001 0.0011 ± 0.0001
fps_benchmark 2354.4510 ± 110.9576 2917.2280 ± 104.0124 3758.8541 ± 395.4950
Zurich Transport 10.0047 ± 0.7051 12.3082 ± 0.9710 15.2101 ± 1.4006
Diabetes 3017.3830 ± 333.9345 3590.3865 ± 433.2183 3991.1318 ± 651.7501
medical_charges 0.0057 ± 0.0021 0.0067 ± 0.0019 0.0068 ± 0.0021
Airlines_DepDelay_1M 3.7258 ± 0.2437 4.3522 ± 0.3432 5.2531 ± 0.3028
visualizing_soil 24.9784 ± 6.9898 28.2629 ± 7.3992 22.4963 ± 9.5333
video_transcoding 146.3238 ± 51.3910 163.5462 ± 60.2620 206.6265 ± 64.0276
health_insurance 310.6828 ± 27.6937 345.2994 ± 31.4665 397.2537 ± 25.3154
grid_stability 0.0009 ± 0.0001 0.0010 ± 0.0001 0.0012 ± 0.0001
abalone 5.3366 ± 0.8634 5.8872 ± 1.2488 6.1480 ± 1.1375
Liver Disorders 9.1786 ± 1.1586 10.0795 ± 1.2242 11.8547 ± 1.1893
student_performance_por 8.1418 ± 1.3556 8.9132 ± 1.2743 12.5153 ± 1.6150
diamonds 1.93e+6 ± 3.44e+5 2.09e+6 ± 4.88e+5 2.30e+6 ± 4.59e+5
auction_verification 9.34e+7 ± 1.15e+7 1.00e+8 ± 9.79e+6 1.52e+8 ± 2.04e+7
cpu_act 10.2950 ± 1.5068 10.7118 ± 1.9016 16.6299 ± 10.0559
Student Performance 6.3849 ± 0.9935 6.5426 ± 0.9590 7.3635 ± 1.2074
pol 103.6665 ± 21.9906 105.9581 ± 42.7356 126.1512 ± 46.4249
AIDS Clinical Trials Group Study 0.0857 ± 0.0065 0.0868 ± 0.0087 13.1871 ± 1.8204
Bike_Sharing_Demand 12307.1564 ± 1427.9618 12461.6368 ± 1476.1868 13478.9580 ± 1027.8582
srsd-feynman_hard 2.549e-70 2.578e-70 2.984e-70
seattlecrime6 151041.8081 ± 3619.6563 151809.1711 ± 3291.9561 151684.2628 ± 3180.8946

Table 5: Comparison (classification) with baselines based on log loss
MSBoost LightGBM XGBoost

phoneme 0.3467 ± 0.0371 0.4324 ± 0.0750 0.4393 ± 0.0623
guillermo 0.5644 ± 0.0461 0.6988 ± 0.1070 0.7725 ± 0.1146
MagicTelescope 0.4020 ± 0.0428 0.4817 ± 0.0510 0.5090 ± 0.0512
heloc 0.5888 ± 0.0130 0.6773 ± 0.0831 0.7849 ± 0.0932
Bioresponse 0.5012 ± 0.0264 0.5705 ± 0.0811 0.5921 ± 0.0752
electricity 0.5462 ± 0.0645 0.6137 ± 0.0818 0.6530 ± 0.0997
Australian 0.5087 ± 0.0318 0.5459 ± 0.0691 0.6432 ± 0.0853
house_16H 0.3847 ± 0.0361 0.4086 ± 0.0702 0.4254 ± 0.0681
pol 0.1738 ± 0.0489 0.1839 ± 0.0598 0.1524 ± 0.0468
Bioresponse 0.5431 ± 0.0805 0.5705 ± 0.0811 0.5921 ± 0.0752
california 0.3736 ± 0.0345 0.3911 ± 0.0552 0.4050 ± 0.0625
heloc 0.6507 ± 0.0872 0.6773 ± 0.0831 0.7849 ± 0.0932
higgs 0.7332 ± 0.1404 0.7543 ± 0.0862 0.8221 ± 0.1008
compas-two-years 0.6986 ± 0.1059 0.7138 ± 0.0543 0.8056 ± 0.0742
Higgs 0.7255 ± 0.0842 0.7409 ± 0.0540 0.8661 ± 0.0510
MiniBooNE 0.2995 ± 0.0294 0.3043 ± 0.0568 0.3087 ± 0.0610

Table 6: (Absolute values) Comparison on small noisy real world datasets with significant social
impact (†MSE & ‡Log Loss)

UCI ID [40] MSBoost LightGBM XGBoost

AIDS Clinical Trials† 890 8.1e-2 ± 6.5e-3 8.7e-2 ± 1.1e-2 9.2e-2 ± 8.6e-3
Student Performance† 320 6.3 ± 0.81 6.6 ± 0.93 7.9 ± 1.15
Energy Efficiency† 242 1.7 ± 0.18 1.74 ± 0.21 2.28 ± 0.26
Diabetes† [38] 3017 ± 333 3585 ± 433 4010 ± 651
Liver Disorders† 60 9.6 ± 1.19 10.05 ± 1.22 11.82 ± 1.18
Heart Failure Clinical Records† 519 0.12 ± 0.03 0.124 ± 0.041 0.141 ± 0.047
Thyroid Cancer Recurrence‡ 915 1.2 ± 0.88 1.57 ± 0.77 1.47 ± 0.92
Rice (Cammeo and Osmancik)‡ 545 2.79 ± 0.10 3.00 ± 0.23 2.96 ± 0.13
Blood Transfusion Service‡ 176 8.3 ± 0.48 9.16 ± 0.48 9.46 ± 1.19
Acute Inflammations‡ 184 0.0 ± 0.0 0.003 ± 0.006 0.0075 ± 0.012
SPECTF Heart‡ 96 6.4 ± 1.24 6.67 ± 1.2 6.53 ± 1.29
Glioma Grading Clinical & ...‡ 759 4.8 ± 0.75 6.43 ± 0.9 6.47 ± 0.55
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B.2 Impact of Data Dependent Factors

This section contains all the plots4 for impact of data dependent factors on Scikit-Learn’s [38]
simulated datasets. Lower area under the loss curve indicate better performance.

B.2.1 Classification Datasets5

Figure 4: Make Classification [43]

Figure 5: Hastie 10 Dataset [43]

Figure 6: Gaussian Quantiles [44]

Figure 7: Make Blobs

4The exact values for the x and y coordinates can be found in https://github.com/Agnij-Moitra/
MSBoost

5Due to computational and hardware constrains the jupyter kernel crashed when the number of samples went
more than around 5K, so it wasn’t done on 10K samples like regression.
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Figure 8: Make Moons

B.2.2 Regression Datasets

Figure 9: Make Circles

Figure 10: Sparse Uncorrelated [45]

Figure 11: Friedman 1 [46, 47]

Figure 12: Friedman 2 [46, 47]
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Figure 13: Friedman 3 [46, 47]

Figure 14: Swiss Roll [48]

Figure 15: S Curve

B.3 Impact of Model Selection Methods

(a) Make Classification (b) Make Hastie (c) Make Gaussian Quan-
tiles

(d) Sparse Uncorrelated (e) Friedman 1 (f) Friedman 2

(g) Friedman 3 (h) Swiss Roll (i) S Curve

Figure 16: Impact of number of models for model selection methods
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Table 7: p-values for impact of number of models on model selection methods (Row vs. Column)
Bayes Frequency Based Random Sampling

Bayes 1.00 0.71 0.82
Frequency Based 0.28 1.00 0.82
Random Sampling 0.06 0.17 1.00

C Dataset Sources & Description6

C.1 Benchmarking Datasets

This section contains descriptions for selected datasets used for benchmarking. Please refer to the
original sources [35, 36, 38, 40] for descriptions for all the datasets used in Table 4 & 5.

• wave_energy: This data set consists of positions and absorbed power outputs of wave energy converters
(WECs) in four real wave scenarios from the southern coast of Australia. The data is obtained from an
optimization method (blackbox optimization) with the goal of finding the optimal buoys placement.
Each instance represents wave energy returns for different placements of 16 buoys.

• Friedman 2: y(X) = (X[:, 0]2 + (X[:, 1]×X[:, 2]−
√

1
X[:,1]∗X[:,3]))2

+ noise ×N(0, 1)

• Sparse Uncorrelated: X ∼ N(0, 1); y(X) = X[:, 0] + 2×X[:, 1]− 2×X[:, 2]− 1.5×X[:, 3]

• kin8nm: A realistic simulation of the forward dynamics of an 8 link all-revolute robot arm. The task is
to predict the distance of the end-effector from a target based on angular positions of the joints.

• sarcos: Dataset related to an inverse dynamics problem for a seven degrees-of-freedom SARCOS
anthropomorphic robot arm. Predict joint torques from joint positions, velocities, and accelerations.

• Moneyball: Dataset used in baseball analytics, focusing on statistics like on-base percentage (OBP)
and slugging percentage (SLG) to predict player performance.

• yprop_4_1: Dataset used in the tabular data benchmark, transformed accordingly, for regression on
categorical and numerical features.

• fps_benchmark: Dataset containing FPS measurements of video games executed on computers,
characterized by CPU and GPU specifications and game settings.

• Zurich Transport: Zurich public transport delay data, cleaned and prepared for analysis.

• phoneme: Dataset to distinguish between nasal (class 0) and oral sounds (class 1) using harmonics
and energy ratios.

• guillermo: The challenge introduces diverse, real-world datasets formatted uniformly for binary
classification tasks, evaluated by AUC. Participants use preprocessed matrices and adhere to time-
constrained evaluations on Codalab.

• MagicTelescope: Simulation data from a ground-based atmospheric Cherenkov gamma telescope,
detecting high-energy gamma particles.

• heloc: Dataset used in the tabular data benchmark, transformed accordingly, for classification on
numerical features.

• Bioresponse: Predict biological responses of molecules based on chemical properties and molecular
descriptors.

• electricity: Dataset collected from the Australian New South Wales Electricity Market, containing
45,312 instances over a period from 7 May 1996 to 5 December 1998.

• Australian: Australian Credit Approval dataset, anonymized and converted to ARFF format, used in
credit card application analysis.

• house_16H: Binarized version of the house dataset, converting numeric target features to a two-class
nominal target feature based on mean values.

• pol: Dataset used in the tabular data benchmark for classification on numerical features, related to a
telecommunication problem.

• california: The dataset includes data from all California block groups in the 1990 Census, averaging
1425.5 individuals per group in compact areas varying with population density. It features 20,640
observations across 9 variables, excluding groups with zero entries, with the dependent variable being
ln(median house value).

6GPT-3.5 was used to summarize the data description from original sources.
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C.2 Social Impact Datasets
• AIDS Clinical Trials Group Study 175: The AIDS Clinical Trials Group Study 175 Dataset contains

healthcare statistics and categorical information about patients who have been diagnosed with AIDS.
This dataset was initially published in 1996. The prediction task is to predict whether or not each
patient died within a certain window of time or not.

• Student Performance: The dataset analyzes student achievement in two Portuguese secondary schools,
covering grades, demographics, and school-related factors. It includes separate datasets for Mathemat-
ics (mat) and Portuguese language (por), with a strong correlation between final grade (G3) and earlier
grades (G2 and G1), essential for prediction and analysis according to Cortez and Silva (2008).

• Energy Efficiency: The dataset consists of 768 samples representing 12 different building shapes
simulated in Ecotect. Variations include glazing area, distribution, orientation, and other parameters,
generating 8 features per sample. The objective involves predicting two real-valued responses or,
alternatively, using the rounded responses for multi-class classification.

• Diabetes: Contains 442 samples with 10 numeric features related to diabetes progression, including
age, sex, BMI, blood pressure, and blood serum measurements. Target is a continuous measure of
disease progression one year after baseline.

• Liver Disorders: The dataset contains records of male individuals with 5 blood test variables possibly
related to liver disorders from alcohol consumption. The 7th field serves as a train/test selector, not as
a dependent variable for liver disorder presence/absence; researchers should use the dichotomized 6th
field (drinks) for classification.

• Heart Failure Clinical Records: This dataset contains the medical records of 299 patients who had heart
failure, collected during their follow-up period, where each patient profile has 13 clinical features.

• Differentiated Thyroid Cancer Recurrence: This data set contains 13 clinicopathologic features aiming
to predict recurrence of well differentiated thyroid cancer. The data set was collected in duration of 15
years and each patient was followed for at least 10 years.

• Rice (Cammeo and Osmancik): A study was conducted on Osmancik and Cammeo rice species,
prominent in Turkey since 1997 and 2014 respectively. 3810 rice grain images were analyzed, deriving
7 morphological features per grain. Osmancik grains are noted for their wide, long, glassy, and dull
appearance, while Cammeo grains exhibit similar characteristics with a focus on width and length.

• Blood Transfusion Service Center: This study utilized data from the Blood Transfusion Service Center
in Hsin-Chu City, Taiwan, for a classification problem. The dataset comprises 748 donor records
selected randomly, with features including R (Recency), F (Frequency), M (Monetary), T (Time since
first donation), and a binary variable indicating blood donation in March 2007 (1 for donated, 0 for not
donated). The objective was to develop a RFMTC marketing model using these variables.

• Acute Inflammations: The dataset was crafted by a medical expert to support an expert system for
diagnosing two urinary system diseases: acute inflammation of the urinary bladder and acute nephritis.
It utilizes Rough Sets Theory for rule detection, with each instance representing a potential patient.

• SPECTF Heart: Data on cardiac Single Proton Emission Computed Tomography (SPECT) images.
Each patient classified into two categories: normal and abnormal. The dataset describes diagnosing
of cardiac Single Proton Emission Computed Tomography (SPECT) images. Each of the patients
is classified into two categories: normal and abnormal. The database of 267 SPECT image sets
(patients) was processed to extract features that summarize the original SPECT images. As a result, 44
continuous feature pattern was created for each patient.

• Glioma Grading Clinical and Mutation Features: The dataset focuses on gliomas, primary brain
tumors graded as LGG (Lower-Grade Glioma) or GBM (Glioblastoma Multiforme), based on histolog-
ical/imaging criteria and molecular mutations. It includes the most frequently mutated 20 genes and 3
clinical features from TCGA-LGG and TCGA-GBM projects. The goal is to predict the glioma grade
(LGG or GBM) using these features, aiming to identify the optimal subset for improved diagnostic
accuracy and cost reduction in molecular testing for glioma patients.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: Yes, the claims stated in the abstract and introduction accurately reflect the paper’s
contribution and scope, and a separate section discusses the limitations. The benchmarking was done
on around 50+ datasets with p < 0.01 for all the major claims so the claims are expected to generalize
to other settings and real world usage.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The Limitations section discusses all the possible limitations that the author is aware of.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]

Justification: The paper entails an informal intuitive justification, and the supplementary material
contains a formal proof by induction to provide theoretical justification for the algorithm.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All information required to reproduce the results have been released in the Github
repository, including a random seed to get the precise values from the benchmarking.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: (i) The Github repository contains all the commands and environments required to
reproduce the results. (ii) The jupyter notebooks contains the repository contains the data ID(s)
which were used to fetch the benchmarking datasets from Scikit-Learn, OpenML, and UCI’s Machine
Learning Repository, and the automated pre-processing steps taken.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The testing was done using 5 Fold cross validation, and only default hyper parameters
were used due to hardware resource constrains. Additional details can be found in the jupyter
notebooks, from the Github repository, where the tests were performed.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: Paired single tailed t-tests where performed, excluding extreme outliers, wherever it was
required to prove the statistically significance of the claims presented, and standard deviations from
the 5-fold cross validation have been reported.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]
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Justification: Yes, the paper does list the compute resources used, and with the random seed with was
set to 7 at the beginning of each experiment all the experiments can be reproduced, via the github
repository. For the benchmarking only default hyper-parameters were used. Unfortunately this paper
didn’t note the precise run times, but the main regression and classification benchmarks had run
overnight. And the ablations studies took around 12 hours of wall time.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, this paper does conform to every aspect of the NeurIPS Code of Ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: Yes both the positive and negative social impacts have been discussed.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pre-trained language models, image generators,
or scraped datasets)?

Answer: [NA]

Justification: Technically a tabular machine learning algorithm could be used for malicious purposes,
but it does not pose a significantly high risk like LLM(s), image generators et cetera, and like previous
methods (XGBoost, LightGBM, CatBoost) the algorithm MSBoost is freely available under an open-
sourced licensed. All the tabular datasets used are anyways anonymized and already open-sourced and
can be accessed via the Scikit-Learn, UCI and OpenML API(s), so any safegaurds were not required
from our end for the datasets.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: A few code snippets from Github and Stackoverflow were used and they have been
credited appropriately in the docstrings of the functions/classes where they were used or with in-line
comments. The major datasets used have been cited explicitly, but it not feasible to cite all 50+
individual datasets. So UCI’s Machine Learning Repository, and OpenML have been cited explicitly
as they had requested. Baseline models like LightGBM, XGBoost and CatBoost have been cited, and
Scikit-Learn which was used extensively for this has also been cited.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: All images and code released under this paper can be used whilst adhering to Apache 2.0
license.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA] .

Justification: This paper does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA] .

Justification: This paper does not involve crowdsourcing nor research with human subjects.
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